FoCalize

Reference Manual

1.0.0

January 2009

Authors

Thérese Hardin, Frangois Pessaux, Pierre Weis, Damien Doligez

About FoCalLize

FoCalLize is the result of a collective work of several researchesgtelil in the following, who
designed, defined, compiled, studied, extended, used duggkd the preceding versions. They
were helped by many students who had a summer internship tiredesupervision. They would
like to thank all these students and more generally all thisqes who brought some contribution
to FoCalLize.

FoCalLize contributors

Philippe Ayrault (SPI-LIP6), William Bartlett (CPR-CEDR), Julien Blond (SPI-LIP6), Syl-
vain Boulmé (SPI-LIP6), Matthieu Carlier (CPR-CEDRICamien Doligez (GALLIUM-INRIA),
David Delahaye (CPR-CEDRIC), Catherine Dubois (CPR-CEDRIJean-Frédéric Etienne (CPR-
CEDRIC), Stéphane Fechter (SPI-LIP6), Mathieu Jaume-[$P), Lionel Habib (SPI-LIP6),
Thérese Hardin (SPI-LIP6), Charles Morisset (SPI-LIR8an Noyer (SPI-LIP6), Francois Pes-
saux (SPI-LIP6), Virgile Prevosto (SPI-LIP6), Renaud RiofCPR-CEDRC), Lien Tran (SPI-
LIP6), Véronique Viguié Donzeau-Gouge (CPR-CNAM), ireeWWeis (ESTIME-INRIA)

and their institutions

SPI (Semantics, Proofs and Implementations) is a team d,L(IRaboratoire d’'Informatique de Paris
6) of UPMC (Pierre and Marie Curie Universitl)

CPR (Conception et Programmation Raiséen) is a team of CEDRIC (Centre d’Etudes et de Recherches

du CNAM) of CNAM (Conservatoire National des Arts étMrsf and ENSIIE (Ecole Nationale d’Informatique
pour I'Industrie et 'Entreprise].

ESTIME and GALLIUM are teams of INRIA Rocquencburt

1UPMC-LIP6, 104 avenue du Président Kennedy, Paris 750H8,c€ Firstname.Lastname@lip6.fr

2CNAM-CEDRIC, 292 rue Saint Martin, 75003, Paris, Frarféiestname.Lastname@cnam.fr

3ENSIIE-CEDRIC, 1 Square de la Résistance, 91025 Evry Gddlexce | asthame@ensiie.fr

‘INRIA, Bat 8. Domaine de Voluceau, Rocquencourt, BP 105, 8E58 Le Chesnay, France,
Firstname.Lastname@inria.fr

Thanks

The Foc project was first partially supported by LIP6 (Projet Fod?611997) then by the Ministry of
Research (Action Modulogic). THeocal research team was then partially supported by the FrenciRESU
ANR project ANR-06-SETI-016 (Safety and Security UndeR &hcThe project also benefited of strong
collaborations with EDEMOI ANR project and with BERTIN andBERIVER companies.

The FoCalize language and compiler development effort started arou®&.2The architecture con-
ception and code rewritting started from scratch in 2006 rallff make the first focalizec compiler and
FoCalLize system distribution in 2009, January.

This manual documents the completely revised system wathéfiv syntax and its semantics extensions.

Contents

1 Overview 11
1.1 TheBasicBrick e e 11
1.2 Type of Species, Interfaces and Collections 13
1.3 Combining Bricks by Inheritance L 13
1.4 Combining Bricks by Parametrisation 14

1.4.1 Parametrisation by Collection Parameters 14
1.4.2 Parametrisation by Entity Parameterso 16
1.5 TheFinalBrick e e 16
1.6 Properties, Theoremsand Proofs 17
1.7 AroundtheLanguage e 18
1.7.1 Consistency ofthe Software 18
1.7.2 Code Generation e 18
1.7.3 Tests e 19
1.7.4 Documentation e e 19

2 Installing and Compiling 20
2.1 Requiredsoftware e 20
2.2 Optional software e e 20
2.3 Operating SyStems e 20
2.4 Installation e 21
2.5 Compilation process and outputs e 22

251 OUpULS e e e 22
252 Compilingasource e e 22

3 The core language 25

3.1 Lexicalconventions e 25
3.1.1 Blanks . . . e 25
3.1.2 COMMENES e 25
3.1.3 Annotations e 25
3.1.4 Identifiers e 26

3.1.4.1 Introduction 26
3.1.4.2 Conceptual propertiesofnames 26
3.1.4.3 Fixity ofidentifiers 27
3.1.4.4 Precedence ofidentifiers. L 27
3.1.4.5 Categorization of identifiers 27

3.2

3.1.4.6 Nature of identifiers 27

3.1.47 Regqgularidentifiers e 28
3.1.4.8 Infix/prefix operators e 28
3.1.49 Defining aninfixoperator 29
3.1.4.10 Prefixformnotation L 29
3.1.5 Extendedidentifiers e . 30
3.1.6 Speciesandcollectionnames. e 30
3.1.7 Integerliterals 30
3.1.8 Stringliterals e e 31
3.1.9 Characterliterals e 31
3.1.10 Floating-point numberliterals 31
3.1.11 Proofstepbullets e 32
3.1.12 Name qualification e 32
3.1.13 Reserved keywords e 33
Language constructs and syntaxo e e e 34
321 TYPES . . e e e 34
3.2.1.1 Typeconstructors e e 34
3.2.1.2 TYpeexpresSiONS v v i e e e e e e e 34
3.2.1.3 Typedefinitions 35
3.2.2 Type-checking e e 38
3.2.3 Representations e 38
3.2.4 EXPressions e e e e 39
3.2.4.1 Literal @Xpressions 40
3.2.4.2 Sum type value constructor expressions 40
3.2.4.3 Identifierexpressions e 41
3.24.4 let-in eXPression 43
3.2.4.5 logical let 45
3.2.4.6 Conditional expression e 46
3.2.4.7 Matchexpression46
3.2.4.8 Application expression e e 48
3.2.4.9 Operator application expression i oL 48
3.2.4.10 Record eXpression e e e e 48
3.2.4.11 Cloning arecord exXpression v v it e e e 49
3.2.4.12 Record field access expression 49
3.2.4.13 Parenthesised expressiono 50
3.2.5 Core language expressions and definitions 50
3.2.6 Filesand usesdirectives 51
3.2.6.1 Theause directive 51
3.2.6.2 Theopen directive 51
3.2.6.3 Thecoq_require directive 51
3.2.7 Properties, theorems and proofs 52
3.2.7.1 Logical expressions e e 52
3.2.7.2 Properties 52
3.27.3 Proofs 53
3.27.4 Theorems e 54

4 TheFoCalize model

4.1 BasSiCCONCEPLS o ot e e
4.1.1 Top-level Definitions L e e
4.1.2 SPECIES . .« o i i
4.1.3 Complete SPECIES e e e e
4.1.4 Interfaces
4.1.5 Collections

4.2 Parametrisation e
4.2.1 Collection parameters e e e
4.2.2 Entityparameters e e

4.3 Inheritance and its mechanisms L e
4.3.1 Inheritance e
4.3.2 SPECIES EXPreSSIONS v v v e e

4.4 Late-binding and dependencies e e
441 Late-binding
4.4.2 Dependenciesanderasing e e e e
4421 Decl-dependencies

4.4.2.2 Def-dependencies,

4.4.2.3 FErasingduringinheritance e

4.4.2.4 Dependencies on collection parameters

4.4.3 More about methods definition Lo
4431 Well-formation. e

4.4.3.2 Def-dependencies on the representation

5 TheFoCalize Proof Language
5.1 Proofsoftheorems e
5.1.1 Scopingrules e e e

6 Recursive function definitions
7 Compiler options

8 Documentation generation

8.0.2 Specialtags
8.0.21 @title
8.0.2.2 @author e e e
8.0.2.3 @description
8.0.24 @mathml e

8.0.3 Transforming the generated documentation file
8.0.3.1 XMLtoHTML e

8.0.4 XMLtoLaTeX

9 Hacking deeper
9.0.5 Interfacing-oCalize with otherlanguages
9.0.6 Dealing with hand-writte@oq proofs

56
56
56
57
58
59
59
60
60
62
63
63
65
65
65
66
66
67
67
67
68
68
68

70
70
72

73

10 Compiler error messages

81

Introduction

Motivations

The Foc project was launched in 1998 by T. Hardin and R. Rioboo PLtjith the objective of helping

all stages of development of critical software within safahd security domains. The methods used in
these domains are evolving, ad-hoc and empirical appreduntiag replaced by more formal methods. For
example, for high levels of safety, formal models of the regmaent/specification phase are more and more
considered as they allow mechanized proofs, test or stasitysis of the required properties. In the same
way, high level assurance in system security asks for theisee formal methods along the process of
software development and is often required for the spetiificdevel. Thus the project was to elaborate an
Integrated Development Environment (IDE) able to proviggHevel and justified confidence to users, but
remaining easy to use by well-trained engineers.

To ease developing high integrity systems with numerousveoé components, an Integrated Devel-
opment Environment (IDE) should provide tools to formalipeess specifications, to describe design and
coding and to ensure that specification requirements aréyrtbe corresponding code. This is not enough.
First, standards of critical systems ask for pertinent duentation which has to be maintained along all the
revisions during the system life cycle. Second, the evanatonformance process of software is by nature a
sceptical analysis. Thus, any proof of code correctness Ibeusasily redone at request and traceability must
be eased. Third, design and coding are difficult tasks. Relséa software engineering has demonstrated
the help provided by some object-oriented features asitahee, late binding and early research works on
programming languages have pointed out the importancestfaadtion mechanism such as modularity to
help invariant maintaining. There are a lot of other pointsal should also be considered when designing
an IDE for safe and/or secure systems to ensure conformaiticehigh Evaluation Assurance or Safety
Integrity Levels (EAL-5,7 or SIL 3,4) and to ease the evabrafprocess according to various standards
(e.g. IEC61508, CC, ...): handling of non-functional caon$eof specification, handling of dysfunctional
behaviors and vulnerabilities from the true beginning afedepment and fault avoidance, fault detection by
validation testing, vulnerability and safety analysis.

