Programming and Proving
Practice with FoCaliZe

Francois Pessaux
ENSTA ParisTech

EJCP
May 19, 2014

http://perso.ensta-paristech.fr/~pessaux/ejcp-2014/

Ecole Jeunes Chercheurs en Programmation - June 2014

http://perso.ensta-paristech.fr/~pessaux/ejcp-2014/

Why Proving 7

Ecole Jeunes Chercheurs en Programmation - June 2014

In Industry...

Hardware replaced by software.
Military, medical, transport, energy, finances, telecoms...

Effect of software failure ? — ‘I}', €(@,

Standards (IEC-61508, EN-50128, CC2, DO-178C...) rule
systems developments.

Formal methods required for highest safety/security levels.

Ecole Jeunes Chercheurs en Programmation - June 2014

In Science...

- As a computer scientist: want to be sure of my algorithm.

- As another scientist: want to be sure that the software tools
| use do not alter my results.

Ecole Jeunes Chercheurs en Programmation - June 2014

Proofs of What?

Ecole Jeunes Chercheurs en Programmation - June 2014

Proof = Property

Never trust « | proved my program works ».
- A proof is not an absolute essence of a program.

Need statements (i.e. stated properties) representing that
« my program works »

Then prove that indeed the program implementation
satisfies these properties.

... according to
Properties are the specification(s) of the program.

Ecole Jeunes Chercheurs en Programmation - June 2014

Proofs in their Environment

-

- 4 shapes, 4 questions...

Ecole Jeunes Chercheurs en Programmation - June 2014

Question 1: a Program?

Program

In which language”? Pseudo-code, C, Java, DSL...
In which semantical framework? Imperative, functional...

Ecole Jeunes Chercheurs en Programmation - June 2014

Answer 1: a Programming Language...

- A pure functional language a la ML: FoCaliZe
= Functions, sum types, pattern-matching, ...

+ modularity, inheritance, late-binding, abstraction,
parameterization.

species AssocMap (Key is Comparable, Value is Comparable, OptValue is OptComparable (Value)) =
inherit Setoid ;

representation = pair_list_t (Key, Value) ;
let empty : Self = Nil ;
let add (k, v, m : Self) : Self = Node (k, v, m) ;

let rec find (k, m : Self) : OptValue =
match m with

| Nil -> OptValue!none
| Node (kcur, v, q) =>

if Keyleq (kcur, k) then OptValuelsome (v) else find (k,)
termination proof = structural m ;

end ;;

Ecole Jeunes Chercheurs en Programmation - June 2014

Question 2: Properties?

Properties

- Which logical language?

Depends on the specifications we want to be able to
express.

+ Too rich: impossible to (even partly) automate proofs.

- Too poor: impossible to express specifications through the
programming language.

Ecole Jeunes Chercheurs en Programmation - June 2014

Answer 2: a Logical Language

+ First-order logic
+ prog. language constructs (function, type, pattern-matching...)

+ equality.

theorem implications : all ab : bool, a => (b ->a)
proof = ... ;;

species Comparable =
|.o.|.'operty eg_symmetric: all x y : Self, eq (x, y) -=>eq (y, X) ;
end ;;
species AssocMap (Key is Comparable, Value is Comparable, OptValue is OptComparable (Value)) =

property find_added_not_fails: all k : Key, all v : Value, all m1 m2 : Self,
m2 = add (k, v, m1) => ~ OptValueleq (find (k, m2), OptValue!none) ;

end ;;

Ecole Jeunes Chercheurs en Programmation - June 2014

Question 3: Proof?

-

- Which proof language? Coq, HOL, PVS...
Independence for the user? Easing user proof task ?
No need for deep knowledge of a logical framework.
No need to know how the user proof language is compiled.
User-readable proofs wanted.

Ecole Jeunes Chercheurs en Programmation - June 2014

Answer 3: a Proof Language

Dedicated proof language provided (FCL).

Fully part of the FoCalLiZe language (consistency).
Allows hierarchical proofs a la natural deduction (readability).
Relies on the Zenon theorem prover (discharges the user).
Compilation to a target logical language by FoCalLiZe compiler.

proof =
<1>1 assume m : Self,
assume s k : Key,
assume v : Value,
prove (find (s, m) = OptValuelsome (v) \/ Keyleq (s, k)) <> find (s, add (k, v, m)) = OptValue!lsome (v)
<2>1 hypothesis H1: find (s, m) = OptValuelsome (v) V Keyleq (s, k),
prove find (s, add (k, v, m)) = OptValuelsome (v)
<3>1 prove add (k, v, m) = Node (k, v, m) by definition of add type pair_list_t
<3>¢ ged by step <3>1 definition of find hypothesis H1 type pair_list_t property Keyleqg_symmetric
<2>2 hypothesis H2: find (s, add (k, v, m)) = OptValue!some (v),
prove find (s, m) = OptValuelsome (v) \/ Keyleq (s, k)
<3>1 prove add (k, v, m) = Node (k, v, m) by definition of add type pair_list_t
<3>¢e ged by step <3>1 definition of find hypothesis H2 type pair_list_t property Keyleqg_symmetric
<?>¢ ged by step <2>1, <2>2
<1>e conclude ;

Ecole Jeunes Chercheurs en Programmation - June 2014

Question 4: ??7?

Properties

4 Proofs

Program

- What to do with the proof?
» Verified by a human ? Error prone!
- We want a formal proof.

