
FoCaLize

Reference Manual

1.0.0

January 2009

Authors

Thérèse Hardin, François Pessaux, Pierre Weis, Damien Doligez

1

About FoCaLize
FoCaLize is the result of a collective work of several researchers, listed in the following, who

designed, defined, compiled, studied, extended, used and debugged the preceding versions. They
were helped by many students who had a summer internship under their supervision. They would
like to thank all these students and more generally all the persons who brought some contribution
to FoCaLize.

FoCaLize contributors

Philippe Ayrault (SPI-LIP6), William Bartlett (CPR-CEDRIC), Julien Blond (SPI-LIP6), Syl-
vain Boulmé (SPI-LIP6), Matthieu Carlier (CPR-CEDRIC), Damien Doligez (GALLIUM-INRIA),
David Delahaye (CPR-CEDRIC), Catherine Dubois (CPR-CEDRIC), Jean-Frédéric Etienne (CPR-
CEDRIC), Stéphane Fechter (SPI-LIP6), Mathieu Jaume (SPI-LIP6), Lionel Habib (SPI-LIP6),
Thérèse Hardin (SPI-LIP6), Charles Morisset (SPI-LIP6), Ivan Noyer (SPI-LIP6), François Pes-
saux (SPI-LIP6), Virgile Prevosto (SPI-LIP6), Renaud Rioboo (CPR-CEDRC), Lien Tran (SPI-
LIP6), Véronique Viguié Donzeau-Gouge (CPR-CNAM), Pierre Weis (ESTIME-INRIA)

and their institutions

SPI (Semantics, Proofs and Implementations) is a team of LIP6, (Laboratoire d’Informatique de Paris
6) of UPMC (Pierre and Marie Curie University)1.

CPR (Conception et Programmation Raisonnées) is a team of CEDRIC (Centre d’Etudes et de Recherches
du CNAM) of CNAM (Conservatoire National des Arts et Métiers)2 and ENSIIE (Ecole Nationale d’Informatique
pour l’Industrie et l’Entreprise)3.

ESTIME and GALLIUM are teams of INRIA Rocquencourt4

1UPMC-LIP6, 104 avenue du Président Kennedy, Paris 75016, France,Firstname.Lastname@lip6.fr
2CNAM-CEDRIC, 292 rue Saint Martin, 75003, Paris, France,Firstname.Lastname@cnam.fr
3ENSIIE-CEDRIC, 1 Square de la Résistance, 91025 Evry Cedex, France,Lastname@ensiie.fr
4INRIA, Bat 8. Domaine de Voluceau, Rocquencourt, BP 105, F-78153 Le Chesnay, France,

Firstname.Lastname@inria.fr

2

Thanks

TheFoc project was first partially supported by LIP6 (Projet Foc, LIP6 1997) then by the Ministry of
Research (Action Modulogic). TheFocal research team was then partially supported by the French SSURF
ANR project ANR-06-SETI-016 (Safety and Security UndeR Focal). The project also benefited of strong
collaborations with EDEMOI ANR project and with BERTIN and SAFERIVER companies.

The FoCaLize language and compiler development effort started around 2005. The architecture con-
ception and code rewritting started from scratch in 2006 to finally make the first focalizec compiler and
FoCaLize system distribution in 2009, January.

This manual documents the completely revised system with the new syntax and its semantics extensions.

3

Contents

1 Overview 11
1.1 The Basic Brick 11
1.2 Type of Species, Interfaces and Collections 13
1.3 Combining Bricks by Inheritance 13
1.4 Combining Bricks by Parametrisation 14

1.4.1 Parametrisation by Collection Parameters 14
1.4.2 Parametrisation by Entity Parameters 16

1.5 The Final Brick 16
1.6 Properties, Theorems and Proofs 17
1.7 Around the Language 18

1.7.1 Consistency of the Software 18
1.7.2 Code Generation 18
1.7.3 Tests .. 19
1.7.4 Documentation 19

2 Installing and Compiling 20
2.1 Required software 20
2.2 Optional software 20
2.3 Operating systems 20
2.4 Installation 21
2.5 Compilation process and outputs 22

2.5.1 Outputs .. . 22
2.5.2 Compiling a source 22

3 The core language 25
3.1 Lexical conventions 25

3.1.1 Blanks .. 25
3.1.2 Comments .. 25
3.1.3 Annotations 25
3.1.4 Identifiers 26

3.1.4.1 Introduction .. 26
3.1.4.2 Conceptual properties of names 26
3.1.4.3 Fixity of identifiers 27
3.1.4.4 Precedence of identifiers 27
3.1.4.5 Categorization of identifiers 27

4

3.1.4.6 Nature of identifiers 27
3.1.4.7 Regular identifiers 28
3.1.4.8 Infix/prefix operators 28
3.1.4.9 Defining an infix operator 29
3.1.4.10 Prefix form notation 29

3.1.5 Extended identifiers 30
3.1.6 Species and collection names 30
3.1.7 Integer literals 30
3.1.8 String literals 31
3.1.9 Character literals 31
3.1.10 Floating-point number literals 31
3.1.11 Proof step bullets 32
3.1.12 Name qualification 32
3.1.13 Reserved keywords 33

3.2 Language constructs and syntax 34
3.2.1 Types .. 34

3.2.1.1 Type constructors .. . 34
3.2.1.2 Type expressions .. . 34
3.2.1.3 Type definitions .. 35

3.2.2 Type-checking 38
3.2.3 Representations 38
3.2.4 Expressions 39

3.2.4.1 Literal expressions 40
3.2.4.2 Sum type value constructor expressions 40
3.2.4.3 Identifier expressions 41
3.2.4.4 let-in expression . 43
3.2.4.5 logical let . 45
3.2.4.6 Conditional expression 46
3.2.4.7 Match expression .. 46
3.2.4.8 Application expression 48
3.2.4.9 Operator application expression 48
3.2.4.10 Record expression 48
3.2.4.11 Cloning a record expression 49
3.2.4.12 Record field access expression 49
3.2.4.13 Parenthesised expression 50

3.2.5 Core language expressions and definitions 50
3.2.6 Files and uses directives 51

3.2.6.1 Theuse directive . 51
3.2.6.2 Theopen directive . 51
3.2.6.3 Thecoq require directive . 51

3.2.7 Properties, theorems and proofs 52
3.2.7.1 Logical expressions 52
3.2.7.2 Properties .52
3.2.7.3 Proofs . 53
3.2.7.4 Theorems . 54

5

4 TheFoCaLize model 56
4.1 Basic concepts 56

4.1.1 Top-level Definitions 56
4.1.2 Species .. . 57
4.1.3 Complete species 58
4.1.4 Interfaces 59
4.1.5 Collections 59

4.2 Parametrisation 60
4.2.1 Collection parameters 60
4.2.2 Entity parameters 62

4.3 Inheritance and its mechanisms 63
4.3.1 Inheritance 63
4.3.2 Species expressions 65

4.4 Late-binding and dependencies 65
4.4.1 Late-binding 65
4.4.2 Dependencies and erasing 66

4.4.2.1 Decl-dependencies 66
4.4.2.2 Def-dependencies .. . 67
4.4.2.3 Erasing during inheritance 67
4.4.2.4 Dependencies on collection parameters 67

4.4.3 More about methods definition 68
4.4.3.1 Well-formation .. . 68
4.4.3.2 Def-dependencies on the representation 68

5 TheFoCaLize Proof Language 70
5.1 Proofs of theorems 70

5.1.1 Scoping rules 72

6 Recursive function definitions 73

7 Compiler options 74

8 Documentation generation 77
8.0.2 Special tags 77

8.0.2.1 @title . 77
8.0.2.2 @author . 77
8.0.2.3 @description .. 77
8.0.2.4 @mathml . 78

8.0.3 Transforming the generated documentation file 79
8.0.3.1 XML to HTML . 79

8.0.4 XML to LaTeX .. 79

9 Hacking deeper 80
9.0.5 InterfacingFoCaLize with other languages . 80
9.0.6 Dealing with hand-writtenCoq proofs . 80

6

10 Compiler error messages 81

7

Introduction

Motivations

The Foc project was launched in 1998 by T. Hardin and R. Rioboo [11]5 with the objective of helping
all stages of development of critical software within safety and security domains. The methods used in
these domains are evolving, ad-hoc and empirical approaches being replaced by more formal methods. For
example, for high levels of safety, formal models of the requirement/specification phase are more and more
considered as they allow mechanized proofs, test or static analysis of the required properties. In the same
way, high level assurance in system security asks for the useof true formal methods along the process of
software development and is often required for the specification level. Thus the project was to elaborate an
Integrated Development Environment (IDE) able to provide high-level and justified confidence to users, but
remaining easy to use by well-trained engineers.

To ease developing high integrity systems with numerous software components, an Integrated Devel-
opment Environment (IDE) should provide tools to formally express specifications, to describe design and
coding and to ensure that specification requirements are metby the corresponding code. This is not enough.
First, standards of critical systems ask for pertinent documentation which has to be maintained along all the
revisions during the system life cycle. Second, the evaluation conformance process of software is by nature a
sceptical analysis. Thus, any proof of code correctness must be easily redone at request and traceability must
be eased. Third, design and coding are difficult tasks. Research in software engineering has demonstrated
the help provided by some object-oriented features as inheritance, late binding and early research works on
programming languages have pointed out the importance of abstraction mechanism such as modularity to
help invariant maintaining. There are a lot of other points which should also be considered when designing
an IDE for safe and/or secure systems to ensure conformance with high Evaluation Assurance or Safety
Integrity Levels (EAL-5,7 or SIL 3,4) and to ease the evaluation process according to various standards
(e.g. IEC61508, CC, ...): handling of non-functional contents of specification, handling of dysfunctional
behaviors and vulnerabilities from the true beginning of development and fault avoidance, fault detection by
validation testing, vulnerability and safety analysis.

Initial application testbed

When theFoc project was launched by Hardin and Rioboo, only one specific domain was considered, the
one of Computer Algebra. Algorithms used in this domain can be rather intricated and difficult to test and
this is not rare that computer algebra systems issue a bad result, due to semantical flaws, compiler anomalies,
etc. Thus the idea was to design a language allowing to specify the mathematics underlying these algorithms
and to go step by step to different kinds of implementations according to the specifities of the problem
under consideration6. The first step was to design the semantics of such a language,trying to fit to several
requirements: easing the expression of mathematical statements, clear distinction between the mathematical
structure (semi-ring, polynomial, ..) and its different implementations, easing the development (modularity,
inheritance, parametrisation, abstraction, ..), runtimeefficiency and confidence in the whole development
(mechanised proofs, ..). After an initial phase of conceptual design, theFoc semantics was submitted to a
double test. On one hand, this semantics was specified inCoq and in a categorical model of type theories by

5They were members of the SPI (Semantics, Proofs, Implementations) team of the LIP6 (Lab. Informatique de Paris 6) at
Université Pierre et Marie Curie (UMPC), Paris

6For example Computer Algebra Libraries use several different representations of polynomials according to the treatment to be
done

8

S. Boulmé (see his thesis[3]), a point which enlightened the borders of this approach, regarding the logical
background. On the other hand, before designing the syntax,it was needed to study the development style in
such a language. R. Rioboo [4, 11] used theOCaml language to try different solutions which are recorded
in [11].

Initial Focal design

Then the time came to design the syntax of the language and thecompiler. To overcome inconsistencies
risks, an original dependency analysis was incorporated into the compiler (V. Prevosto thesis[17, 20, 19]) and
the correction of the compiler (mostly written by V. Prevosto) againstFocal’s semantics is proved (by hand)
[18], a point which brings a satisfactory confidence in the language’s correctness. Then Rioboo [?] began
the development of a huge computer algebra library, which offers full specification and implementation of
usual algebraic structures up to multivariate polynomial rings with complex algorithms, first as a way to
extensively test the language and (quite satisfactory) efficiency of the produced code and then to provide a
standard library of mathematical backgrounds. And D. Doligez[2] started the development ofZenon, an
automatic prover based on tableaux method, which takes aFocal statement and tries to build a proof of it
and, when succeeds, issues aCoq term. More recently, M. Carlier and C. Dubois[15] began the development
of a test tool forFocal.

Focal has already been used to develop huge examples such as the standard library and the computer
algebra library. The library dedicated to the algebra of access control models, developed by M. Jaume and
C. Morisset[12, 13, 16], is another huge example, which borrows implementations of orderings, lattices and
boolean algebras from the computer algebra library.Focal was also very successfully used to formalize
airport security regulations, a work by D. Delahaye, J.-F. Etienne, C. Dubois, V. Donzeau-Gouge [6, 7, 8].
This last work led to the development of a translator[5] fromFocal to UML for documentation purposes.

The FoCaLize system

The FoCaLize development effort started in 2006: it was clearly a continuation of theFoc and Focal
efforts. The new system was rewritten from scratch. A new language and syntax was designed and carefully
implemented, with in mind ease of use, expressivity, and programmer friendyness. The addition of powerful
data structure definitions together with the correspondingpattern matching facility, lead to new expressing
power.

TheZenon automatic theorem prover was also integrated in the compiler and natively interfaced within
theFoCaLize language. New developments for recursive functions support is on the way (in particular for
termination proofs).

A formal specification can be built by declaring names of functions and values and introducing prop-
erties. Then, design and implementation can incrementallybe done by adding definitions of functions and
proving that the implementation meets the specification or design requirements. Thus, developing inFo-
CaLize is a kind of refinement process from formal model to design andcode, completely done within
FoCaLize. Taking the global development in consideration within thesame environment brings some con-
ciseness, helps documentation and reviewing. Thus aFoCaLize development is organised as a hierarchy
that may have several roots. The upper levels of the hierarchy are built along the specification stage while the
lower ones correspond to implementation and each node of thehierarchy corresponds to a progress toward
a complete implementation.

The FoCaLize system provides means for the developers to formally express their specifications and
to go step by step (in an incremental approach) to design and implementation while proving that such

9

an implementation meets its specification or design requirements. TheFoCaLize language offers high
level mechanisms such as inheritance, late binding, redefinition, parametrization, etc. Confidence in proofs
submitted by developers or automatically done relies on formal proof verification.FoCaLize also provides
some automation of documentation production and management.

We would like to mention several works about safety and/or security concerns withinFoCaLize and
specially the definition of a safety life cycle by P. Ayrault,T. Hardin and F. Pessaux [1] and the study of
some traps within formal methods by E. Jaeger and T. Hardin[10].

The FoCaLize system in short

FoCaLize can be seen as an IDE still in development, which gives a positive solution to the three require-
ments identified above:

1. pertinent documentation is maintained within the systembeing written, and its extraction is an auto-
matic part of the compilation process,

2. proofs are written using a high level proof language, so that proofs are easier to write and their verifi-
cation is automatic and reliable,

3. the framework provides powerful abstraction mechanismsto facilitate design and development; how-
ever, these mechanisms are carefully ruled: the compiler performs numerous validity checks to ensure
that no further development can inadvertantly break the invariants or invalidate the proofs; indeed, the
compiler ensures that if a theorem was based on assumptions that are now violated by the new devel-
opment, then the theorem is out of reach of the programmer.

10

Chapter 1

Overview

Before entering the precise description ofFoCaLize we give an informal presentation of near all its features,
to help further reading of the reference manual. Every construction or feature ofFoCaLize will be entirely
described in the following chapters.

1.1 The Basic Brick

The primitive entity of aFoCaLize development is thespecies. It can be viewed as a record grouping
“things” related to a same concept. Like in most modular design systems (i.e. objected oriented, algebraic
abstract types) the idea is to group a data structure with theoperations to process it. Since inFoCaLize we
don’t only address data type and operations, among these “things” we also find the declaration (specification)
of these operations, the properties (which may represent requirements) and their proofs.

We now describe each of these “things”, calledmethods.

• Themethodintroduced by the keywordrepresentation gives the data representation of entities
manipulated by thespecies. It is a type called therepresentation(or the representation type when
emphasising on the fact that it is a type) and defined by a type expression. Therepresentationmay be
not-yet-defined in aspecies, meaning that the real structure of the data-type thespeciesembeds does
not need to be known at this point. In this case, it is simply a type variable. However, to obtain an
implementation, therepresentationhas to be defined later either by settingrepresentation =
exp whereexp is a type expression or by inheritance (see below). Type expressions inFoCaLize
are roughly ML-like types (variables, basic types, inductive types, record types) plusspecies repre-
sentation types, denoted by keywordSelf inside the species and by the name of theirspeciesoutside
of them.

Eachspecieshas a unique methodrepresentation. This is not a restriction compared to other languages
where programs/objects/modules can own several private variables representing the internal state,
hence the data structure of the manipulated entities by the program/object/module. In such a case, the
representationcan simply be the tuple grouping all these variables that were disseminated all along
the program/object/module.

• Declarations are composed of the keywordsignature followed by a name and a type. It serves
to announce amethodto be defined later, i.e. to only specify its type, without implementation yet.
Suchmethodsare especially dedicated for specification or design purposes since declared names may

11

be used to define othersmethodswhile delaying their definition. The type provided by thesignature
allowsFoCaLize to ensure via type-checking that the method is used in contexts compatibles with this
type. The late-binding and the collection mechanisms, further introduced, ensure that the definition
of the method will be effectively known when needed.

• Definitions are composed of the keywordlet , followed by a name, a type and an expression. They
serve to introduce constants or functions, i.e. computational operations. The core language used to
implement them is roughly ML-like expressions (let-binding, pattern matching, conditional, higher
order functions, . . .) with the addition of a construction tocall amethodfrom a givenspecies. Mutu-
ally recursive definitions are introduced bylet rec .

• Statements are composed of the keywordproperty followed by a name and a first-order formula.
A propertymay serve to express requirements (i.e. facts that the system must hold to conform to the
Statement of Work) and then can be viewed as a specification purposemethod, like signatures were
for let -methods. It will lead to a proof obligation later in the development. A propertymay also be
used to express some “quality” information of the system (soundness, correctness, ..) also submitted
to a proof obligation. Formulae are written with usual logical connectors, universal and existential
quantifications over aFoCaLize type, and names ofmethodsknown within thespecies’s context. For
instance, apropertytelling that if the speed is non-null, then doors can’t be opened could look like:

all v in Speed, v <> Speed!zero -> ∼ doors open

In the same way assignatures, even if no proof is yet given, the name of thepropertycan be used to
express other ones and its statement can be used as an hypothesis in proofs.FoCaLize late binding
and collection mechanisms ensure that the proof of apropertywill be ultimately done.

• Theorems (theorem) made of a name, a statement and a proof areproperties together with the
formal proof that their statement holds in the context of thespecies. The proof accompanying the
statement will be processed byFoCaLize and ultimately checked with the theorem proverCoq.

Like in any formal development, one severe difficulty beforeproving is obviously to state a true
interesting and meaningful statement. For instance, claiming that a piece of software is “formally
proved” as respecting the safety requirementssystem ok “since its property is demonstrated” is a
lie if this property was, for instance,1 = 1 -> system ok . This is obviously a non-sense since
the text of the property is trivial and does not linksystem ok with the rest of the software (see [10]
for less trivial examples).

We now make concrete these notions on an example we will incrementally extend. We want to model
some simple algebraic structures. Let’s start with the description of a “setoid” representing the data structure
of “things” belonging to a set, which can be submitted to an equality test and exhibited (i.e. one can get a
witness of existence of one of these “things”).

species Setoid =
signature (=) : Self -> Self -> bool ;
signature element : Self ;

property refl : all x in Self, x = x ;
property symm : all x y in Self, x = y -> y = x ;
property trans: all x y z in Self, x=y and y=z -> x=z ;
let different (x, y) = basics#not_b (x = y) ;

end ;;

12

In this species, therepresentationis not explicitly given (no keywordrepresentation) , since we
don’t need to set it to be able to express functions and properties our “setoid” requires. However, we can
refer to it viaSelf and it is in fact a type variable. In the same way, we specify asignaturefor the equality
(operator=). We introduce the three properties that an equality (equivalence relation) must conform to.

We complete the example by the definition of the functiondifferent which use the name= (here
basics#not b stands for the functionnot b, the booleanand coming from theFoCaLize source file
basics.fcl). It is possible right now to prove thatdifferent is irreflexive, under the hypothesis that
= is an equivalence relation (i.e. that each implementation of = given further will satisfy these properties).

It is possible to usemethodsonly declared before they get a realdefinition thanks to thelate-binding
feature provided byFoCaLize. In the same idea, redefining amethodis allowed inFoCaLize and, it is
always the last version which is kept as the effectivedefinitioninside the species.

1.2 Type of Species, Interfaces and Collections

The type of a speciesis obtained by removing definitions and proofs. Thus, it is a kind of record type,
made of all the method types of the species. If therepresentation is still a type variable sayα, then
the speciestype is prefixed with an existential binder∃α. This binder will be eliminated as soon as the
representation will be instantiated (defined) and must be eliminated to obtain runnable code.

The interfaceof a species is obtained by abstracting therepresentationtype in thespecies typeand this
abstraction is permanent.

Beware! No special construction is given to denote interfaces in theconcrete syntax, they are simply
denoted by the name of the species underlying them.Do not confuse a species and its interface.

Thespecies typeremain totally implicit in the concrete syntax, being just used as a step to buildspecies
interface. It is used during inheritance resolution.

Interfaces can be ordered by inclusion, a point providing a very simple notion of subtyping. This point
will be further commented.

A species is said to becompleteif all declarations have received definitions and all properties have
received proofs.

Whencomplete, a species can be submitted to an abstraction process of its representation to create a
collection. Thus theinterfaceof the collection is just theinterfaceof the complete species underlying it. A
collection can hence be seen as an abstract data type, only usable through the methods of its interface, but
having the guarantee that all methods/theorems are defined/proved.