Initial application testbed

When theFoc project was launched by Hardin and Rioboo, only one specifinain was considered, the
one of Computer Algebra. Algorithms used in this domain camdther intricated and difficult to test and
this is not rare that computer algebra systems issue a baltl chee to semantical flaws, compiler anomalies,
etc. Thus the idea was to design a language allowing to gpbefmathematics underlying these algorithms
and to go step by step to different kinds of implementatioosoeding to the specifities of the problem
under consideratidn The first step was to design the semantics of such a langtrsige to fit to several
requirements: easing the expression of mathematicahs¢aits, clear distinction between the mathematical
structure (semi-ring, polynomial, ..) and its differentgl@mentations, easing the development (modularity,
inheritance, parametrisation, abstraction, ..), runtéfficiency and confidence in the whole development
(mechanised proofs, ..). After an initial phase of concaptiesign, thé-oc semantics was submitted to a
double test. On one hand, this semantics was specifi€ddnand in a categorical model of type theories by

>They were members of the SPI (Semantics, Proofs, Impleriens team of the LIP6 (Lab. Informatique de Paris 6) at
Université Pierre et Marie Curie (UMPC), Paris

SFor example Computer Algebra Libraries use several diffierepresentations of polynomials according to the treatrieebe
done

S. Boulmé (see his thesis[3]), a point which enlightenediibrders of this approach, regarding the logical
background. On the other hand, before designing the syitaas needed to study the development style in
such a language. R. Rioboo [4, 11] used @@aml language to try different solutions which are recorded
in [11].

Initial Focal design

Then the time came to design the syntax of the language ancbthpiler. To overcome inconsistencies
risks, an original dependency analysis was incorporatedie compiler (V. Prevosto thesis[17, 20, 19]) and
the correction of the compiler (mostly written by V. PrewwstgainsfFocal’'s semantics is proved (by hand)
[18], a point which brings a satisfactory confidence in theglzage’s correctness. Then Riob&@ hegan
the development of a huge computer algebra library, whiérefull specification and implementation of
usual algebraic structures up to multivariate polynomiadis with complex algorithms, first as a way to
extensively test the language and (quite satisfactoryjieffty of the produced code and then to provide a
standard library of mathematical backgrounds. And D. Dxx[8] started the development d&non, an
automatic prover based on tableaux method, which takescal statement and tries to build a proof of it
and, when succeeds, issugSay term. More recently, M. Carlier and C. Dubois[15] began thesdlopment

of a test tool forFocal.

Focal has already been used to develop huge examples such asritiardtébrary and the computer
algebra library. The library dedicated to the algebra okasacontrol models, developed by M. Jaume and
C. Morisset[12, 13, 16], is another huge example, whichdyesrimplementations of orderings, lattices and
boolean algebras from the computer algebra librdfgcal was also very successfully used to formalize
airport security regulations, a work by D. Delahaye, J.#ferthe, C. Dubois, V. Donzeau-Gouge [6, 7, 8].
This last work led to the development of a translator[5] frbatal to UML for documentation purposes.

The FoCalLize system

The FoCaLize development effort started in 2006: it was clearly a corgtion of theFoc and Focal
efforts. The new system was rewritten from scratch. A newulage and syntax was designed and carefully
implemented, with in mind ease of use, expressivity, andfammer friendyness. The addition of powerful
data structure definitions together with the correspongiigern matching facility, lead to new expressing
power.

TheZenon automatic theorem prover was also integrated in the comguilé natively interfaced within
the FoCalize language. New developments for recursive functions suppon the way (in particular for
termination proofs).

A formal specification can be built by declaring names of fioms and values and introducing prop-
erties. Then, design and implementation can incremeniallgone by adding definitions of functions and
proving that the implementation meets the specificationesigh requirements. Thus, developingHo-
Calize is a kind of refinement process from formal model to design eoike, completely done within
FoCalize. Taking the global development in consideration withinghene environment brings some con-
ciseness, helps documentation and reviewing. This@aLize development is organised as a hierarchy
that may have several roots. The upper levels of the hieyanehbuilt along the specification stage while the
lower ones correspond to implementation and each node dfi¢iharchy corresponds to a progress toward
a complete implementation.

The FoCalize system provides means for the developers to formally egpifesir specifications and
to go step by step (in an incremental approach) to design mpteimentation while proving that such

9

an implementation meets its specification or design remérds. TheFoCalize language offers high
level mechanisms such as inheritance, late binding, ratlefinparametrization, etc. Confidence in proofs
submitted by developers or automatically done relies om&biproof verificationFoCalize also provides
some automation of documentation production and managemen

We would like to mention several works about safety and/custy concerns withinFoCalize and
specially the definition of a safety life cycle by P. Ayraudlt, Hardin and F. Pessaux [1] and the study of
some traps within formal methods by E. Jaeger and T. Har@d]n[1

The FoCal.ize system in short

FoCalLize can be seen as an IDE still in development, which gives aipesblution to the three require-
ments identified above:

1. pertinent documentation is maintained within the sysbeing written, and its extraction is an auto-
matic part of the compilation process,

2. proofs are written using a high level proof language, st pnoofs are easier to write and their verifi-
cation is automatic and reliable,

3. the framework provides powerful abstraction mechanignifgcilitate design and development; how-
ever, these mechanisms are carefully ruled: the compiléonpes numerous validity checks to ensure
that no further development can inadvertantly break thariawts or invalidate the proofs; indeed, the
compiler ensures that if a theorem was based on assumplianare now violated by the new devel-
opment, then the theorem is out of reach of the programmer.

10

Chapter 1

Overview

Before entering the precise descriptiorFoiCalize we give an informal presentation of near all its features,
to help further reading of the reference manual. Every cooson or feature oFoCalize will be entirely
described in the following chapters.

1.1 The Basic Brick

The primitive entity of aFoCalize development is thespecies It can be viewed as a record grouping
“things” related to a same concept. Like in most modularglesiystems (i.e. objected oriented, algebraic
abstract types) the idea is to group a data structure witbpkeations to process it. SincekoCalize we
don't only address data type and operations, among theisgsthwe also find the declaration (specification)
of these operations, the properties (which may represgnireanents) and their proofs.

We now describe each of these “things”, calfedthods

e Themethodintroduced by the keywortepresentation gives the data representation of entities
manipulated by thepecies It is a type called theepresentationor the representation type when
emphasising on the fact that it is a type) and defined by a typeession. Theepresentatiormay be
not-yet-defined in @peciesmeaning that the real structure of the data-typesthecieembeds does
not need to be known at this point. In this case, it is simplyetvariable. However, to obtain an
implementation, theepresentatiorhas to be defined later either by settirgpresentation =
exp whereexp is a type expression or by inheritance (see below). Typeessprns inFoCalize
are roughly ML-like types (variables, basic types, indeetiypes, record types) plispecies repre-
sentation typegdenoted by keywor&elf inside the species and by the name of tpiecieutside
of them.

Eachspeciesas a unique methagpresentationThis is not a restriction compared to other languages
where programs/objects/modules can own several privaiablas representing the internal state,
hence the data structure of the manipulated entities byrtigram/object/module. In such a case, the
representatiorcan simply be the tuple grouping all these variables thaewisseminated all along
the program/object/module.

e Declarations are composed of the keywsignature followed by a hame and a type. It serves
to announce anethodto be defined later, i.e. to only specify its type, without lerpentation yet.
Suchmethodsare especially dedicated for specification or design p@wpsesice declared names may

11

be used to define othersethodswhile delaying their definition. The type provided by thignature
allowsFoCalize to ensure via type-checking that the method is used in centexnpatibles with this
type. The late-binding and the collection mechanismshéirtntroduced, ensure that the definition
of the method will be effectively known when needed.

Definitions are composed of the keywded , followed by a hame, a type and an expression. They
serve to introduce constants or functions, i.e. computatioperations. The core language used to
implement them is roughly ML-like expressions (let-binglinpattern matching, conditional, higher
order functions, ...) with the addition of a constructiorcé&dl amethodfrom a givenspecies Mutu-

ally recursive definitions are introduced lgf rec

Statements are composed of the keywprdperty followed by a name and a first-order formula.
A propertymay serve to express requirements (i.e. facts that thersysigst hold to conform to the
Statement of Work) and then can be viewed as a specificatigpopemethod like signatures were

for let -method. It will lead to a proof obligation later in the developmeAtpropertymay also be
used to express some “quality” information of the systenuifsimess, correctness, ..) also submitted
to a proof obligation. Formulae are written with usual I@jiconnectors, universal and existential
quantifications over &oCal.ize type, and names ahethodknown within thespecie%s context. For
instance, gropertytelling that if the speed is hon-null, then doors can’t bermuecould look like:

all v in Speed, v <> Speed!zero -> ~ doors _open

In the same way asignatures even if no proof is yet given, the name of thmpertycan be used to
express other ones and its statement can be used as an lsygpatheroofs.FoCalize late binding
and collection mechanisms ensure that the proofmbaertywill be ultimately done.

Theorems theorem) made of a name, a statement and a proofpaopertiestogether with the
formal proof that their statement holds in the context of shecies The proof accompanying the
statement will be processed BpCalize and ultimately checked with the theorem pro@ag.

Like in any formal development, one severe difficulty befpreving is obviously to state a true

interesting and meaningful statement. For instance, algrthat a piece of software is “formally

proved” as respecting the safety requiremesytstem _ok “sinceits property is demonstrated” is a
lie if this property was, for instancd, = 1 -> system _ok. This is obviously a non-sense since
the text of the property is trivial and does not liskstem _ok with the rest of the software (see [10]
for less trivial examples).

We now make concrete these notions on an example we willrimengally extend. We want to model

some simple algebraic structures. Let’s start with the igetion of a “setoid” representing the data structure
of “things” belonging to a set, which can be submitted to anadity test and exhibited (i.e. one can get a
witness of existence of one of these “things”).

speci es Setoid =

signature (=) : Self -> Self -> bool ;
signature element : Self ;
property refl : all x in Self, x

=X
property symm : all xy in Self, x =
property trans: all xyz in Self, x
| et different (x, y) = basics#not_b (x =vy) ;

end ;;

12

In this speciestherepresentatioris not explicitly given (no keywordepresentation), since we
don't need to set it to be able to express functions and ptiegesur “setoid” requires. However, we can
refer to it viaSelf and itis in fact a type variable. In the same way, we spec#igaaturefor the equality
(operator=). We introduce the three properties that an equality (edeince relation) must conform to.

We complete the example by the definition of the functibiifierent which use the name (here
basics#not _b stands for the functiomot _b, the boolearand coming from theFoCalLize source file
basics.fcl). It is possible right now to prove thdifferent is irreflexive, under the hypothesis that
=is an equivalence relation (i.e. that each implementatfongiven further will satisfy these properties).

It is possible to usenethodsonly declared before they get a rad#finitionthanks to thdate-binding
feature provided byroCalize. In the same idea, redefiningnaethodis allowed inFoCalize and, it is
always the last version which is kept as the effectieéinitioninside the species.

1.2 Type of Species, Interfaces and Collections

The type of a speciesis obtained by removing definitions and proofs. Thus, it isiradkof record type,
made of all the method types of the species. Ifithgresentation is still a type variable say, then
the speciestype is prefixed with an existential bindérx. This binder will be eliminated as soon as the
representation will be instantiated (defined) and must be eliminated toiolbtannable code.