Ecole Jeunes Chercheurs en Programmation - June 2014

Answer 4: a Checker

+ Proofs must be checked mechanically !

= The proof assistant Coq acts as an assessor.

- Zenon issues Coqg terms for proofs.

+ Whole model of the program compiled into a Coqg term.
types, functions, properties and proofs.

(* From species assoc_map3#0OptComparable. *)
(* Section for proof of theorem ‘eq_reflexive’. *)
Section Proof_of_eq_reflexive.
Variable _p_C_T : Set.
Variable _p C eq: _p C_T->_p_C_T ->basics.bool__t.
Variable _p_C_eq_reflexive : forall x : _p_C_T, Is_true ((_p_C_eq x x)).
Let abst_T := (option_t__t _p_C_T).
(* File "assoc_map3.fcl’, line 42, characters 4-61)
Theorem for_zenon_eq_reflexive : (forall x : abst_T, (Is_true (abst_eq x x))).
Proof.
apply NNPP. intro zenon_QG.
apply (zenon_notallex_s (fun x : abst_T => (Is_true (abst_eq x x))) zenon_G); [zenon_intro zenon_H?2; idtac].
elim zenon_H?2. zenon_intro zenon_Tx_d. zenon_intro zenon_H4.

Ecole Jeunes Chercheurs en Programmation - June 2014

FoCaliZe Compilation Flow

Source file

Hierarchy

Inheritance, Dependencies> [Well—formed]

Code Generation

OCaml

generated generated
source file source file

Ecole Jeunes Chercheurs en Programmation - June 2014

Inheritance graph
1 | Tools Dependency graphs
HTML

Documentation LaTeX
file

Plan of the Lecture

A

Progress in progress ﬁﬂ‘

<

J

First-Order Logic in FoCal.iZe.
Basic Programming in FoCaL.iZe.
- Adding Structure in Programs.
»+ Adding Proofs in Programs.
- Adding Parameterization.
- When to Prove What?
- Advanced Proofs.

Ecole Jeunes Chercheurs en Programmation - June 2014

First-Order Connectors

Semantics Connector FoCatize
Syntax
Conjunction A \
Disjunction \ \V
Implication = ->
Equivalence < <->
Negation = ==
Universal quantification v all
Existential quantification 3 ex

+ programming expressions.

Ecole Jeunes Chercheurs en Programmation - June 2014

Starting with Proofs...

¥
/ /
12 ||..

LA PLUS GRAVE MALADIE
DU CERVEAU QEST PE
REFLECHIR.

Ecole Jeunes Chercheurs en Programmation - June 2014

A First Tautologie

v a,b:boolean,a=b = a

- In a file ex_implications.fcl

open "‘basics’ ;;

theorem implications : all a b : bool, a-> (b ->a)
proof = assumed ;;

+ Let's compille:

$ focalizec ex_implications.fcl

Invoking ocamic...

>> ocamlc -| /usr/local/lib/focalize -c ex_implications.ml

Invoking zvtov...

>> zviov -zenon zenon -new ex_implications.zv

Invoking coqc...

>> coqc -l /usr/local/lib/focalize -1 /usr/local/lib/zenon ex_implications.v

$

Ecole Jeunes Chercheurs en Programmation - June 2014

What do we got ?

Two source files:
- ex_implication.ml: « executable » code.
- ex_implication.v: logical term.

Both sent to their respective compiler (ocamic, coqc).

Time to write a proof!
Sequent of the proof:

v a, b :boolean, a, b a
v a, b:boolean,at+ b = a
va,b:booleana=b=a
" +va,b:boolean,a=b=a

Hypotheses Goals

Ecole Jeunes Chercheurs en Programmation - June 2014

A Proof in FoCalLiZe

theorem implications :
proof =

by
ged by

(* or: qed conclude
or: ged by step <1>1 %) ;;

v a, b : boolean, a,b - a
v a,b:boolean,a+ b = a
va,b:booleana=b=a
— v a,b:boolean,a = b = a

Ecole Jeunes Chercheurs en Programmation - June 2014

Mimic the Sequent Proof

proof =
<1>1

<>1 .

by hypothesis h1
<2>2 qed by step <2>1
<1>2 conclude
(* or: qed conclude
or: ged by step <1>1) ;;

v a, b : boolean, a, b
v a, b : boolean,
—a=b=a

|_

Ecole Jeunes Chercheurs en Programmation - June 2014

The less | work, the better | feel

- Zenon knows (among other things) about basic logic rules.
Let’s it work instead of us.

open 'basics’ ;;

theorem implications : all ab : bool, a-> (b -> a)
proof = conclude ;;

Fact conclude: « Zenon, handle it by yourself! »
Zenon is there to help automating proofs.

Ecole Jeunes Chercheurs en Programmation - June 2014

Basic Programming in FoCal.iZe

%XEL_

Ecole Jeunes Chercheurs en Programmation - June 2014

Core Programming Language

FoCaliZe: pure functional programming language:
Basic types: int, bool, string, ... + polymorphism.
Construct types: product, sum (recursive), records.
Let-definition, pattern-matching, 1f-then-else, ...

Properties will deal with these constructs...
... SO will proofs.

Ecole Jeunes Chercheurs en Programmation - June 2014

First Program: Loose Sets

- Implementation of (poor) sets as lists.