1.3 Combining Bricks by Inheritance

A FoCaLize development is organised as a hierarchy which may have several roots. Usually the upper
levels of the hierarchy are built during the specification stage while the lower ones correspond to imple-
mentations. Each node of the hierarchy, i.e. eachspecies, is a progress to a complete implementation. On
the previous example, forgettingdifferent , we typically presented a kind ofspeciesfor “specification”
since it expressed onlysignaturesof functions to be later implemented and properties to which, later, give
proofs.

13

We can now create a newspecies, may be more complex, byinheritance of a previously defined. We
say here “may be more complex” because it can add new operations and properties, but it can also only
bring real definitions tosignaturesandproofsto properties, adding no newmethod.

Hence, inFoCaLize inheritance serves two kinds of evolutions. In the first casethe evolution aims
making aspecieswith more operations but keeping those of its parents (or redefining some of them). In the
second case, thespeciesonly tends to be closer to a “run-able” implementation, providing explicit definitions
to methodsthat were previously only declared.

Continuing our example, we want to extend our model to represent “things” with a multiplication and a
neutral element for this operation.

species Monoid inherits Setoid =
signature (*) : Self -> Self -> Self ;
signature one : Self ;
let element = one * one ;

end ;;

We see here that we added newmethodsbut also gave a definition toelement , saying it is the ap-
plication of the method* to one twice, both of them being onlydeclared. Here, we used the inheritance
in both the presented ways: making a more complex entity by adding methodsand getting closer to the
implementation by explicitly definingelement .

Multiple inheritance is available inFoCaLize. For sake of simplicity, the above example uses simple
inheritance. In case of inheriting amethodfrom several parents, the order of parents in theinherits
clause serves to determine the chosenmethod.

Thetypeof aspeciesbuilt using inheritance is defined like for otherspecies, themethodstypes retained
inside it being those of themethodspresent in thespeciesafter inheritance is resolved.

A strong constraint in inheritance is that the type of inherited, and/or redefinedmethodsmust not change.
This is required to ensure consistence of theFoCaLize model, hence of the developed software. More
precisely, if the representation is given by a type expression containing some type variables, then it can be
more defined by instanciation of these variables. In the sameway, two signatures have compatible types
if they have a common unifier, thus, roughly speaking if they are compatible Ml-like types. For example,
if the representation was not yet defined, thus being still a type variable, it can be defined byint . And if
a speciesS inherits fromS1 andS2 a method calledm, there is no type clash ifS1!m andS2!m can be
unified, then the methodS!m has the most general unifier of these two types as its own type.

1.4 Combining Bricks by Parametrisation

Until now we are only able to enrichspecies. However, we sometimes need to use aspecies, not to take over
its methods, but rather to use it as an “ingredient” to build a new structure. For instance, a pair of setoids
is a new structure, using the previousspeciesas the “ingredient” to create the structure of the pair. Indeed,
the structure of a pair is independent of the structure of each component it is made of. A pair can be seen as
parametrisedby its two components. Following this idea,FoCaLize allows two flavors of parametrisation.

1.4.1 Parametrisation by Collection Parameters

We first introduce thecollection parameters. They arecollectionsthat the hosting species may use through
their methodsto define its own ones.

14

A collection parameteris given a nameC and an interfaceI. The nameC serves to call themethodsof
C which figure inI. C can be instantiated by an effective parameterCE of interfaceIE. CE is a collection
and its interfaceIE must containI. Moreover, the collection and late-binding mechanisms ensure that all
methods appearing inI are indeed implemented (defined for functions, proved for properties) inCE. Thus,
no runtime error, due to linkage of libraries, can occur and any propertiesstated inI can be safely used as
an hypothesis.

Calling a species’s method is done via the “bang” notation: !meth or
Self!meth for a methodof the currentspecies(and in this case, even simpler:meth , since theFo-
CaLize compiler will resolve scoping issues). To callcollection parameters’s method, the same notation is
used:A!element stands for themethodelement of thecollection parameterA.

To go on with our example, a pair of setoids has two components, hence aspeciesfor pairs of setoids
will have twocollection parameters. It is itself a setoid, a fact which is simply recorded via theinheritance
mechanism:inherits Setoid gives toSetoid product all the methods ofSetoid .

species Setoid_product (A is Setoid, B is Setoid) inherits Setoid =
representation = (A * B) ;

let (=) (x, y) =
and_b

(A!(=) (first (x), first (y)),
B!(=) (scnd (x), scnd (y))) ;

let create (x, y) in Self = basics#crp (x, y) ;
let element = Self!create (A!element, B!element) ;

proof of refl = by definition of (=) ;
end ;;

We express therepresentationof the product of two setoids as the Cartesian product of therepresentation
of the two parameters. InA * B, * is the FoCaLize type constructor of pairs,A denotes indeed the
representation of the firstcollection parameter, andB the one of of the secondcollection parameter.

Next, we add a definition for= of Setoid product , relying on the methods= of A (A!(=)) and
B (which are not yet defined). Similarly, we introduce a definition for element by building a pair, using
the functioncreate (which calls the predefined functionbasics#crp) and the methodselement
of respectivelyA and B. And we can prove that= of Setoid product is indeed reflexive, upon the
hypothesis made onA!(=) andB!(=) . The part ofFoCaLize used to write proofs will be shortly
presented later, in section 1.6.

This way, thespeciesSetoid product builds itsmethodsrelying on those of itscollection parame-
ters. Note the two different uses ofSetoid in ourspeciesSetoid product , which inherits ofSetoid
and is parametrised bySetoid .

Why suchcollection parametersand not simplyspecies parameters? There are two reasons. First, ef-
fective parameters must provide definitions/proofs for allthe methods of the required interface: this is the
contract. Thus, effective parameters must becompletespecies. Then, we do not want the parametrisation to
introduce dependencies on the parameters’representationdefinitions. For example, it is impossible to ex-
press “ ifA!representation is int andB!representation is bool thenA* B is a list of boolean
values”. This would dramatically restrict possibilities to instantiate parameters since assumptions on the
representation, possibly used in the parametrisedspeciesto write its ownmethods, could preventcollections
having the right set ofmethodsbut a different representation to be used as effective parameters. Such a
behaviour would make parametrisation too weak to be usable.We choose to always hide therepresenta-
tion of a collection parameterto the parametrised hostingspecies. Hence the introduction of the notion of

15

collection, obtained by abstracting the representation from a complete species.

1.4.2 Parametrisation by Entity Parameters

Let us imagine we want to make aspeciesworking on natural numbers modulo a certain value. In the
expression5 modulo 2 is 1, both5 and2 are natural numbers. To be sure that thespecieswill consistently
work with the same modulo, this last one must be embedded in the species. However, thespeciesitself
doesn’t rely on a particular value of the modulo. Hence this value is clearly aparameter of the species, but
a parameter in which we are interested by itsvalue, not only by itsrepresentationand the methods acting on
it. We call such parametersentity parameters, their introduction rests upon the introduction of acollection
parameterand they denote avaluehaving the type of therepresentationof this collection parameter.

Let us first have aspeciesrepresenting natural numbers:

species IntModel =
signature one : Self ;
signature modulo : Self -> Self -> Self ;

end ;;

Note thatIntModel can be later implemented in various ways, using Peano’s integers, machine inte-
gers, arbitrary-precision arithmetic . . .

We now build ourspecies“working modulo . . . ”, embedding the value of this modulo:

species Modulo_work (Naturals is IntModel, n in Naturals) =
let job1 (x in Naturals) in ... =

... Naturals!modulo (x, n) ... ;
let job2 (x in Naturals, ...) in ... =

... ... Naturals!modulo (x, n) ;
end ;;

Using theentity parametern, we ensure that thespeciesModulo work works for any value of the
modulo, but will always use thesamevaluen of the modulo everywhere inside thespecies.

1.5 The Final Brick

As briefly introduced in 1.2, aspeciesneeds to be fully defined to lead to executable code for its functions
and checkable proofs for its theorems. When aspeciesis fully defined, it can be turned into acollection.
Hence, acollection represents the final stage of the inheritance tree of aspeciesand leads to an effective
data representation with executable functions processingit.

For instance, providing that the previousspeciesIntModel turned into a fully-defined speciesMachineNativeIn
through inheritances steps, with amethodfrom string allowing to create the natural representation of a
string, we could get a related collection by:

collection MachineNativeIntColl implements MachineNativeInt ;;

Next, to get acollectionimplementing arithmetic modulo 8, we could extract from thespeciesModulo work
the followingcollection:

collection Modulo_8_work implements Modulo_work
(MachineNativeIntColl, MachineNativeIntColl!from_str ing (‘‘8’’) ;;

As seen by this example, a species can be applied to effectiveparameters by giving their values with the
usual syntax of parameter passing.

16

As said before, to ensure modularity and abstraction, therepresentationof a collection turns hidden.
This means that any software component dealing with acollectionwill only be able to manipulate it through
the operations (methods) its interface provides. This point is especially important since it prevents other
software components from possibly breaking invariants required by the internals of thecollection.

1.6 Properties, Theorems and Proofs

FoCaLize aims not only to write programs, it intends to encompass boththe executable model (i.e. program)
and properties this model must satisfy. For this reason, “special” methodsdeal with logic instead of purely
behavioural aspects of the system:theorems, propertiesandproofs.

Stating aproperty expects that aproof that it holds will finally be given. Fortheorems, the proof is
directly embedded in thetheorem. Such proofs must be done by the developer and will finally be sent
to the formal proof assistantCoq who will automatically check that the demonstration of theproperty is
consistent. Writing a proof can be done in several ways.

It can be written in “FoCaLize’s proof language”, a hierarchical proof language that allows to give hints
and directions for a proof. This language will be sent to an external theorem prover,Zenon [?, 9] developed
by D. Doligez. This prover is a first order theorem prover based on the tableau method incorporating
implementation novelties such as sharing.Zenon will attempt, from these hints to automatically generate
the proof and exhibit aCoq term suitable for verification byCoq. Basic hints given by the developer to
Zenon are: “prove by definition of amethod” (i.e. looking inside its body) and “prove byproperty” (i.e.
using the logical body of atheoremor property”. Surrounding this hints mechanism, the language allows to
build the proof by stating assumptions (that must obviouslybe demonstrated next) that can be used to prove
lemmas or parts for the whole property. We show below an example of such demonstration.

theorem order_inf_is_infimum: all x y i in Self,
!order_inf(i, x) -> !order_inf(i, y) ->

!order_inf(i, !inf(x, y))
proof:

<1>1 assume x in Self, assume y in Self,
assume i in Self, assume H1: !order_inf(i, x),
assume H2: !order_inf(i, y),
prove !order_inf(i, !inf(x, y))

<2>1 prove !equal(i, !inf(!inf(i, x), y))
by hypothesis H1, H2

property inf_left_substitution_rule,
equal_symmetric, equal_transitive

definition of order_inf
<2>9 qed

by step <2>1
property inf_is_associative, equal_transitive
definition of order_inf

<1>2 conclude
;

The important point is thatZenon works for the developer:it searches the proof itself, the developer
does not have to elaborate it formally “from scratch”.

Like any automatic theorem prover,Zenon may fail finding a demonstration. In this case,FoCaLize
allows to write verbatimCoq proofs. In this case, the proof is not anymore automated, butthis leaves the
full power of expression ofCoq to the developer.

Finally, theassumed keyword is the ultimate proof backdoor, telling that the proof is not given but that
the property must be admitted. Obviously, a really safe development should not make usage of such “proofs”

17

since they bypass the formal verification of software’s model. However, such a functionality remains needed
since some of “well-known” properties can never be proved for a computer. For instance,∀x ∈ IN, x+1 > n
does not hold in a computer with native integers. However, ina mathematical framework, this property
holds and is needed to carry out other proofs. Thus the developer may prove either that all manipulated
values remain in an interval where this property holds or mayadmit this property or may add code to detect
overflow ... On another side, a development may be linked withexternal code, trusted or not, but for which
properties cannot be proved inside theFoCaLize part since it does not belong to it. Expressing properties
of theFoCaLize part may need to express properties on the imported code, that cannot be formally proved,
then must be “assumed”.

1.7 Around the Language

In the previous sections, we presentedFoCaLize through its programming model and shortly its syntax. We
especially investigated the various entities making aFoCaLize program. We now address what becomes a
FoCaLize program once compiled. We recall thatFoCaLize supports the redefinition of functions, which
permits for example to specialise code to a specific representation (for example, there exists a generic im-
plementation of integer addition modulon but it can be redefined in arithmetics modulo2 if boolean values
are used to represent the two values). It is also a very convenient tool to maintain software.

1.7.1 Consistency of the Software

All along the development cycle of aFoCaLize program, the compiler keeps trace of dependencies between
species, their methods, the proofs, . . . to ensure that modifications of one of them will be detected those
depending of it.

FoCaLize considers two types of dependencies:

• Thedecl-dependency: amethodA decl-depends on amethodB, if the declaration of B is required
to stateA.

• Thedef-dependency: amethod(and more especially, atheorem) A def-depends on amethodB, if the
definition of B is required to stateA (and more especially, to prove the property stated by thetheorem
A).

The redefinition of a function may invalidate the proofs thatuse properties of the body of the redefined
function. All the proofs which truly depend of the definitionare then erased by the compiler and must be
done again in the context updated with the new definition. Thus the main difficulty is to choose the best level
in the hierarchy to do a proof. In [21], Prevosto and Jaume propose acoding styleto minimise the number
of proofs to be redone in the case of a redefinition, by a certain kind of modularisation of the proofs.

1.7.2 Code Generation

FoCaLize currently compiles programs toward two languages,OCaml to get an executable piece of soft-
ware, andCoq to have a formal model of the program, with theorems and proofs.

In OCaml code generation, all the logical aspects are discarded since they do not lead to executable
code.

Conversely, inCoq, all themethodsare compiled, i.e. “computational”methodsand logicalmethods
with their proofs. This allowsCoq to check the entire consistence of the system developed inFoCaLize.

18

1.7.3 Tests

FoCaLize incorporates a tool namedFocalTest[15] for Integration/Validation testing. It allows to confront
automatically a property of the specification with an implementation. It generates automatically test cases,
executes them and produces a test report as an XML document. The property under test is used to generate
the test cases, it also serves as an oracle. When a test case fails, it means a counterexample of the property has
been found: the implantation does not match the property; itcan also indicate an error in the specification.

The toolFocalTestautomatically produces the test environment and the drivers to conduct the tests. We
benefit from the inheritance mechanism to isolate the testing harness from the components written by the
programmer.

The testable properties are required to be broken down into aprecondition and a conclusion, both exe-
cutable.FocalTestproposes a pure random test cases generation: it generates test cases until the precondition
is satisfied, the verdict of the test case is given by executing the post-condition. It can be an expensive pro-
cess for some kind of preconditions. To overcome this drawback, a constraint based generation is under
development: it allows to produce directly test cases for which the precondition is satisfied.

1.7.4 Documentation

The tool calledFoCaLizeDoc [14] automatically generates documentation, thus the documentation of a
component is always coherent with respect to its implementation.

This tool uses its own XML format that contains information coming not only from structured comments
(that are parsed and kept in the program’s abstract syntax tree) andFoCaLize concrete syntax but also
from type inference and dependence analysis. From this XML representation and thanks to some XSLT
stylesheets, it is possible to generate HTML files or LATEX files. Although this documentation is not the
complete safety case, it can helpfully contribute to its elaboration. In the same way, it is possible to produce
UML models [5] as means to provide a graphical documentationfor FoCaLize specifications. The use of
graphical notations appears quite useful when interactingwith end-users, as these tend to be more intuitive
and are easier to grasp than their formal (or textual) counterparts. This transformation is based on a formal
schema and captures every aspect of theFoCaLize language, so that it has been possible to prove the
soundness of this transformation (semantic preservation).

FoCaLize’s architecture is designed to easily plug third-parties analyses that can use the internal struc-
tures elaborated by the compiler from the source code. This allows, for example, to make dedicated docu-
mentation tools for custom purposes, just exploiting information stored in theFoCaLize program’s abstract
syntax tree, or extra information possibly added by extra processes, analyses.

19

Chapter 2

Installing and Compiling

2.1 Required software

To be able to develop with theFoCaLize environment, a few third party tools are required. All of them can
be freely downloaded from their related website.

• The Objective Caml compiler (version≥ 3.10.2).
Available athttp://caml.inria.fr . This will be used to compile both theFoCaLize system at
installation stage from the tarball and theFoCaLize compiler’s output generated by the compilation
of your FoCaLize programs.

• The Coq Proof Assistant (version≥ 8.1pl4).
Available athttp://coq.inria.fr . This will be used to compile both theFoCaLize libraries at
installation stage from the tarball and theFoCaLize compiler’s output generated by the compilation
of your FoCaLize programs.

2.2 Optional software

TheFoCaLize compiler can generate dependencies graphs from compiled source code. It generates them
in the format suitable to be processed and displayed by thedotty tools suit of the “Graphwiz” package. If you
plan to examine these graphs, you also need to install this software fromhttp://www.graphviz.org/ .

2.3 Operating systems

FoCaLize was fully developed under Linux using free software. Hence,any Unix-based operating system
should supportFoCaLize. The currently tested Unix are: Fedora, Debian, Suse, BSD.

Windows users can runFoCaLize via the Unix-like environmentCygwin providing both users and
developers tools. This software is freely distributed and available athttp://www.cygwin.com/ .

From the official Cygwin web site: “Cygwin is a Linux-like environment for Windows. It consistsof
two parts: A DLL (cygwin1.dll) which acts as a Linux API emulation layer providing substantial Linux API
functionality. A collection of tools which provide Linux look and feel. The Cygwin DLL currently works with

20

all recent, commercially released x86 32 bit and 64 bit versions of Windows, with the exception of Windows
CE. Cygwin is not a way to run native linux apps on Windows. Youhave to rebuild your application from

source if you want it to run on Windows.
Cygwin is not a way to magically make native Windows apps aware of UNIX R© functionality, like

signals, ptys, etc. Again, you need to build your apps from source if you want to take advantage of Cygwin
functionality.”

UnderCygwin, the required packages are the same as those listed in 2.1 and2.2. As stated inCygwin’s
citation above, you need to get the sources packages of this software and compile them yourself, following
information provided in these packages.

The installation ofFoCaLize itself is the same for all operating systems and is describedin the following
section (2.4).

2.4 Installation

FoCaLize is currently distributed as a tarball containing the whole source code of the development environ-
ment. You must first deflate the archive (a directory will be created) by:

tar xvzf focalize-x.x.x.tgz

Next, go in the sources directory:

cd focalize-x.x.x/

You now must configure the build process by:

./configure

The configuration script then asks for directories where to install theFoCaLize components. You may just
press enter to keep the default installation directories.

latour:˜/src/focalize$./configure ˜/pkg
Where to install FoCaLize binaries ?
Default is /usr/local/bin.
Just press enter to use default location.

Where to install FoCaLize libraries ?
Default is /usr/local/lib/focalize.
Just press enter to use default location.

After the configuration ends, just build the system:

make all

And finally, get root priviledges to install theFoCaLize system:

su
make install

21

2.5 Compilation process and outputs

We callcompilation unita file containing source code for toplevel-definitions, species, collections. Visibility
rules, described in section 3.1.12, are defined according tocompilation units status. From a compilation unit,
the compiler issues several files described on the following.

2.5.1 Outputs

A FoCaLize development contains both “computational code” (i.e. codeperforming operations that lead to
an effect, a result) and logical properties.

When compiled, two outputs are generated:

• The “computational code” is compiled intoOCaml source that can then be compiled with theOCaml
compiler to lead to an executable binary. In this pass, logical properties are discarded since they do
not lead to executable code.

• Both the “computational code” and the logical properties are compiled into aCoq model. This model
can then be sent to theCoq proof assistant who will verify the consistency of both the “computational
code” and the logical properties (whose proofs must be obviously provided) of theFoCaLize devel-
opment. This means that theCoq code generated is not intended to be used to generate anOCaml
source code by automated extraction. As stated above, the executable generation is preferred using
directly the generatedOCaml code. In this idea,Coq acts as an assessor of the development instead
of a code generator.

More accurately,FoCaLize first generates a pre-Coq code, i.e. a file containingCoq syntax plus
“holes” in place of proofs written in theFoCaLize Proof Language. This kind of files is suffixed by
“.zv” instead of directly “.v”. When sending this file toZenon these “holes” will be filled by effective
Coq code automatically generated byZenon (if it succeed in finding a proof), hence leading to a pure
Coq code file that can be compiled byCoq.

In addition, several other outputs can be generated for documentation or debug purposes. See the section 7
for details.

2.5.2 Compiling a source

Compiling aFoCaLize program involves several steps that are automatically handled by thefocalizec com-
mand. Using the command line options, it is possible to tune the code generations steps as described in 7.

1. FoCaLize source compilation. This step takes theFoCaLize source code and generates theOCaml
and/or “pre-”Coq code. You can disable the code generation for one of these languages (see page 7),
or both, in this case, no code is produced and you only get theFoCaLize object code produced without
anymore else output and the process ends at this point. If youdisable one of the target languages, then
you won’t get any generated file for it, hence no need to address its related compilation process
described below.

Assuming you generate code for bothOCaml andCoq you will get two generated files:source.ml
(theOCaml code) andsource.zv (the “pre-”Coq code).

22

2. OCaml code compilation. This step takes the generatedOCaml code (it is anOCaml source file)
and compile it. This is done like any regularOCaml compilation, the only difference is that the
search path containing theFoCaLize installation path and your own used extraFoCaLize source
files directories are automatically passed to theOCaml compiler. Hence this steps acts like a manual
invocation:

ocamlc -c -I /usr/local/lib/focalize -I mylibs
-I myotherlibs source.ml

This produces theOCaml object filesource.cmo . Note that you can also ask to use theOCaml
code in native mode, in this case theocamlopt version of theOCaml compiler is selected (see
OCaml reference manual for more information) and the object files are .cmx files instead of.cmo .
ones.