Theinterfaceof a species is obtained by abstracting tberesentatiortype in thespecies typand this
abstraction is permanent.

Beware! No special construction is given to denote interfaces inciwgcrete syntax, they are simply
denoted by the name of the species underlying timot confuse a species and its interface.

Thespecies typeemain totally implicit in the concrete syntax, being jused as a step to buikpecies
interface It is used during inheritance resolution.

Interfaces can be ordered by inclusion, a point providingrg gimple notion of subtyping. This point
will be further commented.

A species is said to beompleteif all declarations have received definitions and all préipsrhave
received proofs.

Whencomplete a species can be submitted to an abstraction process efpitssentation to create a
collection Thus theinterfaceof the collection is just thénterfaceof the complete species underlying it. A
collection can hence be seen as an abstract data type, @fileubrough the methods of its interface, but
having the guarantee that all methods/theorems are dejioedd.

1.3 Combining Bricks by Inheritance

A FoCalize development is organised as a hierarchy which may have aewats. Usually the upper
levels of the hierarchy are built during the specificaticagst while the lower ones correspond to imple-
mentations. Each node of the hierarchy, i.e. egmbciesis a progress to a complete implementation. On
the previous example, forgettirdifferent , we typically presented a kind speciedor “specification”
since it expressed onlsignaturesof functions to be later implemented and properties to whater, give
proofs

13

We can now create a negpeciesmay be more complex, bipheritance of a previously defined. We
say here “may be more complex” because it can add new opesagiod properties, but it can also only
bring real definitions t@ignaturesandproofsto properties adding no newnethod

Hence, inFoCalLize inheritance serves two kinds of evolutions. In the first ddmweevolution aims
making aspeciesvith more operations but keeping those of its parents (cgfreithig some of them). In the
second case, thepecie®nly tends to be closer to a “run-able” implementation, pmg explicit definitions
to methodghat were previously only declared.

Continuing our example, we want to extend our model to reprethings” with a multiplication and a
neutral element for this operation.

speci es Monoid inherits Setoid =
signature (*) : Self -> Self -> Self ;
signature one : Self ;
| et element = one = one ;

end ;;

We see here that we added naevethodsbut also gave a definition telement , saying it is the ap-
plication of the method to one twice, both of them being onlgeclared Here, we used the inheritance
in both the presented ways: making a more complex entity lojngdnethodsand getting closer to the
implementation by explicitly defininglement .

Multiple inheritance is available ikRoCalize. For sake of simplicity, the above example uses simple
inheritance. In case of inheriting rmethodfrom several parents, the order of parents inititeerits
clause serves to determine the chosezthod

Thetypeof aspeciesuilt using inheritance is defined like for othgpeciesthemethoddypes retained
inside it being those of thmethodgresent in thespeciesfter inheritance is resolved.

A strong constraint in inheritance is that the type of integlj and/or redefinethethodsnust not change.
This is required to ensure consistence of HwCalize model, hence of the developed software. More
precisely, if the representation is given by a type expogssbntaining some type variables, then it can be
more defined by instanciation of these variables. In the samg two signatures have compatible types
if they have a common unifier, thus, roughly speaking if theyy @mpatible Ml-like types. For example,
if the representation was not yet defined, thus being stifpa wariable, it can be defined Iyt . And if
a speciesS inherits from.S; and S2 a method calledn, there is no type clash i$;!m andS;!m can be
unified, then the method!m has the most general unifier of these two types as its own type.

1.4 Combining Bricks by Parametrisation

Until now we are only able to enrickpecies However, we sometimes need to usspaciesnot to take over

its methods but rather to use it as an “ingredient” to build a new stregtu-or instance, a pair of setoids
is a new structure, using the previogeciesas the “ingredient” to create the structure of the pair. &uje
the structure of a pair is independent of the structure di eamponent it is made of. A pair can be seen as
parametriseduy its two components. Following this iddagCal.ize allows two flavors of parametrisation.

1.4.1 Parametrisation by Collection Parameters

We first introduce theollection parametersThey arecollectionsthat the hosting species may use through
their methoddo define its own ones.

14

A collection parameteis given a nam&’ and an interfacé. The name” serves to call thenethodof
C which figure in. C can be instantiated by an effective paramétér of interfacel/ £. C'E is a collection
and its interfacd £ must contain/. Moreover, the collection and late-binding mechanismsienthat all
methods appearing ihare indeed implemented (defined for functions, proved foperties) inC'E. Thus,
no runtime error, due to linkage of libraries, can occur amg@opertiesstated in/ can be safely used as
an hypothesis.

Caling a species method is done via the “bang” notation: Imeth or
Selflmeth for a methodof the currentspecies(and in this case, even simplemeth, since theFo-
Calize compiler will resolve scoping issues). To catlllection parametefs method the same notation is
used:Alelement stands for thenethodelement of thecollection parameteA.

To go on with our example, a pair of setoids has two componéietsce sspeciedor pairs of setoids
will have twocollection parameterslt is itself a setoid, a fact which is simply recorded via thieritance

mechanisminherits Setoid gives toSetoid _product all the methods oSetoid
speci es Setoid_product (A is Setoid, B is Setoid) inherits Setoid =
representation = (A * B) ;
let (=) (x y) =
and_b
(Al(=) (first (x), first (y)),
B!(=) (scnd (x), scnd (y))) ;
| et create (x, y) in Self = basics#crp (X, y) ;
| et element = Sel flcreate (Alelement, Blelement) ;
proof of refl = by definition of (=) ;
end ;;

We express theepresentatiorof the product of two setoids as the Cartesian product aitheesentation
of the two parameters. IA * B, * is the FoCalize type constructor of pairsi denotes indeed the
representation of the firsbllection parameterandB the one of of the seconmbllection parameter

Next, we add a definition for of Setoid _product , relying on the methods of A(Al(=))and
B (which are not yet defined). Similarly, we introduce a deifomitfor element by building a pair, using
the functioncreate (which calls the predefined functidmasics#crp) and the methodelement
of respectivelyA and B. And we can prove that of Setoid _product is indeed reflexive, upon the
hypothesis made oA!(=) andB!(=) . The part ofFoCaLize used to write proofs will be shortly
presented later, in section 1.6.

This way, thespeciesSetoid _product builds itsmethodselying on those of itgollection parame-
ters Note the two different uses &etoid in ourspeciesSetoid _product ,which inherits ofSetoid
and is parametrised dyetoid

Why suchcollection parameterand not simplyspecies paramete?sThere are two reasons. First, ef-
fective parameters must provide definitions/proofs foitla#l methods of the required interface: this is the
contract. Thus, effective parameters mustbmpletespecies. Then, we do not want the parametrisation to
introduce dependencies on the parametensfesentatiordefinitions. For example, it is impossible to ex-
press “ ifAlrepresentation isint andBl!representation isbool thenAxBis a list of boolean
values”. This would dramatically restrict possibilities instantiate parameters since assumptions on the
representationpossibly used in the parametrisgaeciego write its ownmethodscould preventollections
having the right set omethodsbut a different representation to be used as effective peteas1 Such a
behaviour would make parametrisation too weak to be usabke choose to always hide thepresenta-
tion of a collection parameteto the parametrised hostirgpecies Hence the introduction of the notion of

15

collection obtained by abstracting the representation from a comgiatcies.

1.4.2 Parametrisation by Entity Parameters

Let us imagine we want to makespeciesworking on natural numbers modulo a certain value. In the
expressiorb modulo 2 is 1, both5 and2 are natural numbers. To be sure that specieswill consistently
work with the same modulo, this last one must be embeddedeispacies However, thespeciestself
doesn't rely on a particular value of the modulo. Hence this® is clearly garameter of the species, but
a parameter in which we are interested byéhie, not only by itsrepresentatiorand the methods acting on
it. We call such parameteentity parameterstheir introduction rests upon the introduction of@lection
parameterand they denote @aluehaving the type of theepresentatiorof this collection parameter

Let us first have apeciegepresenting natural numbers:

speci es IntModel =

signature one : Self ;

signature modulo : Self -> Self -> Self ;
end ;;

Note thatintModel can be later implemented in various ways, using Peana’génse machine inte-
gers, arbitrary-precision arithmetic . ..

We now build ourspecies'working modulo ...”, embedding the value of this modulo:
speci es Modulo_work (Naturals i s IntModel, n i n Naturals) =
I et jobl (x in Naturals) in..=
.. Naturals!modulo (x, n) ... ;
I et job2 (x in Naturals, ...) in..=
...... Naturals!modulo (x, n) ;
end ;;

Using theentity parametem, we ensure that thepeciesModulo _work works for any value of the
modulo, but will always use theamevaluen of the modulo everywhere inside tBpecies

1.5 The Final Brick

As briefly introduced in 1.2, apeciemneeds to be fully defined to lead to executable code for itstions
and checkable proofs for its theorems. Whespaciess fully defined, it can be turned into@llection
Hence, acollectionrepresents the final stage of the inheritance tree sgexiesand leads to an effective
data representation with executable functions processing

For instance, providing that the previcgseciesntModel turned into a fully-defined speci®dachineNativelnt
through inheritances steps, withmeethodfrom _string allowing to create the natural representation of a
string, we could get a related collection by:

col I ecti on MachineNativelntColl i mpl enent' s MachineNativelnt ;;

Next, to get aollectionimplementing arithmetic modulo 8, we could extract fromspeciesviodulo work
the following collection

col I ecti on Modulo_8_work i npl ements Modulo_work
(MachineNativelntColl, MachineNativelntColllfrom_str ing (“87) ;;

As seen by this example, a species can be applied to effeingneters by giving their values with the
usual syntax of parameter passing.

16

As said before, to ensure modularity and abstraction repessentatiorof a collectionturns hidden.
This means that any software component dealing wablizctionwill only be able to manipulate it through
the operationsnfethod} its interface provides. This point is especially impottaimce it prevents other
software components from possibly breaking invariantsiireq by the internals of theollection

1.6 Properties, Theorems and Proofs

FoCaLize aims not only to write programs, itintends to encompass thelexecutable model (i.e. program)
and properties this model must satisfy. For this reasorecigi’ methodsdeal with logic instead of purely
behavioural aspects of the systetfmeoremspropertiesandproofs

Stating aproperty expects that groof that it holds will finally be given. Fortheorems the proof is
directly embedded in théheorem Such proofs must be done by the developer and will finally dv& s
to the formal proof assistarf@og who will automatically check that the demonstration of firepertyis
consistent. Writing a proof can be done in several ways.