- In afile loose_sets.fcl

open 'basics’ ;;

type set_t('a) =
| Empty

| Empty -> false

termination proof = structural s ;;

| Elem (e, s) => if e = x then true else belongs (X, s)

€— Make a module of |the standard library visible

| | <€ Polymorphic sum type definition
| Elem (‘a, set_t (‘a)) ;;
let is_empty (s) = s = Empty ;;
e Non-recursive function definition
let add (x, s) = Elem (X, S) ;;
let rec belongs (x, s) =
match s with <€ Rpecursive function definition

€ Termination proof

Ecole Jeunes Chercheurs en Programmation - June 2014

Add a Second File ... with Properties

« Specialize », implementing integers sets.
Add a function « refusing to add 0 ».

Add some properties ... (and next, proofs).
In a file int_loose_sets.fcl

open 'basics’ ;;
(—

let add_except O (x :int,s) = ¥

if Xx = O then s else loose_sets#add (X, S) ;;

theorem rall x 1 int, all s : loose_sets#set_t (int),
(loose_sets#is_empty (s) A x = 0) => loose_sets#is_empty (add_except_0 (X, s))

proof = 777;; A

theorem - all s : loose_sets#set_t (int),
loose_sets#is_empty (s) -=> loose_sets#is_empty (add_except_0 (O, s))
proof = 777 ;; . S

Ecole Jeunes Chercheurs en Programmation - June 2014

... And the Proofs?

let is_empty (s) =s = Empty ;;
let add (x, s) = Elem (X, S) ;;

let add_except_ O (x :int, s) =
if Xx = O then s else loose_sets#add (X, S) ;;

theorem zero_not_added: all x : int, all s : loose_sets#set_t (int),

(loose_sets#is_empty (s) A x = 0) -> loose_sets#is_empty (add_except_0 (X, s))
proof =

- The proof comes from the definition of add_except!
- Not even needed to know what 1s_empty does.
- Use the Zenon fact definition of.

proof = by definition of add_except_O ;;

Ecole Jeunes Chercheurs en Programmation - June 2014

... And the other Proof?

theorem zero_not_added: all x : int, all s : loose_sets#set_t (int),

(loose_sets#is_empty (s) A x = 0) => loose_sets#is_empty (add_except_O (X, S))
proof = by definition of add_except_0O ;;

theorem - all s : loose_sets#set_t (int),

loose_sets#is_empty (s) -=> loose_sets#is_empty (add_except_0 (O, s))
proof =

- The proof comes from the previous lemma zero_not_added!
- X was directly instantiated by O.

- Use the Zenon fact property.

proof = by property zero_not_added ;;

Ecole Jeunes Chercheurs en Programmation - June 2014

The Whole file

open 'basics’ ;;
use 'loose_sets' ;;

let add_except_ O (x :int, S) =
if Xx = O then s else loose_sets#add (X, S) ;;

theorem rall x = int, all s : loose_sets#set_t (int),
(loose_sets#is_empty (s) A x = 0) -> loose_sets#is_empty (add_except_0 (X, s))
proof = by definition of add_except_O ;;

theorem - all s : loose_sets#set_t (int),
loose_sets#is_empty (s) -> loose_sets#is_empty (add_except_0 (0, s))
proof = by property zero_not_added ;;

- We saw 2 Zenon facts: definition of and property.
R Let,S Compile. $ focalizec int_loose_sets.fcl

Invoking ocamlc...

>> ocamlc -| /usr/local/lib/focalize -c int_loose_sets.m|

Invoking zvtov...

>> zvtov -zenon zenon -new int_loose_sets.zv

Invoking coqc...

>> coqgc -l /usr/local/lib/focalize -1 /usr/local/lib/zenon int_loose_sets.v

$

Ecole Jeunes Chercheurs en Programmation - June 2014

A Simple Proof by Cases

- Alast theorem: « if we add an element to a set, then it
belongs to the resulting set ».

open 'basics’ ;;
open ‘loose_sets" ;;

theorem added_forcibly_belongs: all x : int, all s : set_t (int), belongs (x, add (X, s))
proof =

Proof to do
by using the definition of belong and add,
by case on values of type set_t.
- Zenon needs to know about the type, about its induction principle.
Use the Zenon fact type.

proof = by definition of add, belongs type set_t ;;

Ecole Jeunes Chercheurs en Programmation - June 2014

Structuring Programs

Ecole Jeunes Chercheurs en Programmation - June 2014

In Realistic Developments

Express specifications,
and go step by step to design and implementation,

- while proving that such an implementation meets its
specification or design requirements.

= Need for an incremental approach.
Reduce coupling: enhances reusability and robustness.

Common technics: modularity and encapsulation.
= Need for some kind of Abstract Data-Types.

Ecole Jeunes Chercheurs en Programmation - June 2014

Grouping Structure: Species

- Aim: grouping « things » related to a same concept:
an underlying data-type,
its manipulation functions,
its their properties/theorems.
« Things » called methods.

species Name =
meth; ;
metho ;

end ;;

Species name: always: capitalized.

Ecole Jeunes Chercheurs en Programmation - June 2014

Methods of Species

representation: the « data representation » of the
entities manipulated by the species

= type definition.

signature: announces a function to be defined later
= name + type.

let (rec/logical): introduces a definition

= name + optional type + expression.

property: logical formula not yet proved.