3. “Pre-” Coq code compilation. This step takes the generated.zv file and attempts to produce a real
Coq .v source file by replacing proofs written inFoCaLize Proof Language by some effectiveCoq
proofs found by theZenon theorem prover. Note that ifZenon fails in finding a proof, a hole will
remain in the finalCoq .v file. Such a hole appears as the text “TO BE DONEMANUALLY.” in place
of the effective proof. In this case,Coq will obviously fail in compiling the file, so the user must do
the proof by hand or modify his originalFoCaLize source file to get a working proof. This step acts
like a manual invocation:

zvtov -new source.zv

For more about theZenon options, consult section??.

4. Coq code compilation. This step takes the generated.v code and compiles it withCoq. This is done
like any regularCoq compilation. The only difference is that the search path containing theFoCaLize
installation path and your own used extraFoCaLize source files directories are automatically passed
to theCoq compiler.

coqc -I /usr/local/lib/focalize -I mylibs
-I myotherlibs source.v

Once this step is done, you have theCoq object files and you are sure thatCoq validated you program
model, properties and proofs. The final “assessor” of the tool-chain accepted your program.

Once all separate files are compiled, to get an executable from theOCaml object files, you must link
them together, providing the same search path than above andthe.cmo files corresponding to all the gener-
atedOCaml files from all yourFoCaLize .foc files. You also need to add the.cmo files corresponding
to the modules of the standard library you use (currently, this must be done by the user, next versions will
automate this process).

23

ocamlc -I mylibs -I myotherlibs
install_dir/ml_builtins.cmo install_dir/basics.cmo
install_dir/sets.cmo ...
mylibs/src1.cmo mylibs/src2.cmo ...
myotherlibs src3.cmo mylibs/src3.cmo ...
source1.cmo source2.cmo ...
-o exec_name

24

Chapter 3

The core language

3.1 Lexical conventions

3.1.1 Blanks

The following characters are considered as blanks: space, newline, horizontal tabulation, carriage return,
line feed and form feed. Blanks are ignored, but they separate adjacent identifiers, literals and keywords that
would otherwise be confused as one single identifier, literal or keyword.

3.1.2 Comments
Comments (possibly spanning) on several lines are introduced by the two characters(* , with no intervening
blanks, and terminated by the characters*) , with no intervening blanks. Comments are treated as blanks.
Comments can occur inside string or character literals (provided the* character is escaped) and can be
nested. They are discarded during the compilation process.Example:

(* Discarded comment. *)
species S =

...
let m (x in Self) = (* Another discarded comment. *)
...

end ;;
(* Another discarded comment at end of file. *)

Comments spanning on a single line start by the two characters -- and end with the end-of-line charac-
ter. Example:

-- Discarded uni-line comment.
species S =
let m (x in Self) = -- Another uni-line comment.
...

end ;;

3.1.3 Annotations

Annotations are introduced by the three characters(** , with no intervening blanks, and terminated by the
two characters*) , with no intervening blanks. Annotations cannot occur inside string or character literals
and cannot be nested. They must precede the construct they document. In particular, asource file cannot
end by an annotation.

25

Unlike comments, annotations are kept during the compilation process and recorded in the compilation
information (“.fo ” files). Annotations can be processed later on by external tools that could analyze them
to produce a newFoCaLize source code accordingly. For instance, theFoCaLize development environ-
ment provides theFoCaLizeDoc automatic production tool that uses annotations to automatically generate
documentation. Several annotations can be put in sequence for the same construct. We call such a se-
quence anannotations block. Using embedded tags in annotations allows third-party tools to easily find
out annotations that are meaningful to them, and safely ignore others. For more information, consult??.
Example:

(** Annotation for the automatic documentation processor.
Documentation for species S. *)

species S =
...
let m (x in Self) =

(** {@TEST} Annotation for the test generator. *)
(** {@MY_TAG_MAINTAIN} Annotation for maintainers. *)
... ;

end ;;

3.1.4 Identifiers

FoCaLize features a rich class of identifiers with sophisticated lexical rules that provide fine distinction
between the kind of notion a given identifier can designate.

3.1.4.1 Introduction

Sorting words to find out which kind of meaning they may have isa very common conceptual categorization
of names that we use when we write or read ordinary English texts. We routinely distinguish between:

• a word only made of lowercase characters, that is supposed tobe an ordinary noun, such as ”table”,
”ball”, or a verb as in ”is”, or an adjective as in ”green”,

• a word starting with an uppercase letter, that is supposed tobe a name, maybe a family or christian
name, as in ”Kennedy” or ”David”, or a location name as in ”London”.

We use this distinctive look of words as a useful hint to help understanding phrases. For instance, we
accept the phrase ”my ball is green” as meaningful, whereas ”my Paris is green” is considered a nonsense.
This is simply because ”ball” is a regular noun and ”Paris” isa name. The word ”ball” as the right lexical
classification in the phrase, but ”Paris” has not. This is also clear that you can replace ”ball” by another
ordinary noun and get something meaningful: ”my table is green”; the same nonsense arises as well if you
replace ”Paris” by another name: ”my Kennedy is green”.

Natural languages are far more complicated than computer languages, butFoCaLize uses the same kind
of tricks: the “look” of words helps a lot to understand what the words are designating and how they can be
used.

3.1.4.2 Conceptual properties of names

FoCaLize distinguishes 4 concepts for each name:

• thefixity assigns the place where an identifier must be written,

• theprecedencedecides the order of operations when identifiers are combined together,

26

• thecategorisationfixes which concept the identifier designates.

• thenatureof a name can either be symbolic or alphanumeric.

Those concepts are compositional, i.e. all these concepts are independent from one another. Put is
another way: for any fixity, precedence, category and nature, there exist identifiers with this exact properties.

We further explain those concepts below.

3.1.4.3 Fixity of identifiers

The fixity of an identifier answers to the question “where thisidentifier must be written ?”.

• aprefix is writtenbeforeits argument, assin in sin x or − in −y,

• an infix is writtenbetweenits arguments, as+ in x + y or mod in x mod 3.

• amixfix is writtenamongits arguments, asif . . . then . . . else . . . in if c then 1 else 2.

In FoCaLize, as in maths, ordinary identifiers are always prefix and binary operators are always infix.

3.1.4.4 Precedence of identifiers

The precedence rules out where implicit parentheses take place in a complex combination of symbols. For
instance, according to the usual mathematical conventions:

• 1 + 2 ∗ 3 means1 + (2 ∗ 3) hence7, it does not mean(1 + 2) ∗ 3 which is9,

• 2 ∗ 3 4 + 5 means(2 ∗ (3 4)) + 5 hence167, it does not mean((2 ∗ 3) 4) + 5 which is1301,
nor2 ∗ (3 (4 + 5)) which is39366.

In FoCaLize, all the binary infix operators have the precedence they havein maths.

3.1.4.5 Categorization of identifiers

The category of an identifier answers to the question “is thisidentifier a possible name for this kind of
concept ?”. In programming languages category are often strict, meaning that the category exactly states
which concept attaches to the identifier.

For FoCaLize these categories are

• lowercase: the identifier starts with a lowercase letter and designates a simple entity of the language. It
may name some of the language expressions, a function name, afunction parameter or bound variable
name, a method name; a type name, or a record field label name.

• uppercase: the identifier starts with an uppercase letter and designates a more complex entity in the
language. It may name a sum type constructor name, a module name, a species or a collection name.

We distinguish identifiers using their first “meaningful” character: the first character that is not an un-
derscore.

3.1.4.6 Nature of identifiers

In FoCaLize identifiers are either:

• symbolic: the identifier contains characters that are not letters.+, := , -> , +float are symbolic

27

• alphanumeric: the identifier contains letters, digits and underscores.x , 1, Some, Basicobject are
alphanumeric.

3.1.4.7 Regular identifiers

Regular lower case identifiers are used to designate the names of variables, functions, and labels of records.

Basic identifiers:
digit ::= 0 . . . 9
lower ::= a . . . z
upper ::= A . . .Z
letter ::= lower | upper
lident ::= { lower | }{letter | digit | }∗
uident ::= upper { letter | digit | }∗
ident ::= lident | uident

A regular identifier is a sequence of letters, digits, and(the underscore character), starting with a letter
or an underscore.

The identifier is lowercase if its first letter is lowercase.
The identifier is uppercase if its first letter is uppercase.
Letters contain at least the 52 lowercase and uppercase letters from the standard ASCII set. In an

identifier, all characters are meaningful. Examples:foo , bar , 20 , gee 42 .

3.1.4.8 Infix/prefix operators

FoCaLize allows infix and prefix operators built from a “starting operator character” and followed by a
sequence of regular identifiers or operator characters. Forexample, all the following are legal operators:+,
++, ∼+zero , = mod 5.

The position in which to use the operator (i.e. infix or prefix)is determined by the position of the first
operator character according to the following table:

Prefix Infix
‘ ∼ ? $! # , + - * / % & | : ; < = > @ ˆ \

Infix/prefix operators:
prefix char ::= ‘ ∼ ? $! #
infix char ::= , + − ∗ / % & | : ; < = > @ ∧ \
prefix op ::= prefix char {letter | prefix char | infix char | digit | }∗
infix op ::= infix char {letter | prefix char | infix char | digit | }∗
op ::= infix op | prefix op

Hence, in the above examples,+, ++ and= mod 5 will be infix operators and∼+zero will be a prefix
one.

28

3.1.4.9 Defining an infix operator

The notion of infix/prefix operator does not mean thatFoCaLize defines all these operators: it means that the
programmer may freely define and use them as ordinary prefix/infix operators instead of only writing prefix
function names and regular function application. For instance, if you do not like theFoCaLize predefined
ˆ operator to catenate strings, you can define your own infix synonym forˆ , say tt ++, using:

let (++) (s1, s2) = s1 ˆ s2 ;

Then you can use the++ operator in the usual way

let hw = "Hello" ++ " world!" ;

As shown in the example, at definition-time, the syntax requires the operator to be embraced by paren-
theses. More precisely, you must enclose the operator betweenspacesand parentheses. You must write(
+) with spaces, not simply(+) (which leads to a syntax error anyway).

3.1.4.10 Prefix form notation

The notation(op) is named theprefix form notationfor operatorop .
Since you can only define prefix identifiers inFoCaLize, you must use the prefix form notation to define

an infix or prefix operator.
When a prefix or infix operator has been defined, it is still possible to use it as a regular identifier using

its prefix form notation. For instance, you can use the prefix form of operator++ to apply it in a prefix
position as a simple regular function (with a strange name admittedly!):

... (++) ("Hello", " world!") ;

Attention : a common error while defining an operator is to forget the spaces around the operator. This
is particularly confusing, if you type the* operator without spaces around the operator: you write the lexical
entity (*) which is the beginning (or the end) of a comment!

TheFoCaLize notion of symbolic identifiers go largely beyond simple infixoperators. Symbolic iden-
tifiers let you assign sophisticated names to your functionsand operators. For instance, instead of creating a
function to check if integerx is equal to the predecessor of integery , as in

let is_eq_to_predecessor (x, y) = ... ;
... if is_eq_to_predecessor (5, 7) ... ;

it is possible to directly define

let (=pred) (x, y) = ... ;
... if 5 =pred 7 ... ;

Attention : since a comma can start an infix symbol, be careful when usingcommas to add a space
after each comma to prevent confusion. In particular, when using commas to separate tuple components,
always type a space after each comma. For instance, if you write (1,n) then the lexical analyser finds
only two words: the integer1 as desired, then the infix operator,n which is certainly not the intended
meaning. Hence, following usual typography rules, always type a space after a comma (unless you have
define a special operator starting by a comma).

Rule of thumb: The prefix version of symbolic identifiers is obtained by enclosing the symbol between
spaces and parens.

29

3.1.5 Extended identifiers

Moreover,FoCaLize has special forms of identifiers to allow using spaces insideor to extend the notion of
operator identifiers.

• Delimited alphanumerical identifiers. They start by two characters‘ (backquote) and end by two
characters’ (quote). In addition to usual alpha-numerical characters,the delimited identifiers can
have spaces. For example:‘‘equal is reflexive’’ , ‘‘fermat conjecture’’ .

• Delimited symbolic identifiers. They are delimited by the same delimitor characters and contain
symbolic characters.

The first meaningful character at the beginning of a delimited ident/symbol is used to find its associated
token.

3.1.6 Species and collection names

Species, collection names and collection parameters are uppercase identifiers.

3.1.7 Integer literals

Integer literals:
binary digit ::= 0 | 1
octal digit ::= 0 . . . 7
decimal digit ::= 0 . . . 9
hexadecimal digit ::= 0 . . . 9 | A . . .F | a . . . f
sign ::= + | −
unsigned binary literal ::= 0{b | B} binary digit {binary digit | }∗
unsigned octal literal ::= 0{o | O} octal digit {octal digit | }∗
unsigned decimal literal ::= decimal digit{decimal digit | }∗
unsigned hexadecimal literal ::= 0{x | X} hexadecimal digit {hexadecimal digit | }∗
unsigned integer literal ::= unsigned binary literal

| unsigned octal literal
| unsigned decimal literal
| unsigned hexadecimal literal

integer literal ::= sign? unsigned integer literal

An integer literal is a sequence of one or more digits, optionally preceded by a minus or plus sign and/or
a base prefix. By default, i.e. without a base prefix, integersare in decimal. For instance:0, -42 , +36 .
FoCaLize syntax allows to also specify integers in other bases by preceding the digits by the following
prefixes:

• Binary : base 2. Prefix is0b or 0B. Digits are [0-1].

• Octal: base 8. Prefix is0o or 00 . Digits are [0-7].

• Hexadecimal: base 16. Prefix is0x or 0X. Digits are [0-9] [A-F] [a-f].

Here are various examples of integers in various bases:-0x1Ff , 0B01001 , +Oo347.

30

3.1.8 String literals

String literals are sequences of any characters delimited by " (double quote) characters (ipso factowith
no intervening"). Escape sequences (meta code to insert characters that can’t appear simply in a string)
available in string literals are summarised in the table below:

Sequence Character Comment
\b \008 Backspace.
\t \009 Tabulation.
\n \010 Line feed.
\r \013 Carriage return.
\ Space character.
\” ” Double quote.
\’ ’ Single quote.
* * Since comments cannot appear inside strings,

to insert one of the sequence “(*”, “*)”, “{*”,
or “* }”, use this escape sequence combined
with the four following ones.

\((See comment above for*.
\)) See comment above for*.
\[[See comment above for*.
\]] See comment above for*.
\{ { See comment above for*.
\} } See comment above for*.
\\ \ Backslash character.
\‘ ‘ Backquote character.
\- - Minus (dash) character. Like for multi-line

comments, uni-line comments can’t appear in
strings. Hence, to insert the sequence “--”,
use this escape sequence twice.

\[0-9][0-9][0-9] The character whose ASCII code indecimal
is given by the 3 digits following the\. This
sequence is valid for all ASCII codes.

\x[0-9a-fA-F][0-9a-fA-F] The character whose ASCII code inhexadec-
imal is given by the 2 digits following the\.
This sequence is valid for all ASCII codes.

3.1.9 Character literals

Characters literals are composed of one character enclosedbetween two “’ ” (quote) characters. Example:
’a’ , ’?’ . Escape sequences (meta code to insert characters that can’t appear simply in a character lit-
eral) must also be enclosed by quotes. Available escape sequences are summarised in the table above (see
section 3.1.8).

3.1.10 Floating-point number literals

31

Float literals:
decimal literal ::= sign? unsigned decimal literal
hexadecimal literal ::= sign? unsigned hexadecimal literal
scientific notation ::= e | E
unsigned decimal f loat literal ::= unsigned decimal literal

{. unsigned decimal literal∗}?
{scientific notation decimal literal}?

unsigned hexadecimal f loat literal ::= unsigned hexadecimal literal
{. unsigned hexadecimal literal∗}?
{scientific notation hexadecimal literal}?

unsigned float literal ::= unsigned decimal f loat literal
| unsigned hexadecimal f loat literal

f loat literal ::= sign? unsigned float literal

Floating-point numbers literals are made of an optional sign (’+’ or ’-’) followed by a non-empty se-
quence of digits followed by a dot (’.’) followed by a possibly empty sequence of digits and finally an
optional scientific notation (’e’ or ’E’ followed an optional sign then by a non-empty sequence of digits.Fo-
CaLize allows floats to be written in decimal or in hexadecimal. In the first case, digits are [0-9]. Example:
0. , -0.1 , 1.e-10 , +5E7. In the second case, they are [0-9 a-f A-F] and the number mustbe prefixed by
“0x” or “0X”. Example 0xF2.E4 , 0X4.3A , Ox5a.a3eef , Ox5a.a3e-ef .

3.1.11 Proof step bullets

Proof step bullets:
proof step bullet ::= <{0 . . . 9} + > {letter | digit}+

A proof step bullet is a non-negative non-signed integer literal (i.e. a non empty sequence of [0-9] char-
acters) delimited by the characters< and>, followed by a non-empty sequence of alphanumeric characters
(i.e. [A-Z a-z 0-9]). The first part of the bullet (i.e. the integer literal) stands for the depth of the bullet and
the second part stands for its name. Example:

<1>1 assume ...
...
prove ...

<2>1 prove ... by ...
<2>9 qed by step <2>1 property ...

<1>2 conclude

3.1.12 Name qualification

Name qualification is done according to the compilation unitstatus.
As precisely described in section (??), toplevel-definitions include species, collections, type definitions

(and their constitutive elements like constructors, record fields), toplevel-theorems and toplevel-functions.
Any toplevel-definition (thus outside species and collections) is visible all along the compilation unit after its
apparition. If a toplevel-definition is required by anothercompilation unit, you can reference it byqualifying
its name, i.e. making explicit the compilation unit’s name before the definition’s name using the ’#’ character
as delimiter. Examples:

32

• basics#string stands for the type definition ofstring coming from the source file “basics.fcl”.

• basics#Basic object stands for the speciesBasic object defined in the source file “ba-
sics.fcl”.

• db#My db coll!create stands for the methodcreate of a collectionMy db coll hosted in
the source file “db.fcl”.

The qualification can be omitted by using theopen directive that loads the interface of the argument
compilation unit and make it directly visible in the scope ofthe current compilation unit. For instance:

species S inherits basics#Basic_object = ... end ;;

can be transformed with no explicit qualification into:

open "basics";;
species S inherits Basic_object = ... end ;;

After anopen directive, the definitions of loaded (object files of) compilation units are added in head
of the current scope and mask existing definitions wearing the same names. For example, in the following
program:

(* Redefine my basic object, containing nothing. *)
species Basic_object = end ;;
open "basics";;
species S inherits Basic_object = ... end ;;

the speciesS inherits from the lastBasic object in the scope, that is the one loaded by theopen
directive and not from the one defined at the beginning of the program. It is still possible to recover the first
definition by using the “empty” qualification#Basic object in the definition ofS:

(* Redefine my basic object, containing nothing. *)
species Basic_object = end ;;
open "basics";;
species S inherits #Basic_object = ... end ;;

The qualification starting by a ’#’ character without compilation unit name before stands for “the defi-
nition at toplevel of the current compilation unit”.

3.1.13 Reserved keywords

The identifiers below are reserved keywords that cannot be employed otherwise:

alias all and as assume assumed
begin by
caml collection conclude coq coq_require
definition
else end ex external
false function
hypothesis
if in inherits internal implements is
let lexicographic local logical
match measure
not notation

33

of on open or order
proof prop property prove
qed
rec representation
Self signature species step structural
termination then theorem true type
use
with

3.2 Language constructs and syntax

3.2.1 Types

Before dealing with expressions and in general, constructsthat allow to compute, let us first examine data-
type definitions since, to emit its result, an algorithm mustmanipulate data that are more or less specific to
the algorithm. Hence we must know about type definitions to define data that have a convenient shape and
carry the necessary information to model the problem at hand.

Type definitions allow to build new types or more complex types by combining previously existing
types. They always appear as toplevel-definitions, in otherwords, outside species and collections. Hence a
type definition is visible in the whole compilation unit (andalso in other units by using theopen directive
or by qualifying the type name as described in section 3.1.12).

3.2.1.1 Type constructors

A type constructor is, roughly speaking, a type name.
FoCaLize provides the basic built-in types (constructors):

• int for signed machine integers,

• bool for boolean values (true and false that are hardwired in the syntax orTrue andFalse
that are defined in “basics.fcl”),

• float for floating point numbers,

• unit for the trivial type whose only value is() ,

• char for characters literals,

• string for strings literals.

New type constructors are introduced bytype definitions. Types constructors can be parametrised by
type expressionsseparated by commas and between parentheses.

3.2.1.2 Type expressions

Type definitions requiretype expressionsto build more complex data-types.

34

Type expressions:
τ ::= lowercase ident Type constructor

| uppercase ident Species representation
| ′lowercase ident Type variable
| uppercase ident (τ {, τ} +) Parameterised type constructor
| τ → τ Functional type
| (τ ∗ τ {∗ τ} +) Tuple type
| Self Current species representation
| (τ) Parenthesised type expression

A type expression can be a type constructor.
A type expression can denote the representation of a speciesor a collection by using their name, thus

a capitalized name. The special case ofSelf denotes the representation of the current species. Hence,
obviouslySelf is only bound in the scope of a species.

Type expressions representing function types are written using the arrow notation (->) in which the type
of the argument of the function is the left type expression and its return type is the right one. As usual in
functional languages, a function with several (sayn) arguments is considered as a function with1 argument
returning a function withn − 1 arguments. Hence,int -> int -> bool is the type of a function
taking 2 integers and returning a boolean.

FoCaLize provides native tuples (generalisation of pairs). The typeof a tuple is the type of each
of its components separated by a * character and surrounded by parentheses. Hence,(int * bool *
string) is the type of triplets whose first component is an integer, second component is a boolean and
third component is a string.

Finally, type expressions can be written between parentheses without changing their semantics.