It can be written in FoCalLize’s proof language”, a hierarchical proof language thatedlto give hints
and directions for a proof. This language will be sent to aereal theorem proveEZenon [?, 9] developed
by D. Doligez. This prover is a first order theorem prover basa the tableau method incorporating
implementation novelties such as shariagnon will attempt, from these hints to automatically generate
the proof and exhibit £oq term suitable for verification by oq. Basic hints given by the developer to
Zenon are: “prove by definition of anethod (i.e. looking inside its body) and “prove bgroperty’ (i.e.
using the logical body of theoremor property’. Surrounding this hints mechanism, the language allows to
build the proof by stating assumptions (that must obviobglglemonstrated next) that can be used to prove
lemmas or parts for the whole property. We show below an el@ofisuch demonstration.

t heor em order_inf_is_infimum: all xyi in Self,
lorder_inf(i, x) -> lorder_inf(i, y) ->
lorder_inf(i, linf(x, y))
proof:
<1>1 assunme X in Self, assune y in Self,
assune i in Self, assume H1: lorder_inf(i, x),
assume H2: lorder_inf(i, y),
prove lorder_inf(i, linf(x, y))
<2>1 prove lequal(i, linf(linf(i, x), y))
by hypot hesis H1, H2
property inf_left_substitution_rule,
equal_symmetric, equal_transitive
definition of order_inf
<2>9 ged
by step <2>1
property inf_is_associative, equal_transitive
definition of order_inf
<1>2 concl ude

The important point is thaZenon works for the developerit searches the proof itself the developer
does not have to elaborate it formally “from scratch”.

Like any automatic theorem provetenon may fail finding a demonstration. In this cas&@Calize
allows to write verbatinCoq proofs. In this case, the proof is not anymore automatedihisiieaves the
full power of expression o€oq to the developer.

Finally, theassumed keyword is the ultimate proof backdoor, telling that thegdris not given but that
the property must be admitted. Obviously, a really safe ldgveent should not make usage of such “proofs”

17

since they bypass the formal verification of software’s nhodewever, such a functionality remains needed
since some of “well-known” properties can never be provedfcomputer. Forinstancéy € IN, z+1 > n
does not hold in a computer with native integers. Howevera mathematical framework, this property
holds and is needed to carry out other proofs. Thus the deselmay prove either that all manipulated
values remain in an interval where this property holds or agayit this property or may add code to detect
overflow ... On another side, a development may be linked &itbrnal code, trusted or not, but for which
properties cannot be proved inside #f@Calize part since it does not belong to it. Expressing properties
of theFoCal.ize part may need to express properties on the imported codesahaot be formally proved,
then must be “assumed”.

1.7 Around the Language

In the previous sections, we presenkCal.ize through its programming model and shortly its syntax. We
especially investigated the various entities makirigp&al.ize program. We now address what becomes a
FoCalLize program once compiled. We recall tHatCal.ize supports the redefinition of functions, which
permits for example to specialise code to a specific reptaen (for example, there exists a generic im-
plementation of integer addition modutobut it can be redefined in arithmetics modaldf boolean values
are used to represent the two values). It is also a very caawetool to maintain software.

1.7.1 Consistency of the Software

All along the development cycle offeoCal.ize program, the compiler keeps trace of dependencies between
species their methods the proofs ...to ensure that modifications of one of them will be detédhose
depending of it.

FoCal.ize considers two types of dependencies:

e Thedeclkdependency: anethodA decl-depends on methodB, if the declaration of B is required
to stateA.

e Thedef-dependency: methodand more especially,theorem) A def-depends onmethodB, if the
definition of B is required to statel (and more especially, to prove the property stated byttberem
A).

The redefinition of a function may invalidate the proofs ths¢ properties of the body of the redefined
function. All the proofs which truly depend of the definitiane then erased by the compiler and must be
done again in the context updated with the new definition.sttha main difficulty is to choose the best level
in the hierarchy to do a proof. In [21], Prevosto and Jaume@g@se acoding styleto minimise the number
of proofs to be redone in the case of a redefinition, by a eekiaid of modularisation of the proofs.

1.7.2 Code Generation

FoCalize currently compiles programs toward two language§aml to get an executable piece of soft-
ware, andCoq to have a formal model of the program, with theorems and groof

In OCaml code generation, all the logical aspects are discarde@ sy do not lead to executable
code.

Conversely, inCoq, all the methodsare compiled, i.e. “computationathethodsand logicalmethods
with their proofs. This allow€oq to check the entire consistence of the system developEd@aL.ize.

18

1.7.3 Tests

FoCalize incorporates a tool namdebcalTes{15] for Integration/Validation testing. It allows to caoht
automatically a property of the specification with an impégration. It generates automatically test cases,
executes them and produces a test report as an XML documieaproperty under test is used to generate
the test cases, it also serves as an oracle. When a testitgserfeeans a counterexample of the property has
been found: the implantation does not match the propertgntalso indicate an error in the specification.

The toolFocalTestautomatically produces the test environment and the drisceconduct the tests. We
benefit from the inheritance mechanism to isolate the @s$tarness from the components written by the
programmer.

The testable properties are required to be broken down ipte@ndition and a conclusion, both exe-
cutable.FocalTesproposes a pure random test cases generation: it generstteages until the precondition
is satisfied, the verdict of the test case is given by exegulie post-condition. It can be an expensive pro-
cess for some kind of preconditions. To overcome this drakba constraint based generation is under
development: it allows to produce directly test cases factvkhe precondition is satisfied.

1.7.4 Documentation

The tool calledFoCalizeDoc [14] automatically generates documentation, thus the mectation of a
component is always coherent with respect to its implentiemnta

This tool uses its own XML format that contains informati@nting not only from structured comments
(that are parsed and kept in the program’s abstract syné&} amdrFoCalize concrete syntax but also
from type inference and dependence analysis. From this Xéfiresentation and thanks to some XSLT
stylesheets, it is possible to generate HTML filesAGgX files. Although this documentation is not the
complete safety case, it can helpfully contribute to itbetation. In the same way, it is possible to produce
UML models [5] as means to provide a graphical documentdtof-oCalize specifications. The use of
graphical notations appears quite useful when interaetitiy end-users, as these tend to be more intuitive
and are easier to grasp than their formal (or textual) copates. This transformation is based on a formal
schema and captures every aspect ofRb€alize language, so that it has been possible to prove the
soundness of this transformation (semantic preservation)

FoCalize’s architecture is designed to easily plug third-partiealgses that can use the internal struc-
tures elaborated by the compiler from the source code. Tloiws for example, to make dedicated docu-
mentation tools for custom purposes, just exploiting infation stored in th&oCalize program’s abstract
syntax tree, or extra information possibly added by extozgsses, analyses.

19

Chapter 2

Installing and Compiling

2.1 Required software

To be able to develop with tHeoCalize environment, a few third party tools are required. All ofrthean
be freely downloaded from their related website.

e The Objective Caml compiler (version 3.10.2).
Available athttp://caml.inria.fr . This will be used to compile both th@Calize system at
installation stage from the tarball and tReCaLize compiler’s output generated by the compilation
of your FoCal.ize programs.

e The Coq Proof Assistant (version 8.1pl4).
Available athttp://cog.inria.fr . This will be used to compile both tHeCalLize libraries at
installation stage from the tarball and theCalize compiler's output generated by the compilation
of your FoCal.ize programs.

2.2 Optional software

The FoCalize compiler can generate dependencies graphs from compiledesoode. It generates them
in the format suitable to be processed and displayed bgdtig tools suit of the “Graphwiz” package. If you
plan to examine these graphs, you also need to install tfisa® fromhttp://www.graphviz.org/

2.3 Operating systems

FoCalize was fully developed under Linux using free software. Hemew, Unix-based operating system
should supporEoCalize. The currently tested Unix are: Fedora, Debian, Suse, BSD.

Windows users can ruRoCalize via the Unix-like environmenCygwin providing both users and
developers tools. This software is freely distributed avallable athttp://www.cygwin.com/

From the official Cygwin web site: “Cygwin is a Linux-like environment for Windows. It consists
two parts: A DLL (cygwinl.dll) which acts as a Linux API entida layer providing substantial Linux API
functionality. A collection of tools which provide Linwoloand feel. The Cygwin DLL currently works with

20

all recent, commercially released x86 32 bit and 64 bit varsiof Windows, with the exception of Windows
CE. Cygwin is not a way to run native linux apps on Windows. héte to rebuild your application from

source if you want it to run on Windows.

Cygwin is not a way to magically make native Windows apps evsftUNIX ® functionality, like
signals, ptys, etc. Again, you need to build your apps frouncgoif you want to take advantage of Cygwin
functionality”

UnderCygwin, the required packages are the same as those listed in 221l2anfs stated ifCygwin’s
citation above, you need to get the sources packages ofditvgase and compile them yourself, following
information provided in these packages.

The installation ofFoCalL.ize itself is the same for all operating systems and is desciibek following
section (2.4).

2.4 Installation

FoCalLize is currently distributed as a tarball containing the whalerse code of the development environ-
ment. You must first deflate the archive (a directory will beated) by:

tar xvzf focalize-x.x.x.tgz
Next, go in the sources directory:
cd focalize-x.x.x/
You now must configure the build process by:
Jconfigure

The configuration script then asks for directories wheresteil theFoCalize components. You may just
press enter to keep the default installation directories.

latour:"/src/focalize$./configure “/pkg
Where to install FoCaLize binaries ?
Default is /usr/local/bin.

Just press enter to use default location.

Where to install FoCalLize libraries ?
Default is /usr/local/lib/focalize.
Just press enter to use default location.

After the configuration ends, just build the system:
make all
And finally, get root priviledges to install tfeoCal.ize system:

su
make install

21

2.5 Compilation process and outputs

We callcompilation unita file containing source code for toplevel-definitions, sggaollections. Visibility
rules, described in section 3.1.12, are defined accordiogrgilation units status. From a compilation unit,
the compiler issues several files described on the following

2.5.1 Outputs

A FoCalize development contains both “computational code” (i.e. queldorming operations that lead to
an effect, a result) and logical properties.

When compiled, two outputs are generated:

e The “computational code” is compiled in@Caml source that can then be compiled with ®€aml
compiler to lead to an executable binary. In this pass, &gicoperties are discarded since they do
not lead to executable code.

e Both the “computational code” and the logical properties@mpiled into &oq model. This model
can then be sent to tl@oq proof assistant who will verify the consistency of both tikerhputational
code” and the logical properties (whose proofs must be aislyoprovided) of thé-oCalLize devel-
opment. This means that tl&oq code generated is not intended to be used to generaCaml
source code by automated extraction. As stated above, dw@ble generation is preferred using
directly the generate@Caml code. In this ideaCoq acts as an assessor of the development instead
of a code generator.

More accuratelyFoCalize first generates a pr€oq code, i.e. a file containin@€oq syntax plus
“holes” in place of proofs written in thEoCalize Proof Language. This kind of files is suffixed by
“.zv” instead of directly “.v”. When sending this file @enon these “holes” will be filled by effective
Coq code automatically generated Bgnon (if it succeed in finding a proof), hence leading to a pure
Cog code file that can be compiled I§0oq.