= name + first-order statement.

theorem: proved logical formula.

= name + first-order statement + proof.

proof of: proof to attach to an existing property.
= name + proof.

Ecole Jeunes Chercheurs en Programmation - June 2014

Example Please...

species BasicStuff =

| ’ sighature eq : Self -> Self -> bool ;
not defined b let

(X, y)=~~Bq (X, V) ;
defined property eq_reflexive: all x : Self, eq (X, x) ;

end ;;

species OrderedPairs =

representation = int * int ;

let make (x, y) : Self = if x y then (y, x) else (X, V) ;
let first (x : Self) =

match (x) with

| (x1, x2) =>x1 ;

let second (x : Self) =

match (x) with . oloe s _
| (x1, x2) > X2 ; Type » jof the representation

Not yet proved

theorem make_safe : all x : Self, all i1 :int, all i2 :int,
X = make (i1, i2) => second (x) >0x first (x)

Ecole Jeunes Chercheurs en Programmation - June 2014

More Advanced Features Later...

unes Chercheurs en Programmation - June 2014

Case of Study: Association Maps

Data-structure allowing to bind a « key » to a « value ».
- Want to retrieve the value bound to a certain key.
3 operations:
empty . map
» Initial map containing no binding.
add (k, v, m) : key — value — map — map
» Adds the binding (k »v) to the map m.
find (k, m) : key — map —« value or error »

» Looks for and returns the value bound to the key if
some exists. Otherwise, signal « an error ».

Ecole Jeunes Chercheurs en Programmation - June 2014

Naive Implementation: Used Types

- Hardwired:
- Type of keys: int.
- Type of values: string.
- Recording structure: something like a list.
+ « Value or error »: encoded in an option type.
- Type definitions always at top-level in FoCal.iZe.

(* Structure recording bindings of a map: a hand-made basic list. *)
type int_str_list_t =

| Nil

| Node (int, string , int_str_list_t) ;;

(* Return value of the lookup function: nothing or something. *)
type option_t (‘a) =

| None

| Some (‘a) ;;

Ecole Jeunes Chercheurs en Programmation - June 2014

Maps with their Functions

species AssocMap =
representation = int_str_list_t ;
let empty : Self = Nil ; (* Empty association map: no bindings. *)

(* Addition to the map m of the value v bound to the key k. *)
let add (k: int, v: string, m : Self) : Self = (K, v, m) ;

(* Lookup the the value bound to the key k in the map m. *)
let rec find (k: int, m: Self) =
match m with
| Nil ->
| Node (kcur, v,) => if kcur = k then (v) else find (k, Q)

end ;;

Ecole Jeunes Chercheurs en Programmation - June 2014

Compiling...

- We can compille...

$ focalizec assoc_map1.fcl

Invoking ocamic...

>> ocamlc -l /usr/local/lib/focalize -c assoc_map1.ml
Invoking zvtov...

>> zvtOv -zenon zenon -new assoc_map1.zv
Invoking coqc...

>> coqc -l /usr/local/lib/focalize -l /usr/local/lib/zenon assoc_map1.v

$

- Right, but not yet executable...
+ (And no proofs yet...)

Ecole Jeunes Chercheurs en Programmation - June 2014

Final Encapsulation: Collection

-+ Until now: just grouped methods of assoc maps.

- To test we need to turn the species into the expected
Abstract Data-Type.

= Need to build a collection: kind of « instance » of a species.
+ Collection: definitions get opaque.

» Only types of methods visible.

+ Only statements of theorems visible.

collection MyMap = implement AssocMap ; end ;;

(* Printer of value of type option (string). *)
let print_string_option (v) = match v with
| None => print_string ("Not found\n")
| Some (s) -=> let _a = print_string ("Found value: ") in let _b = print_string (s) in
print_newline (()) ;;

let m = MyMapladd (5, "five’, MyMap!empty) ;;
print_string_option (MyMap!find (5, m)) ;;
print_string_option (MyMap!find (3, m)) ;;

Ecole Jeunes Chercheurs en Programmation - June 2014

Compiling / Running
- Invoke focalizec:

- Create the OCaml object file: need to link to get an executable.
- Create the Coq source file: directly checked by Coq.

$ focalizec assoc_map1_partial_test.fcl
Invoking ocamic...
>> ocamlc -l /usr/local/lib/focalize -c assoc_map1_partial_test.ml
Invoking zvtov...
>> zvtov -zenon zenon -new assoc_map1_partial_test.zv
Invoking coqc...
>> coqgc -l /usr/local/lib/focalize -I /usr/local/libo/zenon assoc_map1_partial_test.v
print_string_option (MyMap.find 5 m)

. basics.unit__t
print_string_option (MyMap.find 3 m)

. basics.unit__t

-+ Link using ocamlc and a few object files of FoCaLiZe std. lib.

$ ocamlc -1 /usr/local/lib/focalize mi_builtins.cmo basics.cmo assoc_map1_partial_test.cmo

- Run...

$./a.out

Found value: five
Not found

$

Ecole Jeunes Chercheurs en Programmation - June 2014

Encapsulation Won

- In a collection, the representation of the
implemented species is hidden.

-« Manually » exploit its internal type’s structure is no
more possible.

let m = MyMap'add (5, "five", Nil) ;;

$ focalizec assoc_map1_partial_test.fcl

File "assoc_map1_partial_test.fcl”, line 42, characters 8-34:
Error: Types assoc_map1_partial_test#int_str_list_t and
assoc_map1_partial_test#MyMap are not compatible.