3.2.1.3 Type definitions

A typedefinition introduces a new type constructor (the name of the type), which becomes available to build
new type expressions. Hence, defining a type is the way to givea name to a new type structure.FoCaLize
proposes 3 kinds of type definitions: aliases, sum types and record types.

Aliases

Aliases provide a way to create type abbreviations. It is nothandy to manipulate largetype expressions
like for instance, a tuple of 5 components:(int * int * int * int * int) . Moreover, several
kind of information can be represented by such a tuple. For instance, x, y, z 3D-coordinates and temperature
and pressure. For another example, year, month, day, hours,minutes. In these two cases, the manipulated
type expression is the same and the two uses cannot be easily differentiated. Type aliases allows to give a
name to a (complex) type expression, for sake of readabilityor to shorten the code. Example:

type experiment_conditions = alias (int * int * int * int * int) ;;
type date = alias (int * int * int * int * int) ;;

35

Alias type definitions:
alias type def ::= type ident = alias τ

In the remaining of the development, the type namesexperiment conditions anddate will be
known to be tuples of 5 integers and will be compatible with any other type being also a tuple of 5 integers.
This especially means that atype alias does not create a really “new” type, it only gives aname to a
type expression and this name is type-compatible with any occurrence of the type expression it is bound to.
Obviously, it is possible to use aliases with and in any type expression or type definition.

Sum types
Sum types provide the way to create newvaluesthat belong to the sametype. Like 1 or 42 arevalues

of type int , one may want to haveRed, Blue andGreen as theonly values of a new type calledcolor .
Theonly means that the created typecolor is inhabited only by these 3 values. To define such a type, we
itemize its value names (that are always capitalized identifiers) by preceeding them by a “|” character :

type color =
| Red
| Blue
| Green

;;

Note that the first “|” character is required: it is not a separator. This especially means that when writing
a sum type definition on a single line, the first “|” must be written:

type color = | Red | Blue | Green ;;

Values of a sum type are built from thevalue constructors, i.e. from the names enumerated in the
definition (that must not be confused with thetype constructor which is the name of the type. For, instance,
Red is avalue of the type constructorcolor .

Value constructors of sum types can beparametrised by a type expression, corresponding values being
obtained by applying the value constructor to a value of the parameter type. For instance, let’s define the
type of playing cards as king, queen, jack and simply numbered cards:

type card =
| King
| Queen
| Jack
| Numbered (int)

;;

Hence, theNumbered constructor “carries” the integer value written on the card. Some values of type
card are:King , (Numbered 4) , (Numbered 42) .

Any type expression, even recursive, can be used as a parameter of value contructors. For instance, the
type of lists of boolean× integer pairs could be defined like:

type b_i_list =
| Empty
| Cons ((bool * int) * b_i_list)

;;

From this type definition, a value of typeb i list is either empty (constructorEmpty) or has a head
(the first component of theCons constructor) and a trailing list (the second component of this construc-
tor): Cons ((false, 2), (Cons ((true, 1), Empty))) . The length of this list is 2 and its
elements are(false, 2) followed by(true, 1) .

36

Sum types definitions:
opt params ::= ǫ | (′ident{,′ident} ∗)
opt args ::= ǫ | (τ {,τ} ∗)
constructor ::= | uident opt args
sum type def ::= type ident opt params = constructor+

Record types

Record types provide a way to aggregate data of various types, a bit like tuples, but naming the compo-
nents of the group, instead of differentiating them by theirposition like in tuples. A record is a sequence of
names and types between braces. For example:

type experiment_conditions = {
x : int ;
y : int ;
z : int ;
temperature : int ;
pressure : int

} ;;

type identity = {
name : string ;
birth : int ;
living : bool

} ;;

Record types definitions:
field ::= ident : τ ;
opt params ::= ǫ | (′ident{,′ident} ∗)
record type def ::= type ident opt params = {field + }

To create avalue of a record type, a value of the related type must be provided for each field of the
record.

{ name = "Benjamin" ; birth = 2003 ; living = true }

Like in tuples, records can mix types of fields.

Parameterised type definitions
It is possible,at toplevel, to parametrise a type definition, i.e. to create a type with atype variable

that can be instantiated by any type expression. A type variable is written as an identifier preceded by a’
(quote) character.

For instance, the type definition of generic (polymorphic) lists may be defined by:

type list (’a) =
| Empty
| Cons (’a * list (’a))

;;

The value constructorCons carries a value of type “unknown” (of type “variable”) and the tail of the
list, i.e. a value of typelist with its parameter instantiated by the same type variable. This explicitly

37

says that all the elements of such a list have the same type. Itis now possible to use thelist type in type
expressionsby providing a typeexpressionas argument of thetype constructor list . For instance,list
(int) is the type of lists containing integers,list (list (char)) is the type of lists containing lists
of characters.

Parametrised record types can also be introduced, as in the following example:

type pair (’a, ’b) = {
first : ’a ;
second : ’b

} ;;

type int_bool_pair = pair (int, bool) ;;

3.2.2 Type-checking

The type-checking process is roughly similar to ML type-checking. Polymorphic types are allowed at top-
level. However, methods are not allowed to be polymorphic. This means that their types cannot contain
variables. But they may contain collection parameters as stated in section 4.2.1.

A type t1 is an instanciation of a typet2 if t1 is obtained by replacing some type variables oft2 by a
“more defined type expression”.

For example,′a → int → bool is an instanciation of′a → int →′ c since we replaced the variable
′c by the typebool .

Two typest1 andt2 are saidcompatible if they have acommon instanciation. For the intuition, this
means that replacing variables int1 and replacing variables int2 leads to a same type.

For example, we consider the two following types:

• t1 =′ a → int →′ b →′ c

• t2 = bool →′ d →′ d →′ e

In t1 we replace: ′a by bool , and we leave the others variables unchanged. We get the new type
t′1 = bool → int →′ b →′ c.

In t2, we replace′d by int , ′e by ′c. We get the new typet′2 = bool → int →′ b →′ c.
The typet′1 is an instanciation oft1. The typet′2 is an instanciation oft2. The two typest′1 andt′2 are

structurally the same. Hencet1 andt2 arecompatible.
As it can be seen, an instanciation does not need to change allthe type variables. Only part (or none) of

them may be sufficient.

For the sake of intuitive view, compatibility is a generalisation of the notion of types being “equal”. The
most trivial instanciation appears when the two types do nothave any type variables. Hence in this case, for
them to be compatible is to be structurally equal. We find in this case, the common view of “being a good
type” when for instance providing an argument to a function according to the type of the expected argument
in the function’s prototype.

3.2.3 Representations

As further explained (see section 4.1.2) the representation is a method of a species that describes the in-
ternal data structure that the species manages. Hence, it isa kind of type definition, more accurately an
alias type definition. This means that a representation does not introduce a new type, it only “assigns”

38

to the representation atype expressiondefining the type of the manipulated entities of the species.More-
over, like for any other methods (c.f. section 4.1.2),the representation must not be a polymorphic type.
Thus its definition cannot contain type variables (but may contain collection parameter names). Defining a
species’representation is simply done by adding therepresentation method:

open "basics" ;;

species IntPair =
representation = (int * int) ;

end ;;

Recall that the type introduced by the methodrepresentation is denoted bySelf within the
species.

Representation:
representation ::= representation = τ

3.2.4 Expressions

Expressions are constructs of the language that are evaluated into avalueof a certaintype. Hence values and
types are not at the same level. Types serve to classify values into categories. Although proofs may contain
expressions, we describe them in the 5. Indeed proofs are notexpressions, they do not lead toFoCaLize
values thus live at another level.

Expressions:
exp ::= integer literal

| string literal
| character literal
| float literal
| true | false Boolean constant
| {ident?#}?uident sum type value constructor

or species/collection identifier
| Self?!uident Method of the current species
| {ident?#}?{uident!}?lident Method from specified species/collection
| {ident?#}?{uident!}?(operator) Infix or prefix operator used in functional position
| let rec? let binding {and let binding}∗ Let bound definition

in exp
| if exp then exp else exp Conditional
| match exp with match binding+ Pattern matching
| exp (exp{ ,exp } ∗) Function application
| unary operator exp Application of unary operator
| exp binary operator exp Application of binary operator
| { record field value Record value

{ ; record field value } + }
| { exp with record field value Record value clone

{ ; record field value } + }
| expr .{ident#}?lident Record field access

39

| (exp) Parenthesised expression

Record field value:
record field value ::= {ident?#}?lident = exp

Let bindings:
let binding ::= lident {in type expression}? = exp Definition without parameter

| lident (lident {in type expression}? Definition with parameter(s)
{ , lident {in type expression}?} ∗)

{in type expression}? = exp

Match bindings:
match binding ::= | pattern −> exp

Patterns:
pattern ::= integer literal

| string literal
| character literal
| float literal
| true | false Boolean constant
| lident Variable
| {ident?#}?uident 0-ary sum type value constructor
| {ident?#}?uident (pattern {, pattern} ∗) N-ary sum type constructor
| “Catch-all” pattern
| {record field pattern {; record field pattern} ∗ } Record
| (pattern {, pattern}+) Tuple
| (pattern) Parenthesised pattern

Record field pattern:
record field pattern ::= {ident?#}?lident = lident

3.2.4.1 Literal expressions

The literal expressions of type integer, string, character, float and boolean) are evaluated into the constant
represented by the literal. The expression25 denotes the value 25 of typeint .

3.2.4.2 Sum type value constructor expressions

We presented in section 3.2.1.3 the way to define sum types. Wesaw thatvaluesof such atype are built
using itsvalue constructors.

40

Hence, forvalueconstructors with no argument, the constructor itself is anexpression that gets evaluated
in a value wearing the same name.

For value constructors with parameters, a value is created by evaluating an expression applying the
constructor to as many expressions as the constructor’s arity. Obviously, sub-expressions used as arguments
of the constructor must we well-typed according to the type of the constructor. The resulting value is denoted
by the name of the constructor followed by the tuple of valuesgiven as arguments. For instance, with the
following type definition:

type t =
| A
| B (int * bool)

;;

the expressionA is evaluated intoA, the expressionB ((2 + 3), true) is evaluated into the value
B(5, true).

3.2.4.3 Identifier expressions

An identifier expression is either a basic identifier, an extended identifier or a qualified identifier (see section
3.1.12), which denotes the value of this identifier in the scope of the expression. The identifier is said to be
bound to this value.

The value bound to an identifier can be of any type. A value having a functional type, that is afunctional
value also called aclosure, is created by a function definition. Such a value, obtained by the evaluation of
the body of the function, is slightly different from other ones since it embeds both the code of the function
(i.e. a kind of evaluation of its body expression) and its environment (i.e. bindings between identifiers
occuring in the body of the function and their value in the definition scope). This closure will be kept
untouched until it appears in a functional application expression as described further in 3.2.4.8.

There are several possibilities to bind an identifier. Definitions introduce a basic or extended identifier
andbinds it to the value of the expression stated in the definition. There are three ways to introduce and
directly bind an identifier:

• By a let-in construct,

• By a toplevel-definition (let or theorem),

• by a method definition (let),

Each of these three cases will be described in their related section.
There are two ways to introduce basic identifiers as parameters:

• in a function definition

• by a pattern inside amatch-with construct

Then the binding of the parameter is differed until the application of the function or the pattern-matching
mechanism. Each of these two cases will be described in theirrelated section.

Suppose that an expressionexp contains several occurrences of an identifiermy var . Assume that, in
the scope ofexp, my var is bound to avalue v, then each occurrence ofmy var in exp is substituted
by v during the evaluation ofexp. This is basically the principle of the so-calledeageror call by-value
evaluation regime.

41

Identifier resolution Remember that identifiers forms differ depending on the syntactic class of entity they
refer to, capitalized identifiers being used for species andcollections. To evaluate an identifier expression,
theFoCaLize compiler tries to find its definition from the current scopingcontext. It searches for the closest
definition with this name, starting by the parameters present in the current definition (i.e. formal parameters
in a function and in amatch-with construction andlet-in bound identifiers). If no identifier definition
with this name is found, the search goes on among the methods of the current species. If a method is found
with this name, it will be retained, otherwise the identifieris looked in the preceding toplevel-definitions
of the current compilation unit. If no suitable definition isfound, then the ones imported by theopen
directives are examined to find one with the searched name. Finally if no definition is found, the identifier
is reported unbound by an error message.

Note that anopen directive may arise anywhere at toplevel in the source code.Hence, the order of
search between the current file’s toplevel-definitions and the imported ones byopen is not really separated:
the name resolver looks for the most recent definition considering that the toplevel-definitions and the im-
ported ones are ordered according to the apparition of the effective definitions in the file themselves and the
imported ones. In other words, if a toplevel-definition exists for an entityfoo , if later anopen directive
imports anotherfoo , then this last one will be the retained one.

Identifier qualification
Identifiers can manually be disambiguated in term of compilation unit location using the sharp (#) nota-

tion as explained in section 3.1.12.

As further presented in section 4.2.1, species methods identifiers are made explicit using the “!” notation.
The notationSpe!meth stands for “the methodmeth of the speciesSpe”. By extension,!meth stands
for the methodmeth of the current species. It is possible to explicitSelf in the naming scheme using
Self!meth . This is useful when a more recently defined identifier hides amethod of the species at hand:

species S =
let m (x in ...) = ... ;
let n (y in ...) =

...
let m = ... in
(* Want to call the *method* "m" with argument "m" !!! *)
!m (n) ;

end ;;

Hence, the name resolution mechanism allows to omit the “!” but making it explicit can help for conflicts
resolution. Moreover, when invoking species parameters’ methods, the name resolution never searches
among methods of collection parameters, hence the explicit“!” notation is required.

As the grammar shows, name qualification by compilation unitand hosting species can be freely mixed.
We can build identifiers likemy file#My species!my method to refer to the methodmy method
hosted in the speciesMy species located in theFoCaLize source file “myfile.fcl”. These disambiguation
methods are indeed orthogonal.

Extended identifier expressions
Finally, infix/postfix operators can be used as regular identifiers. Usually, an operator is syntactically

used according to it prefix or infix nature. For instance, the binary + operator is used between its arguments
as inx + 4 , the unary operator∼ is used before its argument as in∼ x . FoCaLize allows to refer to
those operators as regular identifiers (for instance as function parameters). This allows to use operators as
any other identifiers, and

• using them as regular function (i.e. in functional position),

42

• bind them as arguments of functions,

• use them as regular identifiers in expressions, for example to pass them as arguments of other func-
tions.

To get an identifier from an operator, its symbol (c.f. 3.1.5)must be delimited by spaces and enclosed into
matching parentheses. For example:(+) is the regular identifier corresponding to the infix symbol+.

Note that spaces around the operator symbol are mandatory and part of the syntax. If spaces are omitted,
the parens get their usual meaning and the interpretation can be completely different. A specially puzzling
error is to write(*) to mean(*) :

...
let (*) (x, y) = ...

Now, (* is evidently parsed as the beginning of comment, leading to asyntax error or any other cryptic
error long after the faulty(* occurrence. Conversely*) is always considered as an end of comment by the
lexical analyzer.

3.2.4.4 let-in expression

let-in expression binds an identifier to a value to evaluate a trailing expression (the “in-part ” of the
“ let-in ” or “body”) where this ident may appear. During the evaluation of the trailing expression, any
occurrence of the bound identifier is “replaced” by the valuebound to this identifier. For instance:

let x = 5 in (x, x)

bindsx to the evaluation of theexpression(3+2) (i.e. the integervalue 5) and then, the evaluation of
the trailing expression returns the tuplevalue (5, 5). From the syntax, it is clear thatlet-in constructs
can be nested. For instance,

let x = 3+2 in
let y = (x, x) in
let z = true in
(y, z, y, z)

returns the value((5, 5), true, (5, 5), true) of type((int * int) * bool * (int * int)

* bool) .

Note that the notion of “binding an identifier to a value” is essentially different from the notion of
assignment in imperative languages. In such languages (like C, Java, Pascal,. . .) a variable is firstdeclared,
then a value isassignedto the variable. It is thus possible to assign a variable several times to different
values. For example in C:

...
{

int i ;
... ;
i = 10 ;
while (i > 0) i = i-- ;

}
...

The variablei is declared, then assigned the initial value10, then thewhile loop makes it decreasing
by successive assignments.

In a let-in binding construct, an identifier is given a value once and forall: it is impossible to change
its value, once it has been bound. Each new definition, binding an already bound identifier will just hide the
old definition. For instance:

43

let x = 5 in
let y = (x, x) in
let x = true in
let z = (x, x) in
(y, x, y, x)

leads to the value((5, 5), true, (5, 5), true) of type((int * int) * bool * (int * int)

* bool) . Clearly the first value bound tox holds untilx is bound again:5 is used to definey but not to
definez , since the value ofx is then the booleantrue.

The let-in construct serves to bind an identifier to a value of any type. As a consequence, it can also
bind an identifier to a functional value. This lead to the natural way to definefunctions. For instance:

let f (x, y) = x + y in
f (6, 7)

Thelet construct bindsf to a function which has 2 parametersx andy , and the body off is the addition
of these 2 parameters. Then the body of thelet-in construct appliesf to 2 effective arguments6 and7
(we obviously expect the result of thisapplication to be13). (Function application is explained below in
??).

It is possible to provide a type constraint to precise the type of the return value of a function, or the type
of the let -bound variable or parameters:

let f (x : int, y) = x + y in
f (6, 7)

let f (x : int, y) in int = x + y in
f (6, 7)

let a in int = 3 in
(a, a)

It is possible to define several identifiers at the same time separating each definition by the keyword
and .

...
let f = exp_1
and g = exp_2
and h = exp_3 in exp;

All the definitions are separately evaluated “in parallel”.As a consequence, the identifiers introduced
by a let ... and cannot be used in the right members of this construction (in the exp i). Do not
confuse this construct with nestedlet-in as the followig one, whereexp 2 can containf andexp 3 can
containf andg.

let f = exp_1 in
g = exp_2 in
h = exp_3 in exp

Mutually recursive functions need to know each other because their bodies call these other functions
and their definition require a non-nested evaluation of eachfunction. In this case, the keywordlet must be
followed by the keywordrec .

...
let rec even (x) =

if x = 0 then true else odd (x - 1)

44

and odd (y) =
if y = 0 then false else even (y - 1) in

...

Warning: in the current version ofFoCaLize mutually recursive functions cannot be compiled into
Coq code. OnlyOCaml code generation is available. Moreover, forCoq, recursive functions imply ter-
mination proofs. This last point will be covered in the section 6 especially dedicated to recursive (non-
mutually) function definitions.

3.2.4.5 logical let

As seen above, thelet-in construct is used to bind computational expressions. Logical expressions
described further in 3.2.7 are first order logic formulae. Wewould sometimes like to have parametrised
logical expressions, i.e. a kind of functions returning a logical proposition.

Suppose we want, for a certain value ofx andy, to use the fact “x < y andx + y < 10” (which holds
or not) to build more complex logical expressions.

A first attempt is to use the logical expressionx < y/ \ x + y < 10 wherex andy are considered as
fresh (free) variables. But there is no way in the language ofproperties to instantiatex andy by different
integer values in order to obtain a proposition (regardlessof its truth value).

Another attempt is to introduce a property bound to the proposition∀x, y : int, x < y/ \x+ y < 10. It
does not fit because there is no provided way to substitutex andy by integer values: there is no syntactical
construction for elimination of a universal (nor existential) quantifier in the language of properties (note that
elimination can be done during a proof).

To allow functional bindings in logical expressionsFoCaLize provide thelogical let construct. It
serves to introduce a parameterised logical expression, which can be applied to effective arguments to obtain
a logical proposition. Our example would be expressed by:

use "basics" ;;
open "basics" ;;

species S =
...
logical let f (x : in int, y in int) = x < y /\ x + y < 10 ;
...

end ;

Sincelogical let binds an identifier to a logical expression, the body of the definition must ob-
viously be of type bool . Once defined,f can be used as a regular function, but only in properties and
theorems statements. For instance:

use "basics" ;;
open "basics" ;;

species S =
...
let m (x in Self) = ... ;
logical let f (x : in int, y in int) = x < y /\ x + y < 10 ;
...
property p : all a in Self, all b, c in int, f (c, b) => f (m (a), b) ;

end ;

See other examples in the standard library where this construction is used to define associativity, com-
mutativity, . . .

45

3.2.4.6 Conditional expression

A conditional expression has the form:
if exp1 then exp2 else exp3
Its evaluation starts by the evaluation of theexp1 expression which must be of type boolean. If its value

is true then the result value of the whole expression is the value ofexp2, otherwise (i.e. if its value isfalse)
the value ofexp3. This obviously implies thatexp2 andexp3 must have the same type. This construct is
then a binary conditional expression (i.e. with 2 branches).

let f (x) = if x then 1 else 0 in ...

The functionf will return 1 if the effective argument provided forx is true, otherwise it will return0.

let is_too_small (x) = ... in
let y = ... in
let y_corrected = if is_to_small (y) then 0 else y in ...

In this example, we assume we have a functionis too small checking if a value is “too small” and
an identifiery bound to a certain value. The result of the conditional expression bound toy corrected
will be either0 if the condition is met ory otherwise.

3.2.4.7 Match expression

The match-with construct is a generalised conditional construct with pattern-matching. By “gener-
alised”, we mean that unlike theif-then-else which has only 2 branches, the present expression can
have several branches. The notion of condition here is not anymore a boolean value. Instead, the con-
struct allows to discriminate on the different values an expression is evaluated into. The basic structure of
a match-with consists in a discriminating expression followed by an enumeration of cases (calledpat-
terns). The dicriminating expression is evaluated and its value is matched against the patterns, following the
textual ordering of these patterns, until a match succeeds.Then the expression associated with the matchng
pattern is evaluated to obtain the value of the whole expression match-with .

let a = ... ;
let x =
match a + 5 with

| 0 -> "zero"
| 5 -> "five"
| 1 -> "one"
| 10 -> "ten"
| _ -> "other" in

...