In addition, several other outputs can be generated forrdentation or debug purposes. See the section 7
for details.

2.5.2 Compiling a source

Compiling aFoCalLize program involves several steps that are automaticallylbdrixy thefocalizec com-
mand. Using the command line options, it is possible to theecbde generations steps as described in 7.

1. FoCalize source compilation This step takes theéoCalize source code and generates @e&ami
and/or “pre-"Coqg code. You can disable the code generation for one of theged@es (see page 7),
or both, in this case, no code is produced and you only gétdkiaLize object code produced without
anymore else output and the process ends at this point. idigalble one of the target languages, then
you won't get any generated file for it, hence no need to additssrelated compilation process
described below.

Assuming you generate code for b@&aml andCoq you will get two generated filesource.ml
(theOCaml code) andsource.zv (the “pre-"Coq code).

22

2. OCaml code compilation This step takes the generate@€aml code (it is anOCaml source file)
and compile it. This is done like any regul&Caml| compilation, the only difference is that the
search path containing tHeoCalize installation path and your own used ex&aCalize source
files directories are automatically passed to@@aml compiler. Hence this steps acts like a manual
invocation:

ocamlc -c -l /usr/local/lib/focalize -I mylibs
-1 myotherlibs source.ml

This produces th©Caml object filesource.cmo . Note that you can also ask to use th€ami
code in native mode, in this case tbeamlopt version of theOCaml compiler is selected (see
OCaml reference manual for more information) and the object fifesanx files instead ofcmo .
ones.

3. “Pre-" Coq code compilation This step takes the generated file and attempts to produce a real
Coq .v source file by replacing proofs written FoCaLize Proof Language by some effecti@oq
proofs found by theZenon theorem prover. Note that Zenon fails in finding a proof, a hole will
remain in the finaCoq .v file. Such a hole appears as the tekO.BE. DONEMANUALLY in place
of the effective proof. In this cas€oq will obviously fail in compiling the file, so the user must do
the proof by hand or modify his originéloCal.ize source file to get a working proof. This step acts
like a manual invocation:

zvtov -new source.zv

For more about th&enon options, consult sectio®?.

4. Coq code compilation This step takes the generat®d code and compiles it witl@oq. This is done
like any regulaiCoq compilation. The only difference is that the search pathiaaimg theFoCalize
installation path and your own used exEaCal.ize source files directories are automatically passed
to theCoq compiler.

coqc -l /usr/localllib/focalize -1 mylibs
-1 myotherlibs source.v

Once this step is done, you have tBeq object files and you are sure thabq validated you program
model, properties and proofs. The final “assessor” of thedbain accepted your program.

Once all separate files are compiled, to get an executahie thhe OCaml object files, you must link
them together, providing the same search path than abovib@rmmo files corresponding to all the gener-
atedOCaml files from all yourFoCalize .foc files. You also need to add themo files corresponding
to the modules of the standard library you use (currentig, tust be done by the user, next versions will
automate this process).

23

ocamic -1 mylibs -1 myotherlibs
install_dir/ml_builtins.cmo install_dir/basics.cmo
install_dir/sets.cmo ...
mylibs/srcl.cmo mylibs/src2.cmo ...
myotherlibs src3.cmo mylibs/src3.cmo ...
sourcel.cmo source2.cmo ...
-0 exec_name

24

Chapter 3

The core language

3.1 Lexical conventions

3.1.1 Blanks

The following characters are considered as blanks: spaejne, horizontal tabulation, carriage return,
line feed and form feed. Blanks are ignored, but they sepadjacent identifiers, literals and keywords that
would otherwise be confused as one single identifier, limraeyword.

3.1.2 Comments

Comments (possibly spanning) on several lines are intiexdiby the two characte(s-, with no intervening
blanks, and terminated by the characte)s with no intervening blanks. Comments are treated as blanks
Comments can occur inside string or character literalsvideal the* character is escaped) and can be
nested. They are discarded during the compilation proéesanple:

(* Discarded comrent. x)
species S =

let m (x in Self) = (* Another discarded comment. x)

en-ci. N
(* Anot her discarded conment at end of file. x)

Comments spanning on a single line start by the two chaseteand end with the end-of-line charac-
ter. Example:

-- Discarded uni-line comment.
species S =
let m (x in Self) = -- Another uni-line comment.

end n

3.1.3 Annotations

Annotations are introduced by the three charactérs , with no intervening blanks, and terminated by the
two characters) , with no intervening blanks. Annotations cannot occurdasstring or character literals
and cannot be nested. They must precede the construct thayndat. In particular, aource file cannot
end by an annotation

25

Unlike comments, annotations are kept during the compitgirocess and recorded in the compilation
information (“fo ” files). Annotations can be processed later on by exterrms tihvat could analyze them
to produce a neviroCalize source code accordingly. For instance, BeCalize development environ-
ment provides th&oCalizeDoc automatic production tool that uses annotations to autcait generate
documentation. Several annotations can be put in sequendbd same construct. We call such a se-
guence arannotations block Using embedded tags in annotations allows third-partysttmoeasily find
out annotations that are meaningful to them, and safelyregonthers. For more information, cons@f.
Example:

(** Annotation for the automatic docunmentati on processor.
Docunentati on for species S. x)
species S =

let m (x in Self) =
(*»+ {@EST} Annotation for the test generator. =)
(** {@W_TAG_MAI NTAI N} Annotation for maintainers. x)

end ;;

3.1.4 Identifiers

FoCalize features a rich class of identifiers with sophisticateddaixrules that provide fine distinction
between the kind of notion a given identifier can designate.

3.1.4.1 Introduction

Sorting words to find out which kind of meaning they may havevery common conceptual categorization
of names that we use when we write or read ordinary Englisis.t&¥e routinely distinguish between:

e a word only made of lowercase characters, that is supposed &m ordinary noun, such as "table”,
"ball”, or a verb as in "is”, or an adjective as in "green”,

e a word starting with an uppercase letter, that is supposée @ name, maybe a family or christian
name, as in "Kennedy” or "David”, or a location name as in "don”.

We use this distinctive look of words as a useful hint to helperstanding phrases. For instance, we
accept the phrase "my ball is green” as meaningful, wheregsParis is green” is considered a nonsense.
This is simply because "ball” is a regular noun and "Parisd isame. The word "ball” as the right lexical
classification in the phrase, but "Paris” has not. This ie alear that you can replace "ball” by another
ordinary noun and get something meaningful: "my table i®giethe same nonsense arises as well if you
replace "Paris” by another name: "my Kennedy is green”.

Natural languages are far more complicated than computgugges, butoCalize uses the same kind
of tricks: the “look” of words helps a lot to understand wha tvords are designating and how they can be
used.

3.1.4.2 Conceptual properties of names
FoCalize distinguishes 4 concepts for each name:

e thefixity assigns the place where an identifier must be written,
e theprecedencelecides the order of operations when identifiers are cordhivgether,

26

¢ thecategorisationfixes which concept the identifier designates.
e thenatureof a name can either be symbolic or alphanumeric.

Those concepts are compositional, i.e. all these conceptsidependent from one another. Put is
another way: for any fixity, precedence, category and natiieee exist identifiers with this exact properties.
We further explain those concepts below.

3.1.4.3 Fixity of identifiers
The fixity of an identifier answers to the question “where ttentifier must be written ?”.

e aprefixis writtenbeforeits argument, asin in sin x or — in —y,
e aninfix is written betweerits arguments, a$ in x + y or mod in x mod 3.
e amixfixis writtenamongits arguments, a&f ...then ...else ...inif cthen 1 else 2.

In FoCalLize, as in maths, ordinary identifiers are always prefix and pioperators are always infix.

3.1.4.4 Precedence of identifiers

The precedence rules out where implicit parentheses talke fth a complex combination of symbols. For
instance, according to the usual mathematical conventions

e 1 + 2 % 3meansl + (2 x 3) hence7, it does not meafl + 2) % 3 which is9,

e 2 x 3% 4+ 5meang2 * (3%)) + 5hencel67, it does not mean(2 * 3)4) + 5whichis1301,
nor2 x (34 + 5)) which is39366.

In FoCal.ize, all the binary infix operators have the precedence they imaveaths.

3.1.4.5 Categorization of identifiers

The category of an identifier answers to the question “is itfesitifier a possible name for this kind of
concept ?”. In programming languages category are oftéet,atneaning that the category exactly states
which concept attaches to the identifier.

ForFoCalize these categories are

¢ lowercase the identifier starts with a lowercase letter and designatmple entity of the language. It
may name some of the language expressions, a function ndometen parameter or bound variable
name, a method name; a type name, or a record field label name.

e uppercase the identifier starts with an uppercase letter and destgnatmore complex entity in the
language. It may name a sum type constructor name, a module, maspecies or a collection name.

We distinguish identifiers using their first “meaningful”asiacter: the first character that is not an un-
derscore.

3.1.4.6 Nature of identifiers
In FoCalize identifiers are either:

e symbolic the identifier contains characters that are not letters= , -> , +float are symbolic

27

e alphanumeric the identifier contains letters, digits and underscores.l, Some Basicobject are
alphanumeric.
3.1.4.7 Regular identifiers

Regular lower case identifiers are used to designate thesnafwariables, functions, and labels of records.

Basic identifiers:

digit ==0...9

lower =a...z

upper =A...7Z
letter ::= lower | upper

lident ::= { lower | _}{letter | digit | _}x
uident ::= upper { letter | digit | _}x
ident ::= lident | uident

A regular identifier is a sequence of letters, digits, afithe underscore character), starting with a letter
or an underscore.

The identifier is lowercase if its first letter is lowercase.

The identifier is uppercase if its first letter is uppercase.

Letters contain at least the 52 lowercase and uppercaseslétbm the standard ASCII set. In an
identifier, all characters are meaningful. Exampfes: , bar , .20, ___gee 42.

3.1.4.8 Infix/prefix operators

FoCalize allows infix and prefix operators built from a “starting operacharacter” and followed by a
sequence of regular identifiers or operator charactersexamnple, all the following are legal operatots:
++, ~+zero ,=_mod>5.

The position in which to use the operator (i.e. infix or prefixjletermined by the position of the first
operator character according to the following table:

Prefix Infix
2SR - %E& | <=>@ 7

Infix/prefix operators:

prefiz_char =" ~7$ | #

infiz_char ==, + — /% & |:; <=> QA \

prefix_op = prefiz_char {letter | prefix_char | infix_char | digit | _}x
mnfiv_op n=infixz_char {letter | prefiz_char | infiz_char | digit | _}x
op = infiz_op | prefiz_op

Hence, in the above examples,++ and=_mod.5 will be infix operators and-+zero will be a prefix
one.