$

+ Prevents from « savage » manipulations.
- Ensure that provided (and proved) properties always hold.

Ecole Jeunes Chercheurs en Programmation - June 2014

Time to Prove!

» « Finding the value bound to a key just inserted in a map
never fails ».

-« Calling T1nd with a key k on a map built by add-ing to it
kK with any bound value never returns None. »

(* Add make find a success. *)

theorem find_added_not_fails: all k : int, all v : string, all m1 m2 : Self,
m2 = add (k, v, m1) -> ~ (find (k, m2) = None)

proof = 7777,

Ecole Jeunes Chercheurs en Programmation - June 2014

Time to Prove!

+ « Finding the value bound to a key just inserted in a map
never fails ».

-« Calling T1nd with a key k on a map built by add-ing to it
kK with any bound value never returns None. »

(* Add make find a success. *)

theorem find_added_not_fails: all k : int, all v : string, all m1 m2 : Self,
m2 = add (k, v, m1) -> ~ (find (k, m2) = None)

proof = by definition of add, find ;

- Consequence of how add and f1nd are implemented.
= Need facts by definition of fact, add.

Ecole Jeunes Chercheurs en Programmation - June 2014

Time to Prove!

+ « Finding the value bound to a key just inserted in a map
never fails ».

-« Calling T1nd with a key k on a map built by add-ing to it
kK with any bound value never returns None. »

(* Add make find a success. *)

theorem find_added_not_fails: all k : int, all v : string, all m1 m2 : Self,
m2 = add (k, v, m1) -> ~ (find (k, m2) = None)

proof = by definition of add, find type int_str_list_t, option_t;

- Consequence of how add and f1nd are implemented.
= Need facts by definition of fact, add.

Constructors of types 1nt_str_list_t and option_t must be known.
= Need facts type int_str_list_t, option_t.

Ecole Jeunes Chercheurs en Programmation - June 2014

Harder Proof

- Need for a specification of function f1nd.

theorem find_spec: all m : Self, all s k : int, all v : string,
(find (s, m) = Some (v) Vs = k) <> find (s, add (k, v, m)) = Some (V)

+ Let's hope we are lucky...

proof = by definition of add, find type int_str_list_t, option_t ;

+ Let's compile...

$ focalizec -zvtovopt -script assoc_map1.fcl
Invoking ocamic...

>> ocamlc -I /usr/local/lib/focalize -c assoc_map1.mi
Invoking zvtov...

>> zvtov -zenon zenon -new -script assoc_map1.zv
A2 *TTHHHHHH -

- Bad luck! Automation failed = We have to work!

Ecole Jeunes Chercheurs en Programmation - June 2014

Splitting the Proof (1)

- We have to split the proof in intermediate steps.
Introduce hypotheses in the context.
State the new goal.
3. Leave it unproved.
Add a ged step to conclude.

theorem find_spec: all m : Self, all s k :int, all v : string,

(find (s, m) = Some (v) Vs = K) <> find (s, add (k, v, m)) = Some (V)
proof =

<1>1

assumed

Compile... = Accepted! Go on...

Ecole Jeunes Chercheurs en Programmation - June 2014

Splitting the Proof (2)

- Prove the assumed <1>1.
- Implication to prove = Prove equivalence in both ways.

- Split the proof:
1.Add a step whose goal is left to right, leave it
Same from right to left.
Add a ged step to conclude.

theorem find_spec: all m : Self, all s k : int, all v : string,
(find (s, m) = Some (v) Vs = K) <> find (s, add (k, v, m)) = Some (v)
proof =
<1>1 assume m : Self,
assume s Kk : int,
assume v : string,
prove (find (s, m) = Some (v) Vs = k) <-> find (s, add (k, v, m)) = Some (V)
<2>1 hypothesis H1: find (s, m) = Some (v) Vs =k,
prove find (s, add (k, v, m)) = Some (V)

<1>e conclude ;

Ecole Jeunes Chercheurs en Programmation - June 2014

Splitting the Proof (3 ... =)

+ Prove the previously assumed <2>1.

- Hope that Zenon can solve from f1nd, add, H1 and
Tnt_str_list_t ?

theorem find_spec: all m : Self, all s k : int, all v : string,
(find (s, m) = Some (v) Vs = K) <> find (s, add (k, v, m)) = Some (V)
proof =
<1>1 assume m : Self,
assume s K : int,
assume v : string,
prove (find (s, m) = Some (v) Vs = k) <> find (s, add (k, v, m)) = Some (V)
<2>1 hypothesis H1: find (s, m) = Some (v) V s = k,
prove find (s, add (k, v, m)) = Some (v)
by definition of add, find type int_str_list_t hypothesis H1
<2>2 hypothesis H2: find (s, add (k, v, m)) = Some (v),
prove find (s, m) = Some (V) Vs =Kk
assumed
<?>e ged by step <2>1, <2>2
<1>e conclude ;

- No &
- Split again...