The discriminating expression in this case isa + 5 of type int . We can then react to each (or some of
the) values of this expression. Whena + 5 is equal to0 the result of the wholematch-with expression
(bound to the identifierx) is the string “zero”. Whena + 5 is equal to1, the result is the string “one”,
and so on. The final patternstands for “anything that was not in the previous cases” (also called “catch-all
pattern”). Hence, the order of the patterns is important. Ifthe case| -> was put before the case| 1 -> ,
then this last case would never be reached since thepattern would have caught the discriminated value.

As a consequence of the structure of this construct, type constraints must be respected in order to have
the whole expression well-typed:

• The type of the discriminating expression must be compatible with the type of the patterns.

• thus all the patterns must have compatible types.

46

• The types of all the result expressions in the rightmost parts of the cases must be compatible.

In the example above, the patterns were constants. A value matches a constant pattern if and only if it
is equal to this constant. In addition to this multi-branches conditional feature, thematch-with construct
provides truepattern matching. That is, patterns may be built from constants, value constructors, variables
and the catch-all symbol. Any value matches any variable pattern and thepattern. For general patterns
built from value constructors, variables, constants,, roughly speaking, a value matches a pattern if this
pattern can be seen as a prefix of this value. Then, the variables of the pattern get bound to the parts of the
discriminating expression that are “at the same place” thanthose variables. For example:

let e = ... in
...
let x =
match e with

| (0, 0, 0) -> 1
| (0, x, y) -> x + y
| (1, 1, x) -> x
| (x, y, z) -> x + y + z

...

According the the type-checking mechanism, the examined expressione must have here type(int *
int * int) . The first pattern will be chosen ife is equal to the tuple(0, 0, 0). We say here “equal” since
there is no variable in the pattern, hence the only way to fit the pattern is to simply be equal. If this pattern
is not fitted, the we examine the second pattern. It will be chosen ife has a0 as first component and any
integer for the second and the third ones. In this case, the result value will be the evaluation of the expression
x + y where x will be bound to the effective second component of thevalue ofe andy will be bound to
its third component. We can notice that no “catch-all pattern” is needed since the enumerated patterns cover
all the possible values of tuples with 3 components (look at the last pattern that do not put any constraint on
the tuple components, hence will match all the remaining cases).

The previous example used tuples as matched expression and patterns, but patterns also contain sum
type value constructors, hence allowing to “match” on any sum type structure. For example:

type t =
| A
| B (int)
| C (int * int)

;;
...
let e = ... in
let x =
match e with

| A -> 0
| B (3) -> 4
| B (_) -> 10
| C (x, 10) -> 5
| C (_, y) -> y

;;

This example shows different cases following the structureof the typet . Note the use of the “catch-all”
pattern inside patterns. In fact, the “catch-all” pattern acts like a variable unused in the rightmost part of the
case. It is however preferable to use “” instead of a variable sinceOCaml generates warning for unused
variables and the generatedOCaml code generated byFoCaLize will not change unused variables into “”s.

Patterns also allow to match record values (c.f. 3.2.4.10),i.e. to match on values of the fields:

type t = { name : string ; birth : int } ;;

47

let r = ... in
let x =
match r with

| { name = "Alexandre" } -> ...
| { name = n ; birth = 2003 } -> ...
| { name = n } -> ...

In such a pattern, fields not specified are considered as “catch-all” patterns. Hence, the last case catches
all the record values not caught before since the fieldname’s value is bound to a variable (so, any value can
match it) and the fieldbirth is absent (so, considered asbirth =).

3.2.4.8 Application expression

We previously saw that thelet-in construct allows to define functions by binding an identifierto a func-
tional value. Using a function by providing it with effective arguments to get its result value is called
application. Hence, in an application there are 2 distinct parts: the applicative part that must be an ex-
pression leading to a functional value and the effective arguments that are expressions whose values will
be provided to the function to make its computation. The syntax for application is simply the juxtaposi-
tion of the applicative expression and the comma-separatedexpressions used as arguments embraced by
parentheses:

let f (x) = ... in
let g (x, y) = ... f (y) ... in
g (f (3), 4)
...

As described in 3.2.4.3, the evaluation of an application ofa function to its effective arguments start by
the evaluation of these arguments (the order of the evaluation of several arguments is left unspecified). Then
these effective values are substituted to the corresponding parameters inside the body of the function and
the so-obtained expression (the substituted body) is evaluated. For instance, having the following function
and application:

let g (x, y) = (y, x) in
g (true, 1)

The evaluation of thislet-in expression first binds the identifierg to a functional value also called
closure. Then the application expressiong (true, 1) is evaluated. So the values ofg and of the
expression(true,1) are elaborated: the evaluation ofg returns a closure,true is evaluated into the
booleanvalue true, 1 into the integervalue 1. The next step is to evaluate the body of theclosure of
g, replacing the formal parameterx by the effective argumenttrue andy by 1. The body ofg creates a
tuple from its 2 arguments, puttingy in the first component andx in the second. Hence, the result of the
application is the tuplevalue (1, true).

3.2.4.9 Operator application expression

Since operators are designed to be used in infix or prefix position, application of operators consists simply
in providing arguments according to the operator infix/prefix nature. For infix operators, arguments are on
left and right sides. For prefix operators, the operator is infront of the argument expression.

3.2.4.10 Record expression

As stated in 3.2.1.3, record types are defined by a list of labels with their types. As usual a record expression
follows the same structure, replacing the type expressionsof the definition by values of these types. For
instance, assuming the given record type definition, the following example shows a possible record value:

48

type identity = {
name : string ;
birth : int ;
living : bool

} ;;

...
{ name = "Nobody" ; birth = 42 ; living = false }
...

If the record type definition is in a different compilation unit, you may qualify the record fields by the
“#” notation:

{ my_file#name = "Nobody" ; my_file#birth = 42 ; my_file#liv ing = false }

3.2.4.11 Cloning a record expression

It is sometimes needed to create a new value of a record type bymodifying a few fields of an existing record,
leaving the other fields unchanged. If the record type definition contains numerous fields, manually copying
the old fields values to create the new record value appears boring and error prone:

type t = { a : int ; b : int ; c : int ; d : int ; e : int ; f : int } ;;
...
let v1 = { a = 1 ; b = 2 ; c = 3 d = 4 ; e = 5 ; f = 6 } in
...
let v2 = {

a = v1.a ; b = v1.b ;
c = 5 ; (* Changed value. *)
d = v1.c ; (* an error since the requested value was "v1.d". *)
e = 6 ; (* Changed value. *)
f = v1.f } in

...

Instead of manually copy the unchanged fields,FoCaLize provides a way to clone a record value, that
is to create anew, a fresh value from an existing one, only by specifying the fields whose values differ from
the old record value:

type t = ... (* Like above. *)
let v1 = ... (* Like above. *)
...
let v2 = { v1 with c = 5 ; e = 6 } in
...

As for other record value expressions, if the record type definition is in a different compilation unit, you
may qualify the record fields by the “#” notation.

3.2.4.12 Record field access expression

Once a record value is created by aggregating values of its fields, it is possible to recover the value of one
field by a dot notation. For instance, assuming the type definition and record values of the previous example:

... v1.a ...

... v2.c ...

respectively get the value of the fieldsa of v1 andc of v2 , that is,1 and5. If the record type definition is
in a different compilation unit, you may qualify the record fields by the “#” notation: t1.my source#a .

49

3.2.4.13 Parenthesised expression

The parentheses can be used around any expression, to enforce the associativity or evaluation order of
expressions. Simple expressions (i.e. atomic) can also be parenthesised without changing their values.

3.2.5 Core language expressions and definitions

In the previous sections, we described the syntax of expressions. Expressions rarely appear outside any
definition but it is still possible to have top-level expressions. They will be directly evaluated and not bound
to any identifier, but this implies that these expressions use previously written definitions.

As further explained in (c.f. 4.1.2) species are made of methods. Some methods contain expressions
(functions, properties, theorems). Function-methods areintroduced by thelet keyword, using the same
syntax (hence expressions) that thelet-in construct except the fact they do not have a “in ” expression.
The idea is that the “in ” expression is implicitly the remaining of the species. Properties and theorems
are respectively introduced by the keywordsproperty andtheorem and may contain expressions. The
section 3.2.7 is dedicated to their detailed explanation.

open "basics" ;;
species My_Setoid inherits Basic_object =
signature (=) : Self -> Self -> bool ;
signature element : Self ;
let different (x, y) = basics#not_b (x = y) ;

property refl : all x in Self, x = x ;
property symm : all x y in Self, Self!(=) (x, y) -> y = x ;

end ;;

Toplevel-definitions are definitions introduced outside ofany species. General functions and general
theorems, i.e. that do not depend on a particular species canbe introduced as toplvel-definitions. Toplevel-
functions are introduced by thelet keyword and don’t have a “in ” expression, this part being implicitly the
remaining of the program (i.e. the current compilation unitand those using the current). Toplevel-theorems
are introduced by thetheorem keyword. These definitions must be ended by a double semi (“;; ”).

let is_failed (x) =
match x with
| Failed -> true
| Unfailed (_) -> false

;;

theorem int_plus_minus: all x y z in int,
(* x + y = z -> y = z - x *)
#base_eq (#int_plus (x, y), z) -> #base_eq (y, #int_minus (z , x))
proof:

coq proof { *
intros x y z;
unfold int_plus, int_minus, base_eq, syntactic_equal in |- * ;
intros H;
unfold bi__int_minus;
apply EQ_base_eq; apply Zplus_minus_eq;
symmetry in |- * ;
apply (decidable _ _ _ (Z_eq_dec (x + y) z) H).
Qed.

* }
;;

50

3.2.6 Files and uses directives

FoCaLize provides 3 directives that are not expressions. This means that they do not lead to values or
computation.

3.2.6.1 Theuse directive

This directive is followed by the name of the file to open between double quotes without the “.fcl” extension.
Before being allowed to use the qualified notation for an identifier, (i.e. the “#”-notation), the qualifying
compilation must be declared as “used” thanks to this directive. In other terms, “using” a compilation units
allows to access its entities from the current compilation unit.

3.2.6.2 Theopen directive

This directive is followed by the name of the file to open between double quotes without the “.fcl” extension.
As previously introduced (c.f. 3.2.4.3 and 3.1.12) theopen directive loads in the current name resolution
(scoping) environment the definitions of the compilation unit named in theopen directive. This prevents
the user from having to explicitly qualify definitions of this unit by the “#” notation. Definitions imported
by the directive hide (“mask”) those wearing the same name already defined in the current compilation unit
from the point the directive appears. Remember that it is however possible to recover the hidden definitions,
using the “#” notation without compilation unit name.

Note that theopen directive implicitly implies theuse directive. This means that it is not useful to add
ause together with anopen directive.

open "sets";;

This directive loads the definitions of the compilation unit“sets.fcl” in the current name resolution
(scoping) environment.

The path of the compilation unit is never specified. The file will be searched in the library search path
specified with the-I option (c.f. 7).

3.2.6.3 Thecoq require directive

Some source files of a development may be directly written inCoq to provide external definitions (more de-
tailed further in 9.0.5) to import and use in theFoCaLize source code. In this case, theCoq code generated
for theFoCaLize source code must be aware of the need to import the external definitions from the manu-
ally written Coq file. For this reason, theFoCaLize source must explicitly indicate by thecoq require
directive that it makes references to definitions hosted in this Coq source file. For example, the file “well-
founded.fcl” of the standard library needs “wellfoundedexternals.v” and signals this fact in its early lines
of code:

...
open "basics";;
open "sets_orders";;
coq_require "wellfounded_externals";;
...

51

3.2.7 Properties, theorems and proofs

Properties are first order logic propositions and theorems are properties with their proofs. We will study
here first the structure of logical expressions used to express the statements, show properties and theorems
forms and shorty present the 3 available ways to write proofs.

3.2.7.1 Logical expressions

Logical expressions are those used to write first order logicformulaes.

Logical expressions:
logical expr := all lident [, lident] ∗ in type expr Universal quantification

| ex lident [, lident] ∗ in type expr Existential quantification
| logical expr −> logical expr Implication
| logical expr <−> logical expr Equivalence
| logical expr /\ logical expr Conjunction
| logical expr \/ logical expr Disjunction
| ∼ logical expr Negation
| expr Arbitrary FoCaLize expression (atom)
| (logical expr) Parenthesised logical expression

Logical expressions contain the usual logical connectors “imply” (⇒), “and” (∧), “or” (∨), “there exists”
(∃), “for all” (∀), “is equivalent” (⇔) and “not” (∼). Moreover, logical expressions embed theFoCaLize
expressions used in computational methods (i.e. identifiers, conditionals, application, . . .). This allows to
have connected propositions using the previously defined functions and species methods.

species S ... =
signature gt : Self -> Self -> bool ; (* Greater than... *)
signature geq : Self -> Self -> bool ; (* Greater or equal... *)
signature equal : Self -> Self -> bool ; (* Equal to... *)
signature different : Self -> Self -> bool ; (* Different of... *)

property gt_is_lt : all x y in Self,
(!gt (x, y) -> (!geq (x, y) /\ !different(x, y)))
/\
(!geq (x, y) -> (!gt (x, y) \/ !equal(x, y))) ;

end ;;

Since propositions in logical expressions are truth values, this obviously imply that the arbitrary expres-
sions used between connectors must have typebool .

3.2.7.2 Properties

A property is a logical expression bound to an identifier. Itsform is the name of the property, a colon
character (“:”) and the logical expression being its statement. See the example given in 3.2.7.1.

Properties:
property ::= property lident : logical expr

52

3.2.7.3 Proofs

FoCaLize currently provides 3 ways to write proofs. We only give here asimple description of these 3
means without going deeply in the technical mechanisms since this problem will be especially addressed in
section 5 and 9.0.6.

• Consider the proof as “assumed”. This way is the simplest but also the weakest one since it consists
in saying that no proof is given and the system must trust the stated statement.

species S =
representation = int;
let equal = (=Ox);
theorem symetry : all x y in Self, Self!equal (x, y) -> equal (y, x)
proof : assumed

{ * The equality of machine integers is admitted to be symetric * } ;
...

end ;;

Following theassumed keyword is a mandatory message used for sake of information,justification,
traceability of the proof absence. Although such a proof canintroduce inconsistencies if the “theorem”
is not a tautology and thus decrease confidence in the correctness of theFoCaLize program, there are
several cases where using this keyword may help.

– The first case is simply that the developer doesn’t know (yet ?) how to make the proof, doesn’t
have time yet to write it, is not interested in proofs but still wants his program to compile to get
the executable code.

– Second case deals with import of external code, i.e. code notwritten in FoCaLize and con-
sidered as external. In this case, since the imported code does not fit theFoCaLize model and
more accurately, does not have formal properties, it is impossible to make any proof onFoCaL-
ize’s side based on the structure of this code and its non-existing implementation properties. In
other terms, things coming outsideFoCaLize universe can not be modeled byFoCaLize. The
developer only can import them providing a binding is given and must trust them.

– Last case addresses “well-known” mathematical propertiesthat do not actually hold in comput-
ers since they are finite machines, working on bounded arithmetics. The most obvious example
is the fact that since an integer is coded on a machine word (often232 or 264 bits nowadays), the
mathematical property∀x ∈ N, x + 1 > x does not hold anymore.

However, conceptually, except when dealing with boundaries, this property holds and we need to
achieve further proofs. For this reason, assuming that the proof holds is legitimate, if the devel-
oper is able to guaranty that the integer computations neveroverflow. If he cannot guaranty non-
overflow, then this is a true problem of specification or design which should be re-considered.

In any case, we advice the reader to use the test tool (or another mean) to comfort the confidence in
the statement of the theorem.

• Write an automated proof script. FoCaLize provides a syntax, theFoCaLize Proof Language, to
split proofs into steps that may be proved by theZenon theorem prover. Without entering deeply
into the syntax further described in chapter 5, the main features are the following. The user may state
hypotheses, demonstrate subgoals that will serve as lemmasfor a higher level goal and may give hints
about definitions or declarations of methods. ThenZenon tries to automatically guess a proof of this

53

goal, then tries to prove those lemmas, hence building a proof tree until the top goal (i.e. the theorem)
is proved. Below follows an example of such proof.

theorem zero_is_unique : all o in Self,
(all x in Self, !equal (x, !plus (x, o))) -> !equal (o, !zero)
proof =

<1>1 assume o in Self,
assume H1: all x in Self, !equal (x, !plus (x, o)),
prove !equal (o, !zero)

<2>1 prove !equal (!zero, !plus (!zero, o))
by hypothesis H1

<2>3 prove !equal (o, !zero)
by step <2>1
property zero_is_neutral, equal_transitive, equal_symmetric

<2>4 conclude
<1>2 conclude

;

• Write a Coq script This way is the most difficult since it means to directly writeCoq code. It
requires the understanding of bothCoq and the mapping theFoCaLize compiler does to generate
Coq code fromFoCaLize source code. The section 9.0.6 describes howFoCaLize definitions are
mapped ontoCoq names.

The Coq script is introduced by the keywordscoq proof and surrounded by{* and* }. Below
follows an example of such proof.

theorem int_minus_plus: all x y z in int,
(* x - y = z -> x = y + z *)
#base_eq (#int_minus (x, y), z) -> #base_eq (x, #int_plus (y , z))
proof:
coq proof { *

intros x y z; unfold int_plus, int_minus, base_eq,
syntactic_equal in |- * ;

intros H;
unfold bi__int_minus;
apply EQ_base_eq; rewrite <- (Zplus_minus y x);
apply Zplus_eq_compat; trivial; apply decidable.
apply Z_eq_dec. assumption.
Qed.

* } ;;

3.2.7.4 Theorems

Now we know how to write a logical statement and (nearly..

∼) how to write a proof, the structure of a
theorem appears simple since it contains both the statementand the proof inside the same construct. The
theorem is introduced by the keywordtheorem and the proof by the keywordproof followed by a colon
character (“:”).

Theorems:
theorem ::= theorem lident : logical expr proof = proof

For instance:

species Meet_semi_lattice inherits Setoid =
...
theorem inf_right_substitution_rule : all x y z in Self,

equal(y, z) -> equal(!inf(x, y), !inf(x, z))

54

proof:
by property

inf_left_substitution_rule,
inf_commutes,
equal_transitive ;

...
end ;;

The kind of proof used here is written inFoCaLize Proof Language and must not be a matter of under-
standing at this point since this particular point will be addressed with more details in chapter 5.

Notice that theorems can be hosted in a species or can be toplevel-theorems. Unlike theorems, properties
cannot appear at toplevel since there is no way to inherit at toplevel, hence no way to give a proof after the
property definition in a “parent”.

55

Chapter 4

The FoCaLize model

As stated in section 1, theFoCaLize language is designed to build an application step by step, going from
very abstract specifications to the concrete implementation through a hierarchy of structures. At first sight
species seem quite similar to classes in an Object-Orientedcontext. However, despite of inheritance and
late-binding features,FoCaLize is definitively not an Object-Oriented language as C++, Java, etc. are.

In the following we focus on the basic concepts underlying aFoCaLize development, that is:

• Top-level definitions

• Species

• Collections

• Parametrisation

• Inheritance

• Late-binding

To ensure that this part can be read independently of the section 1, we duplicate some explanations.

4.1 Basic concepts

4.1.1 Top-level Definitions

We calltoplevel-definition (just one word) a definition which appears outside species and collections. Such
definitions can only be:

• Species

• collections,

• type definitions,

• general theorems (not depending on a species)

• general functions (not depending on a species),

56

• expressions to be directly evaluated (but there is no way to bind their value to an identifier).

Any toplevel-definition is terminated by a double semi-character (“;;”).

4.1.2 Species

Speciesare the nodes of theFoCaLize hierarchy. A species is a sequence ofmethodsor fields, each one
being terminated by a semi character (“;”). Hence, a basic species looks like:

species Name =
meth1 ;
meth2 ;

end ;;

Species names are alwayscapitalised. As any toplevel-definition, a species ends with a double semi-
character (“;;”). There are several kinds of methods:

• Therepresentation. It defines the type of the entities manipulated in the species and is a kind of alias
type (see section 3.2.3). The representation can be a type variable and then is said to be “not yet de-
fined” or “only declared” and is not explicitly introduced . It can be bound to a type defined by a more
complex type expression possibly containing type variables (introduced via collection parameters).
Either, this type value is obtained by inheritance or is introduced by the keywordrepresentation
followed by= followed by a type expression. Ultimately to get acomplete(fully defined) species, the
representation must be a fully instantiated type (directlyor by 4.3.1).

In the context of a species, the representation is denoted bySelf .

Note that a representation is never a polymorphic type. Whenit is only declared, it is a type vari-
able, which can receive only one instantiation. In other words, this type variable is not universally
quantified, as are the type variables of polymorphic types.

• Signatures. They introduce names of constants and functions, uniquelyproviding their type as a
type expression. A signature begins with the keywordsignature followed by the introduced name
followed by : followed by a type expression. For instance:

species IntStack =
signature push : int -> Self -> Self ;

end ;;

As we saw above,Self represents the representation (thus a type) of the current species. Hence an
operation pushing an integer onto a stack takes as parameterthe integer to push, the stack on which to
push and give back a new stack, that is, an entity of typeSelf .

• Functions. They are implementations of signatures, providing effective code. A function is intro-
duced by thelet keyword followed by the name followed by= followed by a definition, which
is similar to ML definitions. Recursive functions are introduced bylet rec to make explicit the
recursivity.

species IntStack =
representation = int list ;
let push (v in int, s in Self) = v :: s ;

end ;;

57

Function parameters can be entities (that is, values) of thespecies itself (which type is the representa-
tion, thus denoted bySelf), entities of known collections, values of known types.

Functions can use in their body other methods of the species,toplevel-definitions of functions, meth-
ods of collections (described further in 4.1.5), or methodsof collections parameters (see 4.2.1).

When we say “other methods of the species”, this includes functions only introduced by their signa-
tures. This means that it is possible to use something only declared, without yet effective implemen-
tation. We will address this point later in detail in section4.4.1.