28

3.1.4.9 Defining an infix operator

The notion of infix/prefix operator does not mean tha€Calize defines all these operators: it means that the
programmer may freely define and use them as ordinary préfikbperators instead of only writing prefix
function names and regular function application. For imstq if you do not like thé-oCaLize predefined

" operator to catenate strings, you can define your own infimsym for™ , say tt ++, using:

‘Iet(++)(sl,52):slA52; [

Then you can use thet+ operator in the usual way

‘ let hw = "Hello" ++ " _world!" : [

As shown in the example, at definition-time, the syntax nexguthe operator to be embraced by paren-
theses. More precisely, you must enclose the operator baspacesand parentheses. You must write
+) with spaces, not simpli#) (which leads to a syntax error anyway).

3.1.4.10 Prefix form notation

The notation(op) is named therefix form notatiorfor operatorop.

Since you can only define prefix identifiersioCalize, you must use the prefix form notation to define
an infix or prefix operator.

When a prefix or infix operator has been defined, it is still fisg0 use it as a regular identifier using
its prefix form notation. For instance, you can use the prefimfof operator++ to apply it in a prefix
position as a simple regular function (with a strange nanmeitaeidly!):

‘ . (++) ("Hello", " _world")

Attention: a common error while defining an operator is to forget thesparound the operator. This
is particularly confusing, if you type theoperator without spaces around the operator: you writestkiedl
entity (*) which is the beginning (or the end) of a comment!

TheFoCalLize notion of symbolic identifiers go largely beyond simple infierators. Symbolic iden-

tifiers let you assign sophisticated names to your functasmdsoperators. For instance, instead of creating a
function to check if integex is equal to the predecessor of integeias in

| et is_eq_to_predecessor (X, y) = ... ;
i f is_eq_to_predecessor (5, 7) ... ;

it is possible to directly define

let (=pred) (X, ¥) = ... ;
if 5 =pred 7 ... ;

Attention : since a comma can start an infix symbol, be careful when usimgmas to add a space
after each comma to prevent confusion. In particular, whe@ngucommas to separate tuple components,
always type a space after each comma. For instance, if yde (irn) then the lexical analyser finds
only two words: the integet as desired, then the infix operator which is certainly not the intended
meaning. Hence, following usual typography rules, alwgyeta space after a comma (unless you have
define a special operator starting by a comma).

Rule of thumb: The prefix version of symbolic identifiers is obtained bylesmg the symbol between
spaces and parens.

29

3.1.5 Extended identifiers

Moreover,FoCal.ize has special forms of identifiers to allow using spaces ingide extend the notion of
operator identifiers.

e Delimited alphanumerical identifiers. They start by two characters(backquote) and end by two
characters (quote). In addition to usual alpha-numerical charactdrs,delimited identifiers can
have spaces. For examplequal is reflexive” , “fermat conjecture”

e Delimited symbolic identifiers. They are delimited by the same delimitor characters andagon
symbolic characters.

The first meaningful character at the beginning of a delichiteent/symbol is used to find its associated
token.

3.1.6 Species and collection names

Species, collection names and collection parameters gercgse identifiers.

3.1.7 Integer literals

Integer literals:

binary_digit =011

octal_digit =0...7

decimal_digit »=0...9

hexadecimal_digit 2=0...9]A...F|a...f

sign n=4| -

unsigned_binary_literal = 0{b | B} binary_digit {binary_digit | _}x
unsigned_octal literal = 0{o | O} octal_digit {octal_digit | _}*
unsigned_decimal _literal = decimal_digit{decimal _digit | _}x
unsigned_hexadecimal_literal ::= 0{x | X} hexadecimal_digit {hexadecimal _digit | _}x
unsigned_integer_literal 2= unsigned_binary_literal

| unsigned_octal_literal

| unsigned_decimal literal

| unsigned_hexadecimal literal
integer_literal 2= sign? unsigned_integer_literal

An integer literal is a sequence of one or more digits, optigrpreceded by a minus or plus sign and/or
a base prefix. By default, i.e. without a base prefix, integeesin decimal. For instancé, -42 , +36.
FoCalLize syntax allows to also specify integers in other bases byepliag the digits by the following
prefixes:

e Binary: base 2. Prefix i®b or OB. Digits are [0-1].
e Octal: base 8. Prefix i®0 or 00. Digits are [0-7].
e Hexadecimal base 16. Prefix iBx or 0X. Digits are [0-9] [A-F] [a-f].

Here are various examples of integers in various bafed:Ff ,0B01001,+00347.

30

3.1.8 String literals

String literals are sequences of any characters delimigedt @ouble quote) characterfpgo factowith
no intervening'). Escape sequences (meta code to insert characters tftaamaear simply in a string)
available in string literals are summarised in the tablewel

Sequence Character, Comment
\b \008 Backspace.
\t \009 | Tabulation.
\n \010 Line feed.
\r \013 | Carriage return.
\o . Space character.
\” ” Double quote.
\’ ’ Single quote.
* * Since comments cannot appear inside strings,

to insert one of the sequence “(*", “*)",{*”,
or “*}”, use this escape sequence combined
with the four following ones.

\((See comment above fQF.

\)) See comment above fQr.

\[[See comment above fQr.

\]] See comment above fQr.

\{ { See comment above fQF.

\} } See comment above fQF.

\\ \ Backslash character.

\' ‘ Backquote character.

\- - Minus (dash) character. Like for multi-ling

comments, uni-line comments can’t appear in
strings. Hence, to insert the sequence “{-”,
use this escape sequence twice.
\[0-9][0-9][0-9] The character whose ASCII code diecimal
is given by the 3 digits following th&. This
sequence is valid for all ASCII codes.
\X[0-9a-fA-F][0-9a-fA-F] The character whose ASCII codehexadec-
imal is given by the 2 digits following the.
This sequence is valid for all ASCII codes.

3.1.9 Character literals

Characters literals are composed of one character endheteeen two *” (quote) characters. Example:
'a’ ,’?" . Escape sequences (meta code to insert characters thiagppaar simply in a character lit-
eral) must also be enclosed by quotes. Available escap@isegs are summarised in the table above (see
section 3.1.8).

3.1.10 Floating-point number literals

31

Float literals:

decimal_literal m= sign? unsigned_decimal _literal
hexadecimal_literal = sign? unsigned_hexadecimal_literal
scienti fic_notation c=e|E

unsigned_decimal_float_ literal == unsigned_decimal _literal

{. unsigned_decimal_literalx}?

{scienti fic_notation decimal_literal}?
unsigned_hexadecimal_float_ literal ::= unsigned_hexadecimal literal

{. unsigned_hexadecimal_literal*}?

{scientific_notation hexadecimal_literal}?

unsigned_float_literal == unsigned_decimal_float_literal
| unsigned_hexadecimal_float_literal
float_literal n= sign? unsigned_float_literal

Floating-point numbers literals are made of an optionah ig’ or '-’) followed by a non-empty se-
guence of digits followed by a dot (") followed by a possitmpty sequence of digits and finally an
optional scientific notation ('e’ or 'E’ followed an optiohsign then by a non-empty sequence of digks-
Calize allows floats to be written in decimal or in hexadecimal. le finst case, digits are [0-9]. Example:
0.,-0.1 ,1.e-10 ,+5E7. Inthe second case, they are [0-9 a-f A-F] and the number baugtefixed by
“Ox” or “0X”. Example OxF2.E4 ,0X4.3A , Ox5a.a3eef ,Oxba.a3e-ef

3.1.11 Proof step bullets

Proof step bullets:
proof _step_bullet ::= <{0...9} + > {letter | digit}+

A proof step bullet is a non-negative non-signed integerdit(i.e. a non empty sequence of [0-9] char-
acters) delimited by the characterand>, followed by a non-empty sequence of alphanumeric chamacte
(i.e. [A-Z a-z 0-9]). The first part of the bullet (i.e. the éger literal) stands for the depth of the bullet and
the second part stands for its name. Example:

<1>1 assune ...

prove ...
<2>1 prove .. by ..
<2>9 ged by step <2>1 property ..
<1>2 concl ude

3.1.12 Name qualification

Name qualification is done according to the compilation atatus.

As precisely described in sectioR?3), toplevel-definitions include species, collections,etyjefinitions
(and their constitutive elements like constructors, rédalds), toplevel-theorems and toplevel-functions.
Any toplevel-definition (thus outside species and coltt) is visible all along the compilation unit after its
apparition. If a toplevel-definition is required by anothempilation unit, you can reference it yalifying
its name, i.e. making explicit the compilation unit’s naneédre the definition’s name using the '# character
as delimiter. Examples:

32

e basics#string stands for the type definition sfring coming from the source file “basics.fcl”.

e basics#Basic _object stands for the specid3asic _object defined in the source file “ba-
sics.fcl”.

e db#My_db _colllcreate stands for the methodreate of a collectionMy.db _coll hosted in
the source file “db.fcl”.

The qualification can be omitted by using tbpen directive that loads the interface of the argument
compilation unit and make it directly visible in the scopelwé current compilation unit. For instance:

speci es S inherits basics#Basic_object = ... end ;;

can be transformed with no explicit qualification into:

open "basics";;
speci es S inherits Basic_object = ... end ;;

After anopen directive, the definitions of loaded (object files of) comafidn units are added in head
of the current scope and mask existing definitions weariegstime names. For example, in the following
program:

(* Redefine ny basic object, containing nothing. x)

speci es Basic_object = end ;;
open "basics";;
speci es S inherits Basic_object = ... end ;;

the speciess inherits from the lasBasic _object in the scope, that is the one loaded by tpen
directive and not from the one defined at the beginning of tbgnam. It is still possible to recover the first
definition by using the “empty” qualificatiofiBasic _object in the definition ofS:

(*» Redefine ny basic object, containing nothing. *)

speci es Basic_object = end ;;
open "basics";;
speci es S inherits #Basic_object = ... end ;;

The qualification starting by a '#' character without comafibn unit name before stands for “the defi-
nition at toplevel of the current compilation unit”.

3.1.13 Reserved keywords

The identifiers below are reserved keywords that cannot lpogeed otherwise:

alias all and as assume assumed
begin by

caml collection conclude coq coq_require
definition

else end ex external

false function

hypothesis

if in inherits internal implements is
let lexicographic local logical
match measure

not notation

33

of on open or order

proof prop property prove

ged

rec representation

Self signature species step structural
termination then theorem true type
use

with

3.2

Language constructs and syntax

3.2.1 Types

Before dealing with expressions and in general, constthetsallow to compute, let us first examine data-
type definitions since, to emit its result, an algorithm mushipulate data that are more or less specific to
the algorithm. Hence we must know about type definitions fondedata that have a convenient shape and
carry the necessary information to model the problem at hand

Type definitions allow to build new types or more complex &ty combining previously existing
types. They always appear as toplevel-definitions, in otleds, outside species and collections. Hence a
type definition is visible in the whole compilation unit (aatso in other units by using threpen directive
or by qualifying the type name as described in section 3)1.12

3.2.1.1 Type constructors

A type constructor is, roughly speaking, a type name.
FoCal.ize provides the basic built-in types (constructors):

int for signed machine integers,

bool for boolean valuestfue andfalse that are hardwired in the syntax drue andFalse
that are defined in “basics.fcl”),

float for floating point numbers,
unit for the trivial type whose only value {3 ,
char for characters literals,

string for strings literals.