Ecole Jeunes Chercheurs en Programmation - June 2014

Splitting the Proof (4 ... =)

Prove the previously assumed <2>1.
- Why find (s, add (k, v, m)) = Some (v) ?
because has the shape
and find (s,), by H1,
if k = s, find returns especially a Some
otherwise we know that find (s, m) = Ssome (v) and find exactly recurses on m.

theorem find_spec: all m : Self, all s k : int, all v : string,

(find (s, m) = Some (v) Vs = k) <> find (s, add (k, v, m)) = Some (V)
proof =

<1>1 assume m : Self,

assume s Kk : int,

assume v : string,
prove (find (s, m) = Some (v) \/ s = k) <=>find (s, add (k, v, m)) = Some (v)

<2>1 hypothesis H1: find (s, m) = Some (v) V s = k,
prove find (s, add (k, v, m)) = Some (v)

assumed
<2>2 hypothesis H2: find (s, add (k, v, m)) = Some (v),

prove find (s, m) = Some (v) Vs =k
assumed

Ecole Jeunes Chercheurs en Programmation - June 2014

Splitting the Proof (5 ... =)

+ Prove the previously assumed <3>1.
» Simply due to how Is written (and the type of lists).

theorem find_spec: all m : Self, all s k : int, all v : string,
(find (s, m) = Some (v) V s = k) <=>find (s, add (k, v, m)) = Some (V)
proof =
<1>1 assume m : Self,
assume s Kk : int,
assume v : string,
prove (find (s, m) = Some (v) \/ s = k) <=>find (s, add (k, v, m)) = Some (v)
<2>1 hypothesis H1: find (s, m) = Some (v) V s =k,
prove find (s, add (k, v, m)) = Some (v)
<3>1 prove add (k, v, m) = Node (k, v, m)
by definition of type int_str_list_t
<3>e ged by step <3>1 definition of find hypothesis H1 type int_str_list_t
<2>2 hypothesis H2: find (s, add (k, v, m)) = Some (v),
prove find (s, m) = Some (v) Vs =k
assumed
<2>e ged by step <2>1, <2>2
<1>e conclude ;

Ecole Jeunes Chercheurs en Programmation - June 2014

Splitting the Proof (6 ... =)

+ Prove the previously assumed <2>1.
» Same proof than for <2>1 (using hypothesis H2)... Finished!

theorem find_spec: all m : Self, all s k : int, all v : string,
(find (s, m) = Some (v) V s = k) <> find (s, add (k, v, m)) = Some (V)
proof =
<1>1 assume m : Self,
assume s K : int,
assume v : string,
prove (find (s, m) = Some (v) \/ s = k) <=>find (s, add (k, v, m)) = Some (v)
<2>1 hypothesis H1: find (s, m) = Some (v) V s = k,
prove find (s, add (k, v, m)) = Some (v)
<3>1 prove add (k, v, m) = Node (k, v, m)
by definition of add type int_str_list_t
<3>e ged by step <3>1 definition of find hypothesis H1 type int_str_list_t
<2>2 hypothesis H2: find (s, add (k, v, m)) = Some (v),
prove find (s, m) = Some (v) Vs =k
<3>1 prove add (k, v, m) = Node (k, v, m)
by definition of add type int_str_list_t
<3>¢ ged by step <3>1 definition of find
hypothesis H2 type int_str_list_t
<2>e ged by step <2>1, <2>2
<1>e conclude ;

Ecole Jeunes Chercheurs en Programmation - June 2014

More Structure and Encapsulation

- |f we have time...

- Otherwise, for a next or longer lecture...

Ecole Jeunes Chercheurs en Programmation - June 2014

Parameterization

In our previous association maps, we used basic types.
Both for keys and values.

= No properties available on these « structures ».

= |mpossible to assume holding invariants on them.

= Possible to manually (incorrectly) alter them.

How to build a species taking benefits from other ones?

We need parameterization.

Ecole Jeunes Chercheurs en Programmation - June 2014

Adding Parameters

species AssocMap («[s ??7» \alue «is ??77», IS «?2?? (Value)») =
representation = pair_list_t (Key, Value) ;
let empty : Self = Nil ;
let add (k, v, m : Self) : Self = Node (k, v, m) ;
let rec find (k, m : Self) : =...;

- We need a « structure » for keys, one for values and one
for optional values.

- Optional values « are made of » values.

Ecole Jeunes Chercheurs en Programmation - June 2014

Use Methods of Parameters (1)

- Since we get parameters, we want to use their methods
to build those of the species.

species AssocMap («Is ???7» \alue «is ??77», IS «?2?77 (Value)») =
representation = pair_list_t (Key, Value) ;
let empty : Self = Nil ;
let add (k, v, m : Self) : Self = Node (k, v, m) ;

let rec find (k, m : Self) : =
match m with
| Nil -> Inone
| Node (kcur, v, q) ->
if leq (kcur, k) then Isome (v) else find (k, q)
termination proof = structural m ;

+ Use the method of a parameter P by qualifying it by P!

Ecole Jeunes Chercheurs en Programmation - June 2014

Use Methods of Parameters (2)

- Since we get parameters, we want to use their
properties to prove theorems of the species.

species AssocMap («[s ??7» \alue «is ??77», IS «?2?? (Value)») =
representation = pair_list_t (Key, Value) ;
let empty : Self = Nil ;
let add (k, v, m : Self) : Self = Node (k, v, m) ;

theorem find_added_not_fails: all k : Key, all v : Value, all m1 m2 : Self,
m2 = add (k, v, m1) -=> ~ leq (find (k, m2), Inone)
proof =
... prove leq (k, k) by property leq_reflexive ... ;

- A property is a method.
= From a parameter P ... qualifying it by P!