AlthoughFoCaLize is a functional language, function application must alwaysbe total. This means
that any function call must be provided all the effective arguments of the function. As previously
described in the core syntax (c.f 3.2.4.8), function application is “à la C”, that is with arguments
comma separated and enclosed by parentheses.

• Properties. They are first order formulae containing names already introduced. When stating a
property, the proof that it holds is not yet provided (but will have to be ultimately provided). A
property can be viewed as a declaration.

species IntStack =
...
property push_returns_non_empty :
all v in int, all s in Self, push (v, s) -> ˜ is_empty (s) ;

end ;;

Proofs of properties can bedelayed, that is, done afterwards using aproof field in a species. The
way to give proofs will be seen further.

species IntStack2 inherits IntStack =
proof of push_returns_non_empty = ... ;

end ;;

• Theorems. They are properties with their proofs. In fact, when defining a property, we only give the
statement of a theorem, leaving its proof for later. A theorem can be viewed as a definition.

species IntStack =
...
theorem push_returns_non_empty :
all v in int, all s in Self, push (v, s) -> ˜ is_empty
(s)

proof = ... ;
end ;;

One important restriction on the type of the methods is that it cannot be polymorphic. However,Fo-
CaLize provides another mechanism to circumvent this restriction, the parametrisation as explained further
(c.f. 4.2).

4.1.3 Complete species

A species is saidcompleteif all its methods aredefined, i.e. have an implementation. In other words this
means that there is no more methods onlydeclared. This notion implies that:

• The representation has been associated with a type definition.

58

• Every declaration is associated to a definition.

• A proof is given for every property.

Obviously, it is possible to build a species without signatures and properties, only providing functions
and theorems directly. In this case, if the representation is also defined, then the obtained species is trivially
complete.

The important point for a species to be complete is that it canbe turned into effective executableOCaml
code and effective checkableCoq code, since all the components are known.

Important : Although we said that only a complete species can lead to effective executable code, of
course species even not complete are compiled ! This means that you do not need to have a complete
species to compile your source code ! It is very common to havespecies not complete in source files since
programs are written in a modular fashion, in several files. Moreover, a library may provide species with
methods not defined, leaving the user the freedom to chose an effective implementation for some algorithms.

4.1.4 Interfaces

The interface of a species is the list of the declarations of its methods. Itcorresponds to the end-user point
of view, who wants to know which functions he can use, and which properties these functions have, but
doesn’t care about the details of the implementation.

The interface of a species is obtained by keeping the signatures and properties and retaining only the
signatures of the let methods and the statement of the theorems. The representation is hidden thus abstract
(only unifiable with itself). Hence, getting the interface of a species can roughly be seen as erasing the
representation, turning the functions into signatures andthe theorems into properties.

While this abstraction is easy within programming languages, it is not always possible when dealing
with proofs and properties. Such problematic species are rejected byFoCaLize and will be described later
in 4.4.2.

An interface has aname, which is the name of the underlying species. There should be no confusion
between species names and interface names as interface names are only used to declare formal collection
parameters (see section 4.2.1) and to apply methods of collection parameters.

4.1.5 Collections

A collection is a kind of “grey box”, built from acompletespecies by abstraction of the representation.
A collection has exactly the same sequence of methods than the complete species underlying it, apart the
representation which is hidden. Note that creating a collection from it is the only way to turn methods of a
complete species into executable code. This point is emphasised by the syntax:

collection name-collectionimplements name-species
The interface of a collection is the one of the complete species it implements. The interfaceI1 of a

collectionC1 is compatiblewith an interfaceI2 if I1 contains all the components ofI2.

Thus, implementing a complete species creates a collection, which is a kind of abstract data-type. This
especially means that entities of the collection cannot be directly created or manipulated as their type is not
accessible. So they can only be manipulated by the methods ofthe implementedspecies.

59

species Full =
rep = int ;
let create_random in Self = random_foc#random_int (42) ;
let double (x in Self) = x + x ;
let print (x in Self) = print_int (x) ;

end ;;

collection MyFull_Instance implements Full ;;

let v = Full.create_random ;;
Full.print (v) ;;
let dv = Full.double (v) ;;
Full.print (dv) ;;

In this example, we define a complete speciesFull . Then we create the collectionMyFull Instance .
And we use methods of this collection to create entities of this collection. We print the result of the evalua-
tion of the top-level definitions ofv anddv .

Note that two collections created from a same species are nottype-compatible since their representation
is abstracted making impossible to ensure a type equivalence.

As a conclusion, collections are the only way to get something that can be executed since they are the
terminal items of aFoCaLize development hierarchy. Since they are “terminal”, this also means that no
method can be added to a collection. Moreover, a collection may not be used to create a new species by
inheritance (as explained in the next section).

4.2 Parametrisation

This section describes a first mechanism to incrementally build new species from existing ones: the parametri-
sation.

4.2.1 Collection parameters

Remember that methods cannot be polymorphic (c.f. 4.1.2). For example, how to implement the well-known
polymorphic type of lists ? Grouping elements in a list does not depend of the type of these elements. The
only constraint is that all elements have the same type. Hence, a ML-like representation of lists would be
like:

type ’a list =
| Nil
| Cons of (’a * ’a list)

The ’a is a parameter of the constructor typelist , which is indeed a polymorphic ML type.
In FoCaLize we would like to create a species looking like:

species List =
signature nil : Self ;
signature cons : ’a -> Self -> Self ;

end ;;

Instead of abstracting the type parameter and leaving it free in the context of the species, inFoCaLize
weparametrisethe species by acollection parametercalledElem in the example:

species List (Elem is Basic_object) =
signature nil : Self ;
signature cons : Elem -> Self -> Self ;

end ;;

60

Collection parameters are introduced by their name followed by theis keyword, followed by anin-
terface name(remember that an interface has the same name as its underlying species). In the example,
Basic object is a pre-defined species from the standard library, containing only few methods and this
name is used here to denote the interface of this species. A collection parameter can be instantiated by any
collection which interface iscompatiblewith the one required by the parametrised species (c.f 4.1.4). In
the example, any effective parameter instantiatingElem is a collection which interface contains at least the
methods listed in the interface ofBasic object .

In the example, we use the parameterElem to build the signature of our methodcons . Note that
collection names can be used in type expressions to denote the “abstracted” representation of the collection.
Here “abstracted” means that the representation is not visible but we can refer to it as an abstract type. In
other words,Elem -> Self -> Self stands for the type of a function:

• taking a first argument whose type is the representation of a collection having a compatible interface
with the interfaceBasic object . (This especially means that such an argument is created using
methods of the compatible collection),

• taking a second argument whose type is the representation ofthe current species,

• and returning a value whose type is the representation of thecurrent species.

Why a collection parameter and not a species parameter?
The answer to this question is especially important to understand the programming model inFoCaLize.

It is a collection parameter because ultimately, at the terminal nodes of the development, this parameter
will have to be instantiated by an entity where everything isdefined, so at least a complete species. Imagine
how to build an executable code if a parameter can be instantiated by a species with some methods only
declared. . . This is the first reason.

Remember that properties mentioned in the collection interface have been proved in the underlying
complete species. Indeed in the hosting species, these theorems can be used as lemmas to do current proofs.
If the collection representation was not abstracted, then some methods of the hosting species would have the
ability to directly manipulate entities of the collection parameter, with the risk of breaking some invariants
of the collection parameter. This is the second reason. Thusthe representation of a collection parameter is
abstract for the hosting, exactly as is the representation of a collection (c.f 4.1.5).

To summarize, declaring a collection parameter for a parametrised species means providing two things:
the (capitalized) name of the parameter and the interface (denoted by a species name) that the instantiation
of this parameter must satisfy.

It is important at this point to note thatFoCaLize deals with dependent types, and therefore thatthe order
of the parameters is important. To define the type of a parameter, one can use the preceding parameters.
For instance, assuming that a parametrised speciesList declares the basic operations over lists, one can
specify a new species working on couples of respectively values and lists of values like:

species MyCouple (E is Basic_object, L is List (E)) =
representation = (E * L) ;
... ;

end ;;

The representation of this species represents the type(’a * (’a list)) . This means that the type
of the values in the first component of the couple is the same than the type of the elements of the list in the
second component of the couple.

61

A parametrized species (like in the example the speciesMyCouple) cannot be only partially instanti-
ated. An instantiation forall its parameters is required.

The previous example used a parameter to build the representation of the species. Collection parameters
can also be used via their other methods, i.e. signatures, functions, properties and theorems, denoted by the
parameter’s name followed by the “!” character followed by the method name.

To create a species describing a notion of generic couple, itsuffices to use two collection parameters,
one for each component of the couple. To define a printing (i.e. returning a string, not making side effect
in our example) method, it suffices to require each collection parameter to provide one. Now the printing
method has only to add parentheses and comma around and between what is printed by each parameter’s
printing routine.

(* Minimal species requirement : having a print routine. *)
species Base_obj =
signature print : Self -> string ;

end ;;

species Couple (C1 is Base_obj, c2 is Base_obj) =
representation = (C1 * C2) ;
let print (c in Self) =

match (c) with
| (component1, component2) ->

"(" ˆ C1!print (component1) ˆ
", " ˆ
C2!print (component2) ˆ")" ;

end ;;

Hence,C1!print (component1) means “call the collectionC1’s methodprint with the argu-
mentcomponent1 ”.

The qualification mechanism using “!” is general and can be used to denote the method of any available
species/collection, even those of ourselves (i.e.Self). Hence, in a species instead of calling:

species Foo ... =
let m1 (...) = ... ;
let m2 (...) = if ... then ... else m1 (...) ;

end ;;

it is allowed to explicitly qualify the call tom1by “!” with no species name, hence implicitly telling
“from myself”:

species Foo ... =
let m1 (...) = ... ;
let m2 (...) = if ... then ... else !m1 (...) ;

end ;;

In fact, without explicit “!”, the FoCaLize compiler performs the name resolution itself, allowing a
lighter way of writing programs instead of always needing a “!” character before each method call.

4.2.2 Entity parameters

There is a second kind of parameter: theentity-parameter. Such a parameter can be instantiated by an
entity of a certain collection.

For example, to obtain a species offering addition modulo aninteger value, we need to parametrise it
by an entity of a collection implementing the integers and togive a way to build an entity representing the
value of the modulo. Such a parameter is called anentity parameter and is introduced by the keywordin .

species AddModN (Number is InterfaceForInts, val_mod in Number) =
representation = Number ;

62

let add (x in Self, y in Self) =
Number!modulo (Number!add (x, y), val_mod) ;

end ;;

species

Hence, any collection created fromAddModNembeds the addition modulo the effective value instan-
tiating val mod. It is then possible to create various collections with eacha specific modulo value. For
instance, assuming that the speciesAddModNis complete and have a methodfrom int able to create a
value of the representation from an integer, we can create a collection implementing addition modulo 42. We
also assume that we have a collectionACollImplentingInts having at leastInterfaceForInts
as interface.

collection AddMod42 implements AddModN
(ACollImplentingInts, ACollImplentingInts!from_int (4 2)) ;;

Currently, entity parameters must live “in ” a collection. It is not allowed to specify an entity parameter
living in a basic type likeint , string , bool . . . This especially means that these basic types must be
embedded in a collection if we want to use their values as entity parameters.

4.3 Inheritance and its mechanisms

In this section, we address the second mechanism to build complex species based on existing ones. It will
cover the notion ofinheritanceand its related feature thelate-binding.

4.3.1 Inheritance

FoCaLize inheritanceis the ability to create a species, not from scratch, but by integrating methods of other
species. The inheritance mechanism also allows to redefine methods already existing as long as they keep
the same type expression. For theorems to have the same type is simply to have the same statement (but
proofs can differ).

During inheritance, it is also possible to replace a signature by an effective definition, to redefine a
property by a theorem and in the same idea, to add aproof of to a property in order to conceptually
redefine it as a theorem. Moreover new methods can be added to the inheriting species.

Since inherited methods are owned by the species that inherits, they are called exactly like if they were
defined “from scratch” in the species.

For instance, assuming we have a speciesIntCouple that represent couples of integers, we want to
create a speciesOrderedIntCouple in which we ensure that the first component of the couple is lower
or equal to the second. Instead of inventing again all the species, we will take advantage of the existing
IntCouple and “import” all its methods. However, we will have to changethe creation function since it
must ensure at creation-time of a couple (so at run-time) that it is indeed ordered.OrderedIntCouple
has all the methods ofIntCouple , exceptcreate which is redefined and the propertyis ordered)
stating that the couple is really ordered).

species IntCouple =
representation = (int * int) ;
let print (x in Self) = ... ;
let create (x in int, y in int) = (x, y) ;
let first (c1, c2) = c1 ;
...

63

end ;;

species OrderedIntCouple inherits (IntCouple) =
let create (x in int, y in int) =

if x < y then (x, y) else (y, x) ;

property is_ordered : all c in Self, first (c) <= scnd (c) ;
end ;;

Multiple inheritance , i.e. inheriting from several species is allowed by specifying several species sep-
arated by comma in theinherits clause. The inheriting species inherits of all the methods of inherited
species. In case of a same name appears in several inherited species, the compiler proceeds as follows.

If all the inherited species have only declared representations, then the representation of the inheriting
species is only declared, unless it is defined in this inheriting species. If some representations are declared,
the other ones being defined, then the totally defined representations of inherited species must be the same
and this is also the one of the inheriting species. In the following example, speciesS3 will be rejected while
speciesS4 hasint as representation.

species S0; -- no defined representation
end;;
species S1 =
representation = int ; .. end ;;
species S2 =
representation = bool; ... end;;
species S3 inherits S1, S2 = ... end;;
species S4 inherits S0, S1 = ... end;;

If some methods of inherited species have the same name, if they are all signatures or properties, if these
species have no parameters, then signatures must be identical, properties must be identical. If some of these
methods have already received definitions, if they have the same type, then the definition which is retained
for the inheriting species is the one coming from the rightmost defined parent in theinherits clause. For
instance below, if speciesA, B andCprovide a methodmwhich is defined inA andB but only declared inC,
thenB!m is the one which is inherited.

species Foo inherits A, B, C, D =
... m (...) ... ;

end ;;

Inheritance and parametrisation If a speciesS1 inherits from a parametrised speciesS0, it must instanti-
ate all the parameters ofS0. Due to the dependent types framework, ifS1 is itself parametrised, it can use
its own parameters to do that.

Assume we have a speciesList parametrised by a collection parameter representing the kind of ele-
ments of the list. We want to derive a speciesListUnique in which elements are present at most once.
We buildListUnique by inheriting fromList .

species List (Elem is ...) =
representation = Elem list;
let empty = ... ;
let add (e in Elem, l in Self) = ... ;
let concat (l1 in Self, l2 in Self) = ... ;

end ;;

species ListUnique (UElem is ...) inherits List (UElem) =
let add (e in UElem, l in Self) =

... (* Ensure the element e is not already present. *) ;
let concat (l1 in Self, l2 in Self) =

... (* Ensure elements of l1 present in l2 are not added. *) ;
end ;;

64

UElem is a formal collection parameter ofListUnique which acts as an effective collection pa-
rameter in the expressionListUnique . The representation ofListUnique is UElem list . The
representation ofUElem is hidden: it denotes a collection. But, the value constructors of the typelist are
available, for instance, for pattern-matching.

As a consequence, if two methods in inherited species have the same name and if at least one of them
is itself a parametrised one, then the signatures of these methods are no longer required to be identical but
their type must have a common instance after instanciation of the collection parameters.
Species inheriting species parametrised bySelf A species can also inherit from a species parametrised
by itself (i.e. bySelf). Although this is rather tricky programming, the standardlibrary of FoCaLize
shows such an example in the fileweakstructures.fclin the speciesCommutative semi ring . Indeed
this species specifies the fact that a commutative semi-ringis a semi-ring on itself (as a semi-ring of scalars).
In such a case, this implies that the current species must finally (when inheritance is resolved) have an
interface compatible with the interface required by the collection parameter of the inherited species. The
FoCaLize compiler collects the parts of the interface ofSelf obtained either by inheritance or directly in
the species body. Then it checks that the obtained interfaceis indeed compatible with the required interfaces
of the parametrised inherited species. if so, the compiler is able to build the new species. Thus the compiler
tries to build a kind of fix-point but this process is always terminating, issuing either the new species or
rejecting it in case of interface non-compliance.

4.3.2 Species expressions

We summarize the different ways of building species. The first way is to introduce a simple collection
parameter, requiring that the effective parameter can offer all the methods listed in the associated interface.

species List (Elem is Basic_object) = ... ;

Then, we can iterate the process and build a species parametrised by a parametrised species, like in the
example:

species MyCouple (E is Basic_object, L is List (E)) = ... ;;

Going on, we can inherit from species that are referenced only by their name, like in:

species OrderedIntCouple inherits (IntCouple) = ... ;;

And finally, we mix the two possibilities, building a speciesby inheritance of a parametrised species,
like in:

species ListUnique (UElem is ...) inherits List (UElem) = ... ;;

Hence, we can now define more accurately the notion ofspecies expressionused for both inheritance
and parametrisation. It is either a simple species name or the application of a parametrised species to as
many collection expressions as the parametrised species has parameters.

4.4 Late-binding and dependencies

4.4.1 Late-binding

When building by multiple inheritance (c.f. 4.3.1) some signatures can be replaced by functions and prop-
erties by theorems. It is also possible to associate a definition of function to a signature (c.f 4.1.2)or a proof

65

to a property. In the same order, it is possible to redefine a method even if it is already used by an existing
method. All these features are relevant of a mechanism knownaslate-binding.

During compilation, the selected method is always themost recently definedalong the inheritance tree.
This especially means that as long as a method is a signature,in the children the effective implementation of
the method will remain undefined (that is not a problem since in this case the species is not complete, hence
cannot lead to a collection, i.e. code that can really be executed yet). Moreover, if a methodmpreviously
defined in the inheritance tree uses a methodn freshly redefined, then thisfresh redefinition of n will be
used in the methodm.

This mechanism enables two programming features:

• The mean to use a method known by its type (i.e. its prototype in term of Software Engineering), but
for which we do not know, or we don’t need or we don’t want yet toprovide an implementation.

• To provide a new implementation of a method while keeping theinitial implementation for the inher-
ited species. For example, the inheriting species can provide some new information (representation,
functions, ..) which allow a more efficient implementation of a given function.

4.4.2 Dependencies and erasing

We previously saw that methods of a species can use other methods of this species and methods from its
collection parameters. This induce what we calldependencies. There are two kinds of dependencies,
depending on their nature:

• Decl-dependencies

• Def-dependencies

In order to understand the difference between, we must inspect further the notion of representation, function,
and theorem.

4.4.2.1 Decl-dependencies

When defining a function, a property or a theorem it is possible to use another functions or signatures. For
instance:

species Bla =
signature test : Self -> bool ;
let f1 (x in string) = ... ;
let f2 (y in Self) = ... f1 ("Eat at Joe’s") ... ;
property p1 : all x in Self, test (f2 (x)) <-> test (f1 ("So what")) ;
theorem t1 : all x in Self, p1 <-> test (f1 ("Bar"))
proof = ... ;

end ;;

In this cases, knowing the type (or the logical statement) ofthe used methods is sufficient to ensure that
the using method is well-formed. The type of a method being provided by itsdeclaration, we will call these
induced dependenciesdecl-dependencies.

Such dependencies also arise on the representation as soon as the type of a method makes reference to
the typeSelf . Hence we can have dependencies on the representation as well as on other methods.

Hence, in our example,test , f2 , f1 (since it is used inp1 andt1 as the argument oftest which
expects an argument of typeSelf), p1 andt1 have a decl-dependency on the representation. Moreover,

66

f2 has one onf1 . The propertyp1 has decl-dependencies ontest , f1 andf2 andSelf . And finally t1
decl-depends onp1 , test , f1 andSelf .

4.4.2.2 Def-dependencies

A methodm has adef-dependencyover another onep if the system needs to know thedefinition of p to
ensure thatm is well-formed.

A definition of function can create only decl-dependencies on methods differing from the represen-
tation since the type system ofFoCaLize only needs the types of the names present in the body of this
function. Note also that whenusing a signature in another method, since signature only containtypes, no
def-dependencies can arise.

Now remember thatrepresentation is also a method and there is no syntactical way to forbid
constructions likeif representation = int .. in function or properties. Such definitions would
have adef-dependencyon the representation. For consistency reasons going beyond this manual but that
will be shortly presented below in 4.4.3.2, theFoCaLize system rejects functions and properties having
def-dependencies on the representation.

There remains the case of theorems. This case is the most complex since it can lead to def-dependencies
in proofs. For the same reasons than for properties, theFoCaLize system rejects theorems which state-
ments have def-dependencies on the representation. Other def-dependencies are accepted. These depen-
dencies must be introduced by the statement of the proof (with a syntax given in section??). Now, what
does mean for a theorem to def-depend on a method ? This basically means that to make the proof of the
theorem statement, one must use not only the declaration of amethod, but also its definition, its body. This
is a needed and powerful feature.

4.4.2.3 Erasing during inheritance

As a consequence of def-dependencies and late-binding, if amethod is redefined, all the proofs of theo-
rems having def-dependencies on these methods are erased. This means that since the body of the method
changed, may be the proof is not correct anymore and must be done again. In practice, it can happen that
the proof still holds, but the compiler can’t ensure this, hence will turn the theorem into a property in the
species where the redefinition occurred. The developer willthen have to provide a new proof of the inherited
theorem thanks to theproof of field. For example, any sorting list algorithm must satisfy the invariant
that its result is a sorted list with the same elements as its effective argument but the proof that indeed this
requirement is satisfied depends on the different possible implementations of sort. It is perhaps possible to
decompose this proof into different lemmas to minimize erasing by redefinition, some lemmas needing only
decl-dependencies over the redefined method.