New type constructors are introduced type definitions. Types constructors can be parametrised by
type expressionseparated by commas and between parentheses.

3.2.1.2 Type expressions

Type definitions requiréype expressiongo build more complex data-types.

34

Type expressions:

T = lowercase ident Type constructor
| uppercase ident Species representation
| "lowercase ident Type variable
| uppercase ident (7 {, 7} +) Parameterised type constructor
|7 — 71 Functional type
| (rx7{x7}+) Tuple type
| Self Current species representation
| (1) Parenthesised type expression

A type expression can be a type constructor.

A type expression can denote the representation of a spacesollection by using their name, thus
a capitalized name. The special caseSeff denotes the representation of the current species. Hence,
obviouslySelf is only bound in the scope of a species.

Type expressions representing function types are writsgrgithe arrow notation¥) in which the type
of the argument of the function is the left type expressiod i return type is the right one. As usual in
functional languages, a function with several (sdyarguments is considered as a function wiwrgument
returning a function with, — 1 arguments. Hencent -> int -> bool is the type of a function
taking 2 integers and returning a boolean.

FoCalLize provides native tuples (generalisation of pairs). The tgpa tuple is the type of each
of its components separated by a * character and surrounggarentheses. Hencént * bool =*
string) is the type of triplets whose first component is an integerpsé component is a boolean and
third component is a string.

Finally, type expressions can be written between pareathe@ithout changing their semantics.

3.2.1.3 Type definitions

A type definition introduces a new type constructor (the name of the type);wieecomes available to build
new type expressions. Hence, defining a type is the way tosghaame to a new type structuieoCal.ize
proposes 3 kinds of type definitions: aliases, sum typesecatd types.

Aliases

Aliases provide a way to create type abbreviations. It isvaoidy to manipulate larggpe expressions
like for instance, a tuple of 5 componen{gnt * int * int = int =+ int) . Moreover, several
kind of information can be represented by such a tuple. Rtante, X, y, z 3D-coordinates and temperature
and pressure. For another example, year, month, day, hourstes. In these two cases, the manipulated
type expression is the same and the two uses cannot be eiffeiirgrtiated. Type aliases allows to give a
name to a (complex) type expression, for sake of readalititp shorten the code. Example:

type experiment_conditions = alias (int * int = int = int =« int) ;;
type date = alias (int = int * int =* int =* int) ;;

35

Alias type definitions:
alias_type_def ::= type ident = alias 7

In the remaining of the development, the type namgseriment _conditions anddate will be
known to be tuples of 5 integers and will be compatible witia atiner type being also a tuple of 5 integers.
This especially means thattgpe alias does not create a really “new” type, it only givesiame to a
type expression and this name is type-compatible with aoyraence of the type expression it is bound to
Obviously, it is possible to use aliases with and in any tyxg@ession or type definition.

Sum types

Sum types provide the way to create nemuesthat belong to the santgpe. Like 1 or 42 arevalues
of typeint , one may want to haveed, Blue andGreen as theonly values of a new type callezblor
Theonly means that the created typelor is inhabited only by these 3 values. To define such a type, we
itemize its value names (that are always capitalized iflerg) by preceeding them by & ‘tharacter :

type color =
| Red
| Blue
| Green

Note that the first[” character is required: it is not a separator. This espgaiaans that when writing
a sum type definition on a single line, the firgt fhust be written:

‘ type color = | Red | Blue | Green ;;

Values of a sum type are built from thealue constructors i.e. from the names enumerated in the
definition (that must not be confused with tiype constructor which is the name of the type. For, instance,
Red is avalue of the type constructacolor

Value constructors of sum types cangsametrised by a type expression, corresponding values being
obtained by applying the value constructor to a value of tiampeter type. For instance, let's define the
type of playing cards as king, queen, jack and simply nuntheaeds:

type card =
| King
| Queen
| Jack
| Numbered (int)

Hence, theNumbered constructor “carries” the integer value written on the c&dme values of type
card are:King , (Numbered 4) , (Numbered 42) . _

Any type expression, even recursive, can be used as a paraoi@glue contructors. For instance, the
type of lists of boolearx integer pairs could be defined like:

type b_i_list =
| Empty
| Cons ((bool * int) x b_i_list)

From this type definition, a value of tyfei _list is either empty (construct&mpty) or has a head
(the first component of th€ons constructor) and a trailing list (the second component & tonstruc-
tor): Cons ((false, 2), (Cons ((true, 1), Empty))) . The length of this list is 2 and its
elements aréfalse, 2) followed by (true, 1)

36

Sum types definitions:

opt_params == €| ('ident{,ident})

opt_args n=e| (7{7} %)

constructor = | uident opt_args

sum_type_def := type ident opt_params = constructor+
Record types

Record types provide a way to aggregate data of various tgadeis like tuples, but naming the compo-

nents of the group, instead of differentiating them by tipeisition like in tuples. A record is a sequence of
names and types between braces. For example:

type experiment_conditions = {

X . int ;
y :int;
z :int ;

temperature : int ;
pressure : int

b

type identity = {
name : string ;
birth : int ;

living : bool

b

Record types definitions:
field n=1ddent : T ;
opt_params =€ | (ident{,ident} *)
record_type_def ::= type ident opt_params = { field + }

To create avalue of a record type, a value of the related type must be provideedch field of the
record.

{ name = "Benjamin" ; birth = 2003 ; living = true }

Like in tuples, records can mix types of fields.

Parameterised type definitions

It is possible,at topleve] to parametrise a type definition i.e. to create a type with igpe variable
that can be instantiated by any type expression. A type blaria written as an identifier preceded by a
(quote) character.

For instance, the type definition of generic (polymorphisisimay be defined by:

type list (a) =
| Empty
| Cons (a =« list (a))

The value constructo€Cons carries a value of type “unknown” (of type “variable”) ancettail of the
list, i.e. a value of typdist with its parameter instantiated by the same type variablais &xplicitly

37

says that all the elements of such a list have the same tyfgendiv possible to use tHiest type in type
expressiondyy providing a typeexpressionas argument of thiype constructor list . For instancelist
(int) isthe type of lists containing integetsst (list (char)) is the type of lists containing lists

of characters. _ , ,
Parametrised record types can also be introduced, as inltbeihg example:

type pair (a, 'b) = {
first : 'a ;
second : b

b

type int_bool_pair = pair (int, bool) ;;

3.2.2 Type-checking

The type-checking process is roughly similar to ML typeattieg. Polymorphic types are allowed at top-
level. However, methods are not allowed to be polymorphibis means that their types cannot contain
variables. But they may contain collection parametersatsdtn section 4.2.1.

A type t; is aninstanciation of a typets if ¢ is obtained by replacing some type variables-0by a
“more defined type expression”.

For exampleja — int — bool isaninstanciation diz — int —' ¢ since we replaced the variable
'c by the typebool .

Two typest; andt, are saidcompatible if they have acommon instanciation. For the intuition, this
means that replacing variablestinand replacing variables in leads to a same type.
For example, we consider the two following types:

e t;j="a— int ="' b—'¢
e {1y =bool —'d—'d—"e

In ¢, we replace:’a by bool , and we leave the others variables unchanged. We get theypew t
t) =bool — int —'b—'c.

In ¢2, we replacéd by int ,’e by ’c. We get the new typg, = bool — int —'b—'c.

The typet is an instanciation of;. The typet}, is an instanciation of,. The two typeg) andt/, are
structurally the same. Hene¢ge andt, arecompatible.

As it can be seen, an instanciation does not need to chante &jlpe variables. Only part (or none) of
them may be sufficient.

For the sake of intuitive view, compatibility is a generatisn of the notion of types being “equal”. The
most trivial instanciation appears when the two types ddage any type variables. Hence in this case, for
them to be compatible is to be structurally equal. We find is tlase, the common view of “being a good
type” when for instance providing an argument to a functiocoading to the type of the expected argument
in the function’s prototype.

3.2.3 Representations

As further explained (see section 4.1.2) the representégi@ method of a species that describes the in-
ternal data structure that the species manages. Hence kiisl oftype definition, more accurately an
alias type definition. This means that a representation does not introduce a rp®y ityonly “assigns”

38

to the representationtgpe expressiondefining the type of the manipulated entities of the spediésre-
over, like for any other methods (c.f. section 4.1 representation must not be a polymorphic type
Thus its definition cannot contain type variables (but maytaio collection parameter names). Defining a
species'representation is simply done by addingdpeesentation method:

open "basics" ;;

speci es IntPair =
representation = (int = int) ;
end ;;

Recall that the type introduced by the methmghresentation is denoted bySelf within the
species.

Representation:
representation ::= representation = 7

3.2.4 Expressions

Expressions are constructs of the language that are esdlumdb avalue of a certairtype. Hence values and
types are not at the same level. Types serve to classify vatte categories. Although proofs may contain
expressions, we describe them in the 5. Indeed proofs arexpoéssions, they do not lead FoCal.ize
values thus live at another level.

Expressions:
exp ::= integer_literal
| string_literal
| character_literal
| float_literal

| true | false Boolean constant
| {ident?# }tuident sum type value constructor
or species/collection identifier
| Self?luident Method of the current species
| {ident?# }?{uident!}?lident Method from specified species/collection
| {ident?# }?{uident!}?(operator) Infix or prefix operator used in functional position
| let rec? let_binding {and let_binding}* Let bound definition
in exp
| if exp then exp else exp Conditional
| match exp with match_binding+ Pattern matching
| exp (exp{ ,exp } *) Function application
| unary_operator exp Application of unary operator
| exp binary_operator exp Application of binary operator
| { record_field_value Record value
{; record_field_value } + }
| { exp with record_field_value Record value clone
{; record_field_value } + }
| expr {ident#}?lident Record field access

39

| (exp) Parenthesised expression

Record field value:
record_field_value ::= {ident?#}?lident = exp

Let bindings:
let_binding ::= lident {in type_expression}? = exp Definition without parameter
| lident (lident {in type_expression}? Definition with parameter(s)
{, lident {in type_expression}?} x)
{in type_expression}? = exp

Match bindings:
match_binding := | pattern —> exp

Patterns:
pattern ::= integer_literal
| string_literal
| character_literal
| float_literal

| true | false Boolean constant

| lident Variable

| {ident?# }tuident 0-ary sum type value constructor
| {ident?# }Tuident (pattern {, pattern}) N-ary sum type constructor

_ “Catch-all” pattern
{record_field_pattern {; record_field_pattern} « } ~Record

(pattern {, pattern} +) Tuple

(pattern) Parenthesised pattern

Record field pattern:
record_field_pattern ::= {ident?# }?lident = lident

3.2.4.1 Literal expressions

The literal expressions of type integer, string, charadteat and boolean) are evaluated into the constant
represented by the literal. The expressiindenotes the value 25 of typet .