Ecole Jeunes Chercheurs en Programmation - June 2014

«is ??? » is what ?

species AssocMap («[s ?77», Value «is ?77», is «??77 (Value)») =

But, finally, « is ??? » is what ?
Some good remarks:
1. We want to use methods... But they must exist!
We want to use functions... But they have to be implemented!
We want an effective underlying type definition.
We want to rely on properties... But, they must be proved!

We want to preserve invariants, not « manually » accessing parameters
Internals.

Some (may be) good answers:
1. We need a notion of interface: the « promised » methods of a species.

Collections enforce functions to be defined.
Collections enforce the representation to be defined.
Collections enforce properties to be proved.
Collections enforce abstraction.

SEE R

a B~ DN

Ecole Jeunes Chercheurs en Programmation - June 2014

Collection Parameters

- Hence, we need collection parameters...
- having at least the methods of a specified interface.

- A parameterized species can have collection parameters
built using parameterized species interfaces.

species =
signature eq : Self -> Self -> bool ;
property eq_reflexive: all x : Self, eq (x, X) ;

end ;;

species OptComparable (C is) =

.e-r.ld .

species AssocMap (Key is , Value is :

OptValue is OptComparable (Value)) =

end ;;

Ecole Jeunes Chercheurs en Programmation - June 2014

Inheritance

- Akey or a value has to be «

- An optional value is built from (parameterized by) a
+ ... butis also « ».

= |t also inherits from

species =
sighature eq : Self -> Self -> bool ;
property eg_reflexive: all x : Self, eq (x, X) ;

end ;;

species OptComparable (C is)
inherit ;
representation = option_t (C) ;

end ;;

species AssocMap (Key is , Value is :
OptValue is OptComparable (Value)) =

end ;;

Ecole Jeunes Chercheurs en Programmation - June 2014

Entity Parameters

- FoCaliZe also proposes entity parameters.

- Parameters being values of the underlying representation
of their collection.

species =
signature eq : Self -> Self -> bool ;
property eqg_reflexive: all x : Self, eq (x, Xx) ;
end ;;

species Truc (Value is , Vin Value) =

end ;;

- Qut of the scope of this lecture (not difficult however).

Ecole Jeunes Chercheurs en Programmation - June 2014

So what ?

Parameterization does not change so much the shape of the proofs.
Internals of parameters no more visible:
= representation abstracted (= restrictions on theorems

statements).
= Body of functions not visible (no more facts by definitions of).
= Need to use properties on parameters instead.
Sometimes reveals subtils required properties...
usually « well-known »,
not even thought about,
Equality properties for instance !!l (c.f. lecture notes).

Ecole Jeunes Chercheurs en Programmation - June 2014

When to Prove What ?

- In the lecture notes, but for a next or longer presentation...

Ecole Jeunes Chercheurs en Programmation - June 2014

Advances Proofs

PooxelL
POURQUO! FAIRE SIMPLE
QUANP oN PEUT™ FAIRE
compLiRuE P/

Ecole Jeunes Chercheurs en Programmation - June 2014

Proof by Cases

When a property has to be proved on each possible case.
In other words, on each possible value.

Examples:
f (X)) =1f then .. else 1if then .. else ..
= 3 cases: , ,
g (y) = match y with | opened -> .. | Closed -> ..

Assuming the type of y only has the values opened and closed.
= 2 cases: Yy = opened, Y = Closed.

Ecole Jeunes Chercheurs en Programmation - June 2014

Simple ... Case(s?)

open 'basics’ ;;
type flag_t =1 0On | Off ;;

let constant (x) =
match x with
| On -> 1
| Off > 1 3;

theorem constant_is_one: all x : flag_t, constant (x) = 1
proof = by definition of constant type flag_t ;;

- Very simple: Zenon automatically handles!

- Need for the type of x.
- Need for the definition of constant.

Ecole Jeunes Chercheurs en Programmation - June 2014

No More Simple for Zenon...

open ‘basics’ ;;

type flag_t=10n | Off ;;
type answer_t =1 Yes | No | Maybe (flag_t) ;;

(* A pretty complex way to write the identity function... *)
let f (x) = match x with
| Yes -> Yes
| No -> No
| Maybe (y) => if y = On then Maybe (On) else Maybe (Off) ;;

(* Prove that f is indeed the identity. *)
theorem is_id: all x : answer_t, f (x) = X
proof = by type answer_t, flag_t definition of f ;;

$ focalizec answer_bad.fcl
Invoking ocamic...

>> ocamlc -| /usr/local/lib/focalize -c answer_bad.ml
Invoking zvtov...

>> 7zViov -Zzenon zenon -new answer_bad.zv

File "answer_bad.fcl", line 17, characters 8-48:

Zenon error: exhausted search space without finding a proof
proof failed

$

Ecole Jeunes Chercheurs en Programmation - June 2014

Shape of Goals by Cases

Proof by cases = Zenon must apply an induction principle.

The goal must have the shape:
all x : t, P(x)
with the « all x : t » explicitly stated.

Next, decline the goal for each case of value of type t.