4.4.2.4 Dependencies on collection parameters

Since collection parameters always have their representation abstracted, hidden, onlydecl-dependencies
can appear in the parametrised species using them. Hence they can never lead to erasing. These dependen-
cies are only used internally by theFoCaLize compiler in order to generate the target code. For this reason,
we will not focus anymore on them.

67

4.4.3 More about methods definition

We will now examine more technical points in methods definitions.

4.4.3.1 Well-formation

FoCaLize providing late-binding, it is possible todeclarea methodm0and use it in anotherdefined method
m1.

species S0 =
signature m0 : Self ;
let m1 = m0 ;

end ;;

In another speciesS1, it is also possible todeclarea methodm1and use it in anotherdefined method
m0.

species S1 inherits S0 =
signature m1 : Self ;
let m0 = x ;

end ;;

As long as these two species have no interactions no problem can arise. Now, we consider a third species
S2 inheriting from bothS0 andS1.

species S2 inherits S0, S1 =
...

end ;;

The inheritance mechanism will take each methoddefinition from its hosting species: fromS0 for m1
and fromS1 for m2. We have hence a configuration wherem0callsm1andm1callsm0, i.e. the two methods
are now mutually recursive although it was not the case whereeach of them wasdefined.

To avoid this situation, we will say that a species is well-formed if and only if, once inheritance is
resolved, no method initially not recursive turns to becomerecursive. TheFoCaLize compiler performs
this analysis and rejects any species that is not compliant to this criterion. In the above example, an error
would be raised, explaining how the mutual recursion (the cycle of dependencies) appears, i.e. fromm1to
m0(and implicitly back tom1from m0).
Species ’S2’ is not well-formed. Field ’m1’ involves a non-d eclared recursion

for the following dependent fields: m1 -> m0.

4.4.3.2 Def-dependencies on the representation

As we previously said (c.f. 4.4.2.2) def-dependencies on the representation are not allowed in properties
and theorems. The reason comes from the need to create consistent species interfaces. Let’s consider the
following species with the definitions:

species Counter =
representation = int ;
let inc (x in Self) = x + 1 ;
theorem inc_spec : all x in Self, inc (x) >= x + 1

proof = ... ;
end ;;

The statement ofinc spec contains a def-dependency on the representation since to type-check this
statement, one need to know that the representation isint . To create the species’ interface, we must make

68

the representation abstract, hence hiding the fact that it is int . Without this information it it now impossible
to type-checkinc spec body since it makes explicit reference to+, <=, 1 that are operations aboutint .

In practice, such an error is reported as a typechecking error telling that representation “is not
compatible with type”t wheret is the type expression that was assigned to the representation (i.e. int in
our example).

69

Chapter 5

The FoCaLize Proof Language

5.1 Proofs of theorems

As presented in 3.2.7.3,FoCaLize proposes 3 ways to make proof of properties. We will only dealhere
with proofs written in theFoCaLize Proof Language. As a reminder, proofs written as directCoq scripts
will be addressed in 9.0.6. And the last kind of proof, byassumed doesn’t need anymore description since
it consists in bypassing the formal proof mechanism.

The syntax of proofs is as follows.

Proofs:
proof ::= proof step ∗ qed step

| by fact +
| conclude

A proof is either a leaf proof or a compound proof. A leaf proof(introduced with theby or conclude
keywords) invokesZenon with the assumptions being the given facts and the goal beingthe goal of the
proof itself (i.e. the statement that is proved by this leaf proof). See below for the kinds of facts that can be
given.

Theconcludekeyword is used to invokeZenon without assumptions.
A compound proof is a sequence of steps that ends with aqed step. The goal of each step is stated in

the step itself, except for theqed step, which has the same goal as the enclosing proof.

Proof steps:
proof step ::= proof bullet statement proof

A proof step starts with a proof bullet, which gives its levelof nesting. The top level of a proof is 0. In
a compound proof, the steps are at level one plus the level of the proof itself.

For example, consider the following proof.

theorem foo : A -> (B -> A)
proof =

<1>1 assume h1: A,
prove B -> A

70

<2>1 assume h2: B,
prove A

by hypothesis h1
<2>2 qed

by step <2>1
<1>2 qed

conclude

In this proof, the steps<1>1 and <1>2 are at level 1 and form a compound proof of the top-level
theorem. Step<1>1 also has a compound proof, composed of steps<2>1 and<2>2 . These are at level 2
(one more than the level of their enclosing step).

After the proof bullet comes the statement of the step. This is the statement that is asserted and proved
by this step. At the end of this step’s proof, it becomes available as a fact for the next steps of this proof.
In our example, step<2>1 is available in the proof of<2>2 , and<1>1 is available in the proof of<1>2 .
Note that<2>1 is not available in the proof of<1>2 : see section 5.1.1 for the scoping rules.

After the statement is the proof of the step. See below (underStatements) for a description of what is
the current goal for this proof.

QED steps:
qed step ::= proof bullet qed proof

| proof bullet conclude

A qedstep is similar to a normal step, except that its statement isthe goal of the enclosing proof. It may
be reduced to the wordconcludewhen its proof is reduced toconclude. In our example, we could have
replaced<1>2 with:

<1>2 conclude

Statements:
statement ::= {assume assumption ,}∗ {prove logical expr}?

A statement must be non-empty: at least oneassumeor theprove part must be present.
A statement appearing in a step has two readings: internal and external. The external reading is for the

rest of the proof: the current step proves that the assumptions imply the conclusion (i.e. thelogical expr
that appears afterprove). The internal reading is for the proof of the step: the current goal is theprove
expression, and the assumptions are available as facts.

Assumptions:
assumption ::= ident in type expr

| ident : logical expr

An assumption can either introduce a new (universally quantified) variable with its type (first form), or
a new named hypothesis (second form).

71

Facts:
fact ::= definition of {ident?#}?ident {{, ident?#}?ident}∗

| hypothesis ident {, ident}∗
| property {{{ident?#}?ident}?!}?ident {{{{, ident?#}?ident}?!}?ident}∗
| theorem {{{ident?#}?ident}?!}?ident {{{{, ident?#}?ident}?!}?ident}∗
| step proof bullet {, proof bullet}∗

A fact used in a leaf proof can be a definition, a hypothesis, a property, a theorem, or a step.
Giving a definition as a fact allowsZenon to unfold this definition in the goal and in the other facts.
Giving a hypothesis/property/theorem as a fact allowsZenon to use this hypothesis/property/theorem

to prove the goal.
Giving aproof bullet as a fact allowsZenon to use the (external reading of the) corresponding step as

an assumption to prove the goal. Note that even if several steps are labelled with this proof bullet, only one
of them is in scope at any point, so there is no ambiguity (see section 5.1.1).

5.1.1 Scoping rules

The scope of a step bullet extends from the end of the proof of that step to the end of the proof of the
enclosing step (i.e. the end of the proof of theqedstep that has the same level as this step). This means that
proof bullets can be reused in other branches of the proof to name different steps.

The scope of an assumption is the proof of the step where this assumption appears.

72

Chapter 6

Recursive function definitions

In the current alpha-release, the logical counterpart of recursive functions is not completely handled (Coq
code generation). We are still working on the point: recursive functions are planed to be fully supported as
soon as possible, in addition with new material to help writing the required termination proofs.

73

Chapter 7

Compiler options

When invoking theFoCaLize compiler with thefocalizec command, various command line options can be
provided. The compiler can process several files in their order of apparition in the command line. Several
types of files are handled. By default, if no option is specified, the default behaviour is of the compiler is:

• “.ml” and “.mli” files are compiled with theOCaml compiler producing bytecode. It is possible to
customise the compiler code generation using the-ocaml-comp-mode option. The version of
OCaml used is automatically selected from the configuration options selected duringFoCaLize’s
installation. TheFoCaLize standard library path is implicitly passed toOCaml.

• “.v” files are compiled with theCoqcompiler. The version ofCoq used is automatically selected from
the configuration options selected duringFoCaLize’s installation. TheFoCaLize standard library
path is implicitly passed toCoq.

• “.zv” files are compiled byZenon via zvtov. The generated “.v” file is then compiled byCoq as
describe above.

• “.fcl” files are compiled byfocalizec, generating both the “.ml”OCaml source and the “.zv” pre-
Coqsource. The “.ml” file is then sent toOCamland the “.zv” file is sent toZenonto finally get a
“.v” file that is sent toCoq.

It is possible to control the kind of files generated byfocalizec (no Coq, no OCaml, “.zv”, “.v” using
options described bellow.

* −dot-non-rec-dependenciesdirectory name. Dumps non-let-rec dependencies of the species present
in the compiled source file. The output format is suitable to be graphically displayed bydotty (free
software available via thegraphviz package). Each species will lead to adotty file into the argument
directory. Files are names by “deps” + the source file base name (i.e. without path and suffix) + the
species name + the suffix “.dot”.

* −focalize-docGenerates documentation. The result file gets located in thesame directory than the
compiled file, replacing the suffix “.fcl” by “.fcd”. This filecontains XML in plain ASCII text and
need to be processed before being read. Consult section?? for more details.

* −−experimental Reserved for development purpose. Never use. Invoking the compiler with this
option may trigger unpredictable results.

74

* −i. Prints the interfaces of the species present in the compiled source file. Result is sent to the standard
output.

* −I directory name. Adds the specified directory to the path list where to searchfor compilation units.
Several−I options can be used. The search order is in the standard library directory first (unless the
−no-stdlib-path option is used, see below), then in the directories specified by the−I options in their
apparition order on the command line.

* −impose-termination-proof. Make termination proofs mandatory for recursive functions. If a recur-
sive function doesn’t have its termination proof, then the field will be considered as not fully defined
and no collection will be built on the species hosting the function. By default this option is not en-
abled and if a recursive function does not have any termination proof, a warning is printed during
compilation when trying to make a collection from this species.

* −methods-history-to-text directory name. Dumps the methods’ inheritance history of the species
present in the compilation unit. The result is sent as plain text files into the argument directory. For
each method of each species a file is generated wearing the name made of “history” + the source file
base name (i.e. without path and suffix) + “” + the hosting species name + the suffix “.txt”.

* −no-ansi-escape. Disables ANSI escape sequences in the error messages. By default, when an error
is reported, bold, italic, underline fonts are used to make easier reading the message. Using this
option removes all these text attributes and may be used if your terminal doesn’t support ANSI escape
sequences or, for example, if compiling underemacs.

* −no-coq-code. Disables theCoq code generation. By defaultCoq code is always generated.

* −−no-ocaml-code. Disables theOCaml code generation. By defaultOCaml code is always gener-
ated.

* −no-stdlib-path. Does not include the standard library installation directory in the libraries search
path. This option is rarely useful and mostly dedicated to the FoCaLize compiler build process.

* −ocaml-comp-modefile name. Specifies theOCaml compiler code generation mode. This option is
folowed by a string that can be ”byt” for bytecode compilation, ”bin” for native code compilation, or
”both” for bytecode and native code compilation. This option has no effect if−−no-ocaml-codeis
used.

* −pretty file name. (Undocumented: mostly for debug purpose). Pretty-printsthe parse tree of the
FoCaLize file as aFoCaLize source into the argument file.

* −raw-ast-dump. (Undocumented: mostly for debug purpose). Prints on stderr the raw AST structure
after parsing stage.

* −scopedpretty file name. (Undocumented: mostly for debug purpose). Pretty-printsthe parse tree
of theFoCaLize file once scoped as aFoCaLize source into the argument file.

* −stop-before-coqWhenCoq code generation is activated, stops the compilation process before pass-
ing the generated file toCoq. The generated pre-Coq source is sent toZenon then the compilation
process stops. The produced file is hence ended by the suffix “.v”. This option has no effect if
−no-coq-codeor −stop-before-zenonis used.

75

* −stop-before-zenon. WhenCoq code generation is activated, stops the compilation process before
passing the generated file toZenon. The produced file is then a pre-Coq source file, ended by the
suffix “.zv”. This option has no effect if−no-coq-codeis used.

* −verbose. Sets the compiler in verbose mode. It will then generate thetrace of the steps and op-
erations is does during the compilation. This feature is mostly used for debugging purpose but can
also explain the elaboration of the model during compilation for people interested inFoCaLize’s
compilation process.

* −v. Prints theFoCaLize version then exits.

* −version. Prints the fullFoCaLize version, sub-version and release date, then exits.

* −where. Prints the binaries and libraries installation directories then exits.

* −help −−help. Prints the summary of command line options (i.e. this documentation) on the stan-
dard output.

76

Chapter 8

Documentation generation

When invoked with the−focalize-doc option, the commandfocalizec generates an extra file (with
the “.fcd” suffix) containing “documentation” informationextracted from the compiled source file.

This information describes the different elements found inthe source file (species, collections, methods,
toplevel definitions, type definitions) with various annotations like type, definition/inheritance locations.
It also contains the special comments previously calledannotations (c.f 3.1.3) and that were kept during
the compilation process. Moreover, these annotations can contain special tags used by the documentation
generator ofFoCaLize.

8.0.2 Special tags

FoCaLize’s documentation system currently supports 5 kinds of tags.They impact the content of the final
generated document, either in its content or in the way information is displayed depending on the output
format. These tags start with the “@” character and the content of the tag follows until the end of the line.
It is then possible in an annodation to mix regular text that will not be interpreted and tags.

8.0.2.1 @title

This tag must appear (i.e. is only taken into account) in the first annotations block of the source file. The
following text is considered to be the title of the source fileand will appear in the header of the final
document.

See example provided for the@description tag below.

8.0.2.2 @author

This tag must appear (i.e. is only taken into account) in the first annotations block of the source file. The
following text is considered to be the author of the source file and will appear in the header of the final
document.

See example provided for the@description tag below.

8.0.2.3 @description

This tag must appear (i.e. is only taken into account) in the first annotations block of the source file.
The following text is considered to be the description of thecontent of the source file (what services it

77

implements) and will appear in the header of the final document.
For example:

(***)
(* FoCaL compiler *)
(* Copyright 2007 LIP6 and INRIA *)
(* Distributed only by permission. *)
(***)

(**
@title FoC Project. Basic algebra.
@author The FoC project
@description Basic sets operations, orderings and lattices.

*)
...

will lead to a document header like (displayed in HTML format):

You may notice in the above source code example that the header information is located in an annotation
that is not thefirst one. In effect, the top-most banner starting by

(***)

is in fact also an annotation since it starts by the sequence “(**”. However all these annotation belong
to the same annotations block as requiered.

8.0.2.4 @mathml

This tag must appear in the document comment preceding a method definition. It indicates the sequence of
MathML code to use to replace the name of the method everywhere in the current document. This tag only
affects the HTML display since it allows to show more usual symbols rather than identifiers in a browser.
This is expecially useful for mathematical formulaes whereone prefer to see the sign= rather than an
identifier “equal ”.

For example:

(** In a setoid, we can test the equality (note for logicians: this is
a congruence). *)

species Setoid inherits Basic_object =
(** @mathml <eq/> *)
signature equal : Self -> Self -> bool ;
property equal_transitive : all x y z in Self,

equal (x, y) -> equal (y, z) -> equal (x, z) ;
...

will replace any occurrence of the methodequal by the “<eq/> ” MathML sequence that displays a
= sign when displayed by an HTML browser.

78

8.0.3 Transforming the generated documentation file

The generated documentation file is a plain ASCII text containing some XML compliant withFoCaLize’s
DTD (focalize/focalizec/src/docgen/focdoc.dtd). Like for any XML files processing is
performed thank to the commandxsltproc with XSL stylesheets (“.xsl” files).

You may write custom XSL stylesheets to process this XML but the distribution already provides 2
stylesheets to format this information.

8.0.3.1 XML to HTML

Transformation from “.fcd” to a format that can be read by a WEB browser is performed in two passes.

1. Convert the “.fcl” file to HTML with MathML annotations. This is done applying the stylesheet
focalize/focalizec/src/docgen/focdoc2html.xsl with the commandxsltproc.
For example:

xsltproc ’’directory to the stylesheet’’/focdoc2html.xs l mysrc.fcd > tmp

2. Convert the HTML+MathML temporary file into HTML. This is done applying the stylesheetfocalize/focali
with the commandxsltproc.
For example:

xsltproc ’’directory to the stylesheet’’/mmlctop2_0.xsl mysrc.fcd > mysrc.xml

Attention: You may note that the final result file name must be ended by the suffix “.xml” other-
wise your browser won’t be able to interpret it correctly andwon’t display symbols (⇒,∈,∃,→, . . .)
correctly.

8.0.4 XML to LaTeX

Currently not officially available.

79

Chapter 9

Hacking deeper

9.0.5 Interfacing FoCaLize with other languages

9.0.6 Dealing with hand-written Coq proofs

80

Chapter 10

Compiler error messages

Unable to find file ’name’ in the search path.

Description: The source file made reference to aFoCaLize compilation unitname (by theopen or use
directives, or by explicit qualification with the “#” notation) but the relatedFoCaLize file was not found in
the current libraries search path.

Hints: Locate in which directory the missing file is and add this directory to the libraries search path
with the-I compiler option.

Invalid or corrupted compilation unit ’ name’. May be it was compiled with
another version of the compiler.

Description: The source file made reference to aFoCaLize compilation unitname (by theopen or use
directives, or by explicit qualification with the “#” notation but the relatedFoCaLize file was found with an
incorrect format.

Hints: May be the compilation unit was compiled with another version of FoCaLize or was mangled
and you must compile it again with your current version.

Invalid file extension for ’name’.

Description: The FoCaLize compiler expects compilation units to be ended by the suffix “.fcl”, “.ml”,
“.mli”, “.zv”or “.v”. If the submitted input file doesn’t endby one of these suffixes, this error message arises
with the name,name of the involved file.

Hints: Change the extension of the input file name or ensure the submitted input file name is the correct
one.

System error -sysmsg.

Description: During the compilation process an error related to the operating system occurred (I/O error,
permission error, file-system error, . . .). The original messagesysmsg of the system explaining the problem
follows theFoCaLize’s message.

81

Hints: Consult the original message of the system and get an appropriate solution depending on this
message.

Invalid OCaml compiler kind ” string” for option -ocaml-comp-mode. Must
be ”byt”, ”bin” or ”both”.

Description: By default, if someOCaml code was generated, theFoCaLize compiler sends the generated
code to theOCaml compiler. The default compilation mode is bytecode production. It is possible to select
the native code production using the option-ocaml-comp-mode followed by the string “bin” or to select
both code production modes by the string “both”. The argument string “byt” is not required since it is the
default mode. Any other string is invalid and leads to the present error message.

Hints: Select “byt”, “bin” or “both” as argument to the-ocaml-comp-mode option.

No input file. FoCaL is cowardly and gives up...

Description: TheFoCaLize compiler needs one input file to compile. If none is supplied,this error message
arises.

Hints: Add the input source file to compile on the command line.

Lexical error str

Description: In the currently submitted source file, a sequence of characters is not recognised as legal
according to theFoCaLize programming language legal words structure. The involved characterstr follows
in the error message.

Hints: Change the source code at the indicated location.

Syntax error

Description: In the currently submitted source file, a phrase of the program doesn’t followFoCaLize’s
syntax.

Hints: Change the source code at the indicated location. It sometimes happens that the location gets
fuzzy due to the parsing process. If the error is not immediate to you, explore the neighbours of the specified
location. If you still can’t find out the error, have the following emergency process: comment your code and
incrementally uncomment it to find the point where the error appears without having to search in the whole
file. Once the error appears, have a look at the part of code youuncommented since the previous successful
compilation and try to guess the syntactic cause.

Unclear syntax error msg.

Description: An error occurred during the syntactic analysis but was notreported to be due to a syntax non-
compliance. This error is not clearly identified and this message is displayed as post-mortem report with the
exceptionmsg that caused the error.

Hints: None

82

Compilation unit ’ m’ was not declared as ”use”

Description: It not possible to use a qualified notation for a compilationunit name (i.e. using an entity
from this compilation unit by explicitly specifying the unit with the “#”-notation) before this compilation
unit is declared “use” or “open”. This error message indicates the location where an identifier refers to a
compilation unit that was not qualified either by theuse or open directive. Note that theopen directive
implicitly implies use .

Hints: Use theuse directive on the compilation detected unit.

Parameterised species expectedn1 arguments but was providedn2.

Description: A species expression (used in species parameter expression or inherits clause) applies a
species withn1 argument(s) although its definition declared it as usingn2 argument(s).

Hints: None.

Non-logical let must not bind ’ident’ to a property.

Description: A let construct (not alogical let) attempts to bind the identifierident to a logical
expression although it can only bind it to a computational expression.

Hints: Source program to fix. May be thelet should be turned into alogical let if the body of
the binding is really a logical expression.

Delayed termination proof refers to an unknown method ’ident’ of the species.

Description: A proof of clause was found in a species for the propertyident but this property was not
found in the species.

Hints: None.

Ambiguous logical expression. Add explicit parentheses toassociate theside
argument of the/\ properly.

Description: A logical expression contains a/\ (logical “and”) with at least one argument being a->
(logical “implication”) or a <-> (logical “equivalence”) without parentheses around theside argument
(“left” or “right”). Since this is not clear of how to associate, we ask the user to explicitly add parentheses.

Hints: Explicitly add the parentheses to make the association non-ambiguous.

Ambiguous logical expression. Add explicit parentheses toassociate theside
argument of the\/ properly.

Description: A logical expression contains a\/ (logical “or”) with at least one argument being a-> (log-
ical “implication”) or a<-> (logical “equivalence”) without parentheses around theside argument (“left”
or “right”). Since this is not clear of how to associate, we ask the user to explicitly add parentheses.

Hints: Explicitly add the parentheses to make the association non-ambiguous.

83

Unbound sum type value constructor ’name’.

Description: An identifier representing a sum type value constructor wasnot found among the available sum
type definitions.