Conclude the proof by the fact by type t and all intermediate
cases steps.

theorem is_id:
proof =
<1>1 prove i (Yes) = Yes assumed
<1=2 prove i (No) = No assumed
<1>3 prove all y : flag_t, f (Maybe (y)) slMaybe (y) assumed
<l>e ged by step <1>1, <1>2, <1=3 type answer_i, flag_t definition of f

Ecole Jeunes Chercheurs en Programmation - June 2014

Prove Cases as Usual

-+ Proof of each case goal is no more special.

theorem is_id: all x : answer_t, f (X) = X
proof =
<1>1 prove f (Yes) = Yes by definition of f type answer_t
<1>2 prove f (No) = No by definition of f type answer_t
<1>3 prove all y : flag_t, f (Maybe (y)) = Maybe (y)
by definition of f type flag_t, answer_t
<1>e qed by step <1>1, <1>2, <1>3 type answer_t, flag_t definition of f

Ecole Jeunes Chercheurs en Programmation - June 2014

Proof by Induction: Reminder

Prove a property on all the elements of a set S.
Requires a well-founder strict order < on S.
Generalization of recurrence on integers:

= =
For us: set = type. ;‘VPe t=

|

1 C3

| C4 (t*1);;

Base cases: non-recursive constructors C1, C3.

Induction cases: recursive constructors C2, C4.
= = P (C3) =

(vvl,v2:t, P(vl)=P((v2) =P (C4 (vl v2))) =
vv:t P(v)

Ecole Jeunes Chercheurs en Programmation - June 2014

An Example

open 'basics’ ;;

type bintree_t =
| Leaf
| Node (bintree_t, bool, bintree_t) ;;

letrecf (i) =

match t with

| Leaf -=> false

| Node (I, b, r)->b && 1 () && 1 (r)
termination proof = structural t ;;

proof = by definition of f type bintree_t ;;

theorem always_false: all t : bintree_t, ~ f (t)

- Prove that T always return
false.

-+ Automated way fails...

Ecole Jeunes Chercheurs en Programmation - June 2014

$ focalizec -zvtovopt -script stupid_tree_ko.fcl

Invoking ocamic...

>> ocamlc -| /usr/local/lib/focalize -c stupid_tree_ko.ml
Invoking zvtov...

>> zvtov -zenon zenon -new -script stupid_tree_ko.zv

File "stupid_tree_ko.fcl", line 16, characters 8-41:

Zenon error: could not find a proof within the memory size limif
proof failed

$

« Manual » Proof by Induction

Induction: more general than proof by cases.
Requires Zenon to apply an induction principle.

= Same constraint on the global goal: all x : t, P(x).

For each constructor C1 of the type t one must prove that
P (C1) holds in a sub-step.

If a constructor C1 is recursive, then one must introduce
each quantified variable and its related induction
hypothesis in the same order than their related parameter
appear in the definition of the type.

The last sub-step must be a qed step using the above
steps and the type t (and other things if needed).

Ecole Jeunes Chercheurs en Programmation - June 2014

Proof Scheme

» Theorem’s goal has a good shape: all t : bintree t, ~ f (t).
- First step, <1>1: prove the property for the only
- Second step, <1>2: prove the property for the only
- Last step, <1>e: conclude using the and
type =
e (oee_bogl binfee 0|

proof =

<1>1 prove ~ f () assumed

<1>2 assume |: bintree_t,
hypothesis HReclL: ~ f (1), i
assume b: bOOl, B R T TTTTTTTEI T TTETT ELEETYLELES SLEERLEY
assume r: bintree_t, ...
hypothesis HRecR: ~ f (r),
prove ~ f ((I, b, r))
assumed

<1>e ged by

Ecole Jeunes Chercheurs en Programmation - June 2014

End of the Proof

<1>1: Consequence of f's body (and knowledge of bintree_t).
- <1>2:
By induction hypotheses f returns false when called on both 1 and r.

f’s definition shows a « logical and » between these returned values and
the current node's value.

= Resultis false. CQFD.

theorem always_false: all t : bintree_t, ~ f (1)
proof =
<1>1 prove ~ f (Leaf)
by definition of f type bintree_t
<1>2 assume [: bintree_t,
hypothesis HReclL: ~ f (1),
assume b: bool,
assume r: bintree_t,
hypothesis HRecR: ~ f (r),
prove ~ f (Node (I, b, r))
by hypothesis HRecl, HRecR type bintree_t definition of f
<1>e qed by step <1>1, <1>2 type bintree_t

Ecole Jeunes Chercheurs en Programmation - June 2014

Conclusion

We examined:
What does mean « proving programs ».

How to write formal proofs of first-order properties in
~oCal.iZe.

How to basically program in FoCalLiZe.
How to state properties on programs and prove them

How to write more advanced proofs in a « manual »
way.

Ecole Jeunes Chercheurs en Programmation - June 2014

Not Seen in this Lecture

Inheritance, parametrization features of FoCaLiZe (only
in lecture notes).

Termination proofs of recursive functions.
Higher order properties and their proofs.
Imperative programing.

Ecole Jeunes Chercheurs en Programmation - June 2014

Material for this lecture at
hitp://perso.ensta-paristech.fr/~pessaux/ejcp-2014

Additional resources for FoCalLiZe at
http://focalize.inria.fr

Bug (if any)-tracker at
http://focalize.inria.fr/bugzilla

Ecole Jeunes Chercheurs en Programmation - June 2014

http://perso.ensta-paristech.fr/~pessaux/ejcp-2014
http://focalize.inria.fr
http://focalize.inria.fr/bugzilla