Hints: Source program to fix. Since in core expressions capitalized identifiers are considered as sum
type value constructors, may be you tried to use a capitalized name for one of your variables. In this case,
as any variables, make it starting with a lowercase letter. Otherwise, may be your type definition is missing
or not reachable in the current scope (missing explicit qualification with the “#” notation oropen directive
if your type definition is hosted in another source file).

Unbound record field label ’name’.

Description: An identifier representing a record type label was not foundamong the available record type
definitions.

Hints: Source program to fix. May be your type definition is missing or not reachable in the current
scope (missing explicit qualification with the “#” notationor open directive if your type definition is hosted
in another source file).

Unbound identifier ’ name’.

Description: An identifier (expected to be bound by alet , a pattern of a function parameter declaration)
was not found.

Hints: Source program to fix. May be your definition should be toplevel and is missing or not reachable
in the current scope (missing explicit qualification with the “#” notation oropen directive if your definition
is hosted in another source file).

Unbound type ’name’.

Description: The definition of an identifier expected to be a type constructor was not found.
May be your type definition is missing or not reachable in the current scope (missing explicit qualifica-

tion with the “#” notation oropen directive if your type definition is hosted in another sourcefile).

Unbound compilation unit ’ name’.

Description: A open or use directive or an explicit qualification by the “#” notation makes reference to a
compilation unit that was not found in the current librariessearch path.

Hints: Locate in which directory the missing file is and add this directory to the libraries search path
with the-I compiler option.

Unbound species ’name’.

Description: The definition of the speciesname was not found in the current scope.

84

Hints: May be your species definition is missing or not reachable inthe current scope (missing explicit
qualification with the “#” notation oropen directive if your species definition is hosted in another source
file).

Type name ’name’ already bound in the current scope.

Description: In a source file it is not allowed to redefine a type definition.This means that each type name
definition must be unique inside a file. However, it is possible to have several type definitions with the same
names as long as they are in different source files (even if they are used together viaopen directives of
explicit qualification by the “#” notation).

Hints: None.

Species name ’name’ already bound in the current scope.

Description: In a source file it is not allowed to redefine a species definition. This means that each species
name definition must be unique inside a file. However, it is possible to have several species definitions
with the same names as long as they are in different source files (even if they are used together viaopen
directives of explicit qualification by the “#” notation).

Hints: None.

Typest1 and t2 are not compatible.

Description: The typechecking system detected a type conflict between two expressionst1 andt2 that were
expected to be type-compatible.

Hints: Source program to fix. This is mostly due to an attempt to use the type of arepresentation
although it is turned abstracted by the collection or parametrisation mechanisms. In this case, ensure that
you are not trying to make assumptions on the type of a collection parameter or a collection.

Type t1 occurs in t2 and would lead to a cycle.

Description: The FoCaLize type system does not allow cyclic types. This especially means that a type
expression must not be a sub-part of itself to prevent cycles.

Hints: None.

Type constructor ’name’ used with conflicting arities: n1 and n2.

Description: A type expression applies a type constructorname to n1 argument(s) although its definition
declared it as usingn2 argument(s) (or in the other order, depending on the way the error was detected: in
any way the definition and the usage of the type involve 2 different numbers of arguments).

Hints: None.

85

No expected argument(s).

Description: A type expression applies a type constructor to arguments although this constructor needs
none.

Hints: None.

In method ’name’, type schemesch contains free variables.

Description: As presented in 4.1.2, species methods cannot be polymorphic. The methodname has a type
scheme shown bysch which is polymorphic.

Hints: You may explicitly add type annotations (constraints) on the arguments or/and return type of your
method definition. If you need some kind of such polymorphism, use the collection parameter mechanism.

Sum type value constructor ’name’ expectedn1 arguments but was used with
n2 arguments.

Description: The sum type constructorname is used with a bad number of arguments. It was declared to
usen1 arguments but is used withn2.

Hints: None.

Unbound type variablename.

Description: In a type expression, a type variablename is not bound.
Hints: Source program to fix. May be the type expression appears in aparametrised type definition

where you forgot to specify the type constructor’s parameter in head of the definition.

Method ’mname’ multiply defined in species ’sname’.

Description: Like for toplevel definitions, method definitions inside a species must not bind several times
the same name. In the speciessname, the methodmname is defined several times.

Hints: Source program to fix. May be you defined several times the same method and in this case,
remove one of the definitions. Or if the different occurrences of mname refer to different conceptual
functions, change the names to make them different.

Delayed proof of ’name’ was found several times in the species. Other occur-
rence is at: loc.

Description: A delayed proof of the propertyname was found several times in the same species (i.e. not
via inheritance but directly in the species body). Only one must be kept.

Hints: None.

86

In species ’sname’, proof of ’ pname’ is not related to an existing property.

Description: In the speciessname a delayed proof of the propertypname was found but the statement of
this property doesn’t exist in the current species even via inheritance.

Hints: May be you forgot to write the property, or you mistook on theproperty name the proof is related
to or you forgot to inherit from a species having this property.

Representation is multiply defined.

Description: In a species, the methodrepresentation is multiply defined in the body of the species
although at most one definition must be provided.

Hints: Source program to fix. Remove the spurious definitions.
If the representation method is not directly present in the body, that is because the species inherits

from a parent where the representation is already defined. Inthis last case, since the parent’s structure is
already established, you must remove therepresentation method in the species where the error was
reported.

Representation is multiply defined by multiple inheritanceand was formerly
found of type t1 and newly found of typet2.

Description: In the species, several parents brought by inheritance several incompatible definitions of the
representation. The error message reportst1 and t2, two incompatible types found for the representation
definition.

Hints: None.

’Self’ can’t be parametrised by itself.

Description: This error appears whenSelf appears as a species identifier used in a species expression that
is a parameter of the current defined species.

Hints: None.

A ”is” parameter can only be instantiated by an identifier of a collection.

Description: In a species expression, a parametrised species by an entity parameter (is -parameter) is pro-
vided an effective argument that is not a collection identifier.

Hints: None.

Collection ’s1’ is not compatible with ’ s2’. In method ’ name’, types t1 and t2
are not compatible.

Description: During collection parameter instantiation, the interface of the provided collections1 is not
compatible with the interfaces2, because it doesn’t have a signature containing at leasts2’s methods with

87

compatibles types. The wrong fieldname is reported with the two typest1 andt2 expected and actually
found.

Hints: None.

Collection ’s1’ is not compatible with ’ s2’. In method ’ fname’, type t1 occurs
in t2 and would lead to a cycle.

Description: During collection parameter instantiation, the interface of the provided collections1 is not
compatible with the interfaces2, since type compatibility check detected a cyclic type. This means that the
typet1 is a sub-part of itself via the typet2.

Hints: None.

Collection ’s1’ is not compatible with ’ s2’. In method ’ fname’, the type con-
structor ’ tname’ is used with the different arities n1 and n2.

Description: During collection parameter instantiation, the interface of the provided collections1 is not
compatible with the interfaces2, since the type constructor (not sum type constructor)tname is used with
an improper number of argumentsn1 versusn2.

Hints: None.

Collection ’s1’ is not compatible with ’ s2’. Method ’ name’ is not present in
’s1’.

Description: During collection parameter instantiation, the interface of the provided collections1 is not
compatible with the interfaces2, because it doesn’t have a signature containing at leasts2’s methods and
especially not the methodname.

Hints: None.

Parameterised species is applied ton arguments.

Description: A parameterised species is applied to a wrong numbern of effective arguments.
Hints: None.

Species ’sname’ cannot be turned into a collection. Method ’fname’ is not
defined.

Description: A collection is built out of a completely defined species (c.f. 4.1.5), i.e. a species whereall
the methods aredefinedand not only declared. In the speciessname, the methodmname is only declared,
hence the species is not complete and no collection can be extracted from it.

Hints: Add an effective definition of the method, either by writingit code or by inheritance, according
to your program model.

88

Species ’sname’ cannot be turned into a collection. Method ’fname’ does not
have a termination proof.

Description: A collection is built out of a completely defined species (c.f. 4.1.5), i.e. a species whereall the
methods aredefinedand in particular proofs of properties are done. This also applies to recursive functions
which must have a termination proof provided. The recursivefunctionfname of the speciessname doesn’t
have its termination proof.

This error message only arises if the-impose-termination-proof option is used on the com-
mand line. Otherwise, it is turned into a warning and the compiler will automatically generate an assumed
proof.

Hints: Add an effective termination proof to the function or do notinvoke the-impose-termination-proof
option when compiling the source file.

In the delayed termination proof, parameter ’name’ does not refer to a pa-
rameter of the original function.

Description: As any proof, termination proofs can be made later after thefunction definition. However it
must refer to the original function’s parameters names. In the current proof, the identifiername doesn’t
exist among the original function’s parameters.

Hints: Change the parameter name in the proof to make it matching the function definition’s ones.

Method ’mname’ was found with incompatible types during inheritance. In
species ’s1’: τ1, in species ’s2’: τ2.

Description: During inheritance, a methodnmane was found with 2 incompatible types. Remind that all
along the inheritance tree, methods must not change their type. The two found types and the species hosting
the definitions having these types are provided by ’s1’and τ1 (resp. ’s2’and τ2).

Hints: None.

Logical method ’mname’ appearing in species ’s1’ should have the same
statement than in species ’s2’ at source − location.

Description: During inheritance, a theorem or a propertynmane was redefined but with a different state-
ment. As described at the beginning of 4.3.1, the inheritance mechanism also allows to redefine methods
already existing as long as they keep the same type expression. For theorems to have the same type is sim-
ply to have the same statement. A same property can be writtenin several semantically equivalent ways.
For instance, transitivity of an operation⊙ can be written by:∀x, y, z ∈ S, x ⊙ y ⇒ y ⊙ z ⇒ x ⊙ z or
∀x, y, z ∈ S, (x ⊙ y ∧ y ⊙ z) ⇒ x ⊙ z. FoCaLize does not try to establish the equality of these two
expressions. It only compares syntactically the statements modulo variables renaming (i.e.α-conversion)
and non-significant parentheses.

Hints: The simplest way is to rewrite the logical statement of the inheriting species as it was written in
the inherited species.

89

Definition ’ name’ is considered as both logical and non-logical.

Description: In the inheritance tree of the current species, a methodname was previously found a “logical”
and is now found no more “logical”.

Hints: Ensure that you did not define 2 methods with the same name butfor different purposes (one to
help in stating logical expressions and the other for your computational behaviour).

Species ’sname’ is not well-formed. Method ’name’ involves a non-declared
recursion for the following dependent methods: . . .

Description: The speciessname doesn’t respect the well-formation rule presented in 4.4.3.1. The chain of
functions involved in the cycle is given in the error messageas a sequence of methods namesm1 → m2 →
. . . → mn with the implicit final pathmn → m1.

Hints: None.

No lang mapping given for the external value definition ’name’.

Description: The external value definition allowing to linkFoCaLize code to foreign languages doesn’t
specify how to map the value identifiername in the languagelang.

Hints: Supply a binding for this language in the external definition.

No lang mapping given for the external type definition ’name’.

Description: The external type definition allowing to linkFoCaLize code to foreign languages doesn’t
specify how to map the type identifiername in the languagelang.

Hints: Supply a binding for this language in the external definition.

No lang mapping given for the external sum type value constructor ’name’.

Description: The external sum type definition allowing to linkFoCaLize code to foreign languages doesn’t
specify how to map the sum type constructorname in the languagelang.

Hints: Supply a binding for this language in the external definition.

No lang mapping given for the external record field ’name’.

Description: The external record type definition allowing to linkFoCaLize code to foreign languages
doesn’t specify how to map the record fieldname in the languagelang.

Hints: Supply a binding for this language in the external definition.

90

Unable to find OCaml generation information for compiled file ’file’. Compi-
lation unit may have been compiled without OCaml code generation enabled.

Description: TheFoCaLize compilation unit filefile.fcl was compiled but the object file doesn’t contain
information aboutOCaml code generation. TheFoCaLize compiler allows to disable theOCaml code
production by the--no-ocaml-code option. May be this option was used.

Hints: Invoke the compiler on the source filefile.foc without the--no-ocaml-code option.

Type definition contains a mutable field ’name’ that can’t be compiled to Coq.

Description: Never raised in the current version since mutable record fields are not yet available.

Unable to find Coq generation information for compiled file ’file’. Compila-
tion unit may have been compiled without Coq code generationenabled.

Description: The FoCaLize compilation unitfile.fcl was compiled but the object file doesn’t contain
information aboutCoq code generation. TheFoCaLize compiler allows to disable theCoq code production
by the--no-coq-code option. May be this option was used.

Hints: Invoke the compiler on the source filefile.foc without the--no-coq-code option.

Using a collection parameter’s method (name) in a Zenon proof with ”by
definition” is not allowed.

Description: The current proof tries to used the definition of a methodname of a species parameter. Since
species parameters are always abstracted,definitions (i.e. “bodies”) of their methods arenot available in
the parametrised species. For this reason, it is impossibleto provide this definition toZenon.

Hints: None.

Using an only declared method of Self (name) in a Zenon proof with ”by
definition” is not allowed.

Description: The current proof tries to used the definition of a methodname only declared in the current
species. Since the definition is not available, it is impossible to provide it toZenon.

Hints: None.

Using a local identifier (name) in a Zenon proof with ”by definition” is not
allowed.

Description: The current proof tries to used a local variablename, i.e. an identifier not representing a
method, hence meaningless forZenon.

Hints: None.

91

Using a local identifier (name) in a Zenon proof with ”by property” is not
allowed.

Description: The current proof tries to used a local variablename, i.e. an identifier not representing a
method, hence meaningless forZenon.

Hints: None.

Assumed hypothesis ’hyp’ in a Zenon proof was not found.

Description: The current proof makes a reference to an hypothesishyp that was not found in the current
proof tree.

Hints: None.

Step ’<. . .>. . . ’ in a Zenon proof was not found.

Description: The current proof makes a reference to an proof step that wasnot found in the current proof
tree.

Hints: None.

Mutual recursion is not yet supported for Coq code generation. At least func-
tions ’name1’ and ’ name2’ are involved in a mutual recursion.

Description: The current version ofFoCaLize does not yet handleCoq code generation for mutual recursive
functions. At least the two functionsname1 andname2 were found as mutually recursive but may be the
recursion involves more functions. It is then impossible toproduceCoq source code.

Hints: Until this feature is available inFoCaLize do not try to generate theCoq code for the source file
containing these functions by using the--no-coq-code option.

Recursive call to ’name’ contains nested recursion.

Description: The function contains a recursive call toname inside a recursive call. The current version of
FoCaLize doesn’t support theCoq code generation for nested recursive calls.

Hints: Try to rewrite your function with the nested call performedbefore the outer recursive call. For
instance:

let rec f (x) =
...
f (f (bla))
...

should be turned into:

let rec f (x) =
...
let tmp = f (bla) in
f (tmp)
...

92

Recursive call to ’name’ is incomplete.

Description: The function contains a recursive occurrence ofname with an incomplete number of param-
eters. Since application syntactically requires all the arguments to be present, this can arise if the recursive
identifier is used in non-applicative position. However theerror message is more general since future ex-
tensions may involve partial applications. Below follows an example of such invalid usage of a recursive
function identifier:

let rec f (x) =
...
let tmp = f in
let ... = tmp (...) ... in
f (...)
...

Hints: None

Unexpected error: ”msg”. Please report.

Description: An error was raised and not expected during a normal execution of the compiler. This is a
failure of the compiler and must be fixed by theFoCaLize development team. The error message display
the internal reason of the failure and must be reported to theFoCaLize development team.

Hints: http://focal.inria.fr/ , link “Bug tracking”.

93

Bibliography

[1] P. Ayrault, T. Hardin, and F. Pessaux. Development life cycle of critical software under FoCal. In
ENTCS-Elsevier, editor,Harnessing Theories for Tool Support in Software-TTSS’08, 2008.

[2] R. Bonichon, D. Delahaye, and D. Doligez.Zenon: An Extensible Automated Theorem Prover Pro-
ducing Checkable Proofs. InLogic for Programming Artificial Intelligence and Reasoning (LPAR),
volume 4790 ofLNCS/LNAI, pages 151–165, Yerevan (Armenia), Oct. 2007. Springer.

[3] S. Boulmé.Sṕecification d’un environnement dédíe à la programmation certifíee de biblioth̀eques de
Calcul Formel. Thèse de doctorat, Université Paris 6, 2000.

[4] S. Boulmé, T. Hardin, and R. Rioboo. Some hints for polynomials in the Foc project. InCalculemus
2001 Proceedings, June 2001.

[5] D. Delahaye, J.-F.́Etienne, and V. Viguié Donzeau-Gouge. A Formal and Sound Transformation from
FoCaLize to UML: An Application to Airport Security Regulations. InUML and Formal Methods
(UML&FM) , Innovations in Systems and Software Engineering (ISSE) NASA Journal, Kitakyushu-
City (Japan), Oct. 2008. Springer.

[6] D. Delahaye, J.-F.́Etienne, and V. Viguié Donzeau-Gouge. Formal Modeling of Airport Security
Regulations using theFoCaLize Environment. InRequirements Engineering and Law (RELAW),
Barcelona (Spain), Sept. 2008. IEEE CS Press.

[7] D. Delahaye, J.-F.́Etienne, and V. Viguié Donzeau-Gouge. Certifying AirportSecurity Regulations
using theFoCaLize Environment. InFormal Methods (FM), volume 4085 ofLNCS, pages 48–63.
Springer, Aug. 2006.

[8] D. Delahaye, J.-F.́Etienne, and V. Viguié Donzeau-Gouge. Reasoning about Airport Security Regu-
lations using theFoCaLize Environment. InInternational Symposium on Leveraging Applications of
Formal Methods, Verification and Validation (ISoLA), pages 45–52. IEEE CS Press, Nov. 2006.

[9] D. Doligez. Zenon, version 0.4.1. http://focal.inria.fr/zenon/, 2006.

[10] E.Jaeger and T.Hardin. A few remarks about developing secure systems in b. In IEEE, editor,HASE
2008, 2008. .

[11] T. Hardin and R. Rioboo. Les objets des mathématiques.RSTI - L’objet, 2004.

[12] M. Jaume and C. Morisset. A formal approach to implementaccess control.Journal of Information
Assurance and Security, 2:137–148, 2006.

94

[13] M. Jaume and C. Morisset. Towards a formal specificationof access control. InJoint Workshop
on Foundations of Computer Security and Automated Reasoning for Security Protocol Analysis FCS-
ARSPA’06 (Satellite Workshop to LICS’2006), 2006.

[14] M. Maarek and V. Prevosto. Focdoc: The documentation system of foc. InProceedings of the 11th
Calculemus Symposium, Rome, sep 2003.

[15] M.Carlier and C.Dubois. Functional testing in the focal environment. In B.Beckert and R.Hähnle,
editors,Tests and Proofs, Second International Conference, TAP 2008, Prato, Italy, April 9-11, 2008.
Proceedings, volume 4966 ofLecture Notes in Computer Science, pages 84–98. Springer, 2008.

[16] C. Morisset. Śemantique des systèmes de contrôle d’acc̀es. PhD thesis, Université Pierre et Marie
Curie - Paris 6, 2007.

[17] V. Prevosto.Conception et Implantation du langage FoC pour le développement de logiciels certifiés.
PhD thesis, Université Paris 6, sep 2003.

[18] V. Prevosto and S. Boulmé. Proof contexts with late binding. InTyped Lambda Calculi and Applica-
tions, volume 3461 ofLNCS, pages 324–338. Springer, 2005.

[19] V. Prevosto and D. Doligez. Algorithms and proof inheritance in the Foc language.Journal of Auto-
mated Reasoning, 29(3-4):337–363, dec 2002.

[20] V. Prevosto, D. Doligez, and T. Hardin. Algebraic structure and dependent records. InTPHOLs’2002,
volume 2410 ofLNCS. Springer-Verlag, 2002.

[21] V. Prevosto and M. Jaume. Making proofs in a hierarchy ofmathematical structures. InProceedings
of the 11th Calculemus Symposium, Rome, sep 2003.

95

Index

;;, 54

annotation, 22
block, 23

bang character, 59
blank, 22

category of identifiers, 24
collection, 56

parameter, 57
comment, 22
compilation unit, 19
compiler option, 71

defining a prefix operator, 26
defining an infix operator, 26
defining operators, 26
dependency, 63

decl, 63
def, 64

on representation, 64, 65
directive

coq require, 48
open, 30, 39, 48
use, 48

documentation, 22

erasing, 64
expression, 36

application, 45
constant, 37
identifier, 38
if, 43
let-in, 40
literal, 37
logical, 49
match, 43

operator, 45
record, 45

clone, 46
field, 46

sum type constructor, 37
type, 31

field, 54
fixity of identifiers, 24
function, 54

recursive, 70
functional value, 38, 45

identifier, 23, 38
delimited, 27
extended, 27
operator, 25

identifier binding, 40
if, 43
infix identifier, 24
infix in prefix position, 26
inheritance, 60

multiple, 61
parametrised bySelf , 62
parametrised species, 61

installation, 18
interface, 56

compatibility, 58

late-binding, 62
let-in, 40
lexical conventions, 22
linking files, 20

match, 43
method, 54

qualification, 39, 59

96

name
qualification, 29, 39
resolution, 29, 39, 59

nature of identifiers, 24

operator, 25

parameter
collection, 57
entity, 59

parametrisation, 55, 57
pattern matching, 43
polymorphism, 55, 57
precedence of identifiers, 24
prefix form notation, 26
prefix identifier, 24
proof, 19

delayed, 55
step bullet, 29

property, 49, 55

qualified name, 29

recursion, 70
regular identifiers, 25
representation, 54

declared, 54
defined, 54

scoping, 39, 59
signature, 54
species, 54

complete, 55
expression, 62
name, 27

theorem, 49, 55
toplevel, 53
type

compatible, 35
definition, 32

alias, 32
record, 34
sum, 33

dependent, 58, 61
expression, 31
recursive, 33

well-formation, 65

97