3.2.4.2 Sum type value constructor expressions

We presented in section 3.2.1.3 the way to define sum typessaWehatvaluesof such atype are built
using itsvalue constructors.

40

Hence, forvalue constructors with no argument, the constructor itself iexgression that gets evaluated

in a value wearing the same name.

For value constructors with parameters, a value is created by evwadpan expression applying the
constructor to as many expressions as the constructatys @fviously, sub-expressions used as arguments
of the constructor must we well-typed according to the tyjte®constructor. The resulting value is denoted
by the name of the constructor followed by the tuple of valgiesn as arguments. For instance, with the
following type definition:

type t =
| A
| B (int * bool)

the expressioi is evaluated intA, the expressioB ((2 + 3), true) is evaluated into the value
B(5, true).

3.2.4.3 Identifier expressions

An identifier expression is either a basic identifier, an el identifier or a qualified identifier (see section
3.1.12), which denotes the value of this identifier in thepgcof the expression. The identifier is said to be
boundto this value.

The value bound to an identifier can be of any type. A valuerttagifunctional type, that isfanctional
value also called alosure, is created by a function definition. Such a value, obtainethb evaluation of
the body of the function, is slightly different from otheremnsince it embeds both the code of the function
(i.e. a kind of evaluation of its body expression) and itsiemment (i.e. bindings between identifiers
occuring in the body of the function and their value in the migén scope). This closure will be kept
untouched until it appears in a functional application esgion as described further in 3.2.4.8.

There are several possibilities to bind an identifier. D&éins introduce a basic or extended identifier
andbinds it to the value of the expression stated in the definition. rétaee three ways to introduce and
directly bind an identifier:

e Byalet-in construct,
e By atoplevel-definitionlet ortheorem),
e by a method definitionl¢t),

Each of these three cases will be described in their relatetibs.
There are two ways to introduce basic identifiers as paramete

e in a function definition
e by a pattern inside ematch-with construct

Then the binding of the parameter is differed until the aggtlon of the function or the pattern-matching
mechanism. Each of these two cases will be described inridaied section.

Suppose that an expressianp contains several occurrences of an identifigrvar . Assume that, in
the scope okxp, my.var is bound to avalue v, then each occurrence afy_var in exp is substituted
by v during the evaluation ofzp. This is basically the principle of the so-calledgeror call by-value
evaluation regime.

41

Identifier resolution Remember that identifiers forms differ depending on theatitt class of entity they
refer to, capitalized identifiers being used for species@i@ctions. To evaluate an identifier expression,
theFoCalize compiler tries to find its definition from the current scopoamtext. It searches for the closest
definition with this name, starting by the parameters preisethe current definition (i.e. formal parameters
in a function and in anatch-with construction andet-in ~ bound identifiers). If no identifier definition
with this name is found, the search goes on among the metlidls current species. If a method is found
with this name, it will be retained, otherwise the identifielooked in the preceding toplevel-definitions
of the current compilation unit. If no suitable definitionfeund, then the ones imported by tbpen
directives are examined to find one with the searched nanmallyif no definition is found, the identifier
is reported unbound by an error message.

Note that amopen directive may arise anywhere at toplevel in the source cdtkence, the order of
search between the current file’s toplevel-definitions &edmported ones bypen is not really separated:
the name resolver looks for the most recent definition ce@msid that the toplevel-definitions and the im-
ported ones are ordered according to the apparition of feet®ie definitions in the file themselves and the
imported ones. In other words, if a toplevel-definition &xi®r an entityfoo , if later anopen directive
imports anothefoo , then this last one will be the retained one.

Identifier qualification

Identifiers can manually be disambiguated in term of contipiaunit location using the sharp (#) nota-
tion as explained in section 3.1.12.

As further presented in section 4.2.1, species methodsifiees are made explicit using the “I” notation.
The notationSpe!meth stands for “the methotheth of the specieSpe”. By extension,!meth stands

for the methodmeth of the current species. It is possible to expliSelf in the naming scheme using
Selflmeth . This is useful when a more recently defined identifier hidesethod of the species at hand:

species S =
let m (x in ..)
let n(y in ..)

ey

let m= .. in

(» want to call the *nethodx "ni with argument "ni 1!l)
Im (n) ;

end ;;

Hence, the name resolution mechanism allows to omit thetft'nbaking it explicit can help for conflicts
resolution. Moreover, when invoking species parametersthods, the name resolution never searches
among methods of collection parameters, hence the exfilicibtation is required.

As the grammar shows, name qualification by compilation amit hosting species can be freely mixed.
We can build identifiers likeny_file#My _species!my _method to refer to the methodny-method
hosted in the speciddy_species located in thd=oCalize source file “myfile.fcl”. These disambiguation
methods are indeed orthogonal.

Extended identifier expressions

Finally, infix/postfix operators can be used as regular iflerg. Usually, an operator is syntactically
used according to it prefix or infix nature. For instance, tinaty + operator is used between its arguments
as inx + 4, the unary operator is used before its argument as+n x. FoCaLize allows to refer to
those operators as regular identifiers (for instance agiiimparameters). This allows to use operators as
any other identifiers, and

e using them as regular function (i.e. in functional posijon

42

e bind them as arguments of functions,

e use them as regular identifiers in expressions, for exanopb@ss them as arguments of other func-
tions.

To get an identifier from an operator, its symbol (c.f. 3.1rijst be delimited by spaces and enclosed into

matching parentheses. For examlet) is the regular identifier corresponding to the infix symbol

Note that spaces around the operator symbol are mandataainof the syntax. If spaces are omitted,
the parens get their usual meaning and the interpretatioleaompletely different. A specially puzzling
error is to write(*) tomean(*):

let () (X, y) = ...

Now, (* is evidently parsed as the beginning of comment, leadingsim#ax error or any other cryptic
error long after the faulty = occurrence. Conversely) is always considered as an end of comment by the
lexical analyzer.

3.2.4.4 let-in expression

let-in expression binds an identifier to a value to evaluate artp#ixpression (theifi-part " of the
“let-in " or “body”) where this ident may appear. During the evaloatof the trailing expression, any
occurrence of the bound identifier is “replaced” by the vddoand to this identifier. For instance:

let x =5 in (X X)

bindsx to the evaluation of thexpression(3+2) (i.e. the integewalue 5) and then, the evaluation of
the trailing expression returns the tuplalue (5,5). From the syntax, it is clear th&t-in constructs
can be nested. For instance,

let x = 3+2 in

let y = (X, x) in
let z = truein
V. z. vy 2

returns the valué(s, 5), true, (5, 5), true) oftype((int ~ * int) * bool = (int * int)
* bool) .

Note that the notion of “binding an identifier to a value” issestially different from the notion of
assignment in imperative languages. In such languagesliklava, Pascal,...) a variable is fastlared
then a value isassignedto the variable. It is thus possible to assign a variable regtenes to different
values. For example in C:

{
int i ;
i =10 ;
while (i > 0) i = i ;

}

The variable is declared, then assigned the initial valige then thewhile loop makes it decreasing
by successive assignments.

Inalet-in binding construct, an identifier is given a value once andfoiit is impossible to change
its value, once it has been bound. Each new definition, bindimalready bound identifier will just hide the
old definition. For instance:

43

let x
| et
| et
| et

N X< Il

in

x, %)
true in
x, x)

in

I mn o

in

v, X ¥ X)

leads to the valué(s, 5), true, (5, 5), true) oftype((int * int) * bool = (int * int)
* bool) . Clearly the first value bound to holds untilx is bound again5 is used to defing but not to
definez, since the value of is then the booleatrue.

Thelet-in construct serves to bind an identifier to a value of any typeaA&onsequence, it can also
bind an identifier to a functional value. This lead to the ratway to defindunctions. For instance:

let f(x,y) =x+y in

f (6, 7)

Thelet construct bind$ to a function which has 2 parametersindy, and the body of is the addition
of these 2 parameters. Then the body ofldten construct applie$ to 2 effective argument§ and7
(we obviously expect the result of thigoplicationto be 13). (Function application is explained below in
??).

It is possible to provide a type constraint to precise the tyfpthe return value of a function, or the type
of thelet -bound variable or parameters:

let f (x:
f (@, 7

int, y) = x +y in

let f (x: in

f (6, 7)

int, y) inint =x +vy

let ainint =3 in

(& a

It is possible to define several identifiers at the same tinpars¢ing each definition by the keyword

and

I“;et f=exp_1

and g = exp_2

and h = exp_3 in exp;

All the definitions are separately evaluated “in paralleXs a consequence, the identifiers introduced
by alet ... and cannot be used in the right members of this constructionh@rekp _i). Do not
confuse this construct with nestkd-in~ as the followig one, wherexp _2 can contairf andexp _3 can
containf andg.

let f=exp_ 1 in
g = exp_2 in

h = exp_3 in exp

Mutually recursive functions need to know each other bezdhsir bodies call these other functions
and their definition require a non-nested evaluation of éawttion. In this case, the keywotet must be
followed by the keywordec .

let rec even (x) =
if x=0 then true else odd (x - 1)

44

and odd (y) =
if y=0 then false else even (y - 1) in

Warning: in the current version ofoCaLize mutually recursive functions cannot be compiled into
Cog code. OnlyOCaml code generation is available. Moreover, @oq, recursive functions imply ter-
mination proofs. This last point will be covered in the sewti6 especially dedicated to recursive (non-
mutually) function definitions.

3.2.4.5 logical let

As seen above, thket-in construct is used to bind computational expressions. labggpressions
described further in 3.2.7 are first order logic formulae. Wald sometimes like to have parametrised
logical expressions, i.e. a kind of functions returning gidal proposition.

Suppose we want, for a certain valueao&ndy, to use the fact# < y andx + y < 10” (which holds
or not) to build more complex logical expressions.

A first attempt is to use the logical expressiork y/ \ +y < 10 wherexz andy are considered as
fresh (free) variables. But there is no way in the languageroperties to instantiate andy by different
integer values in order to obtain a proposition (regardtdsts truth value).

Another attempt is to introduce a property bound to the psitjom Ve, y : int, 2z < y/\x+y < 10. It
does not fit because there is no provided way to substitatedy by integer values: there is no syntactical
construction for elimination of a universal (nor existafjtquantifier in the language of properties (note that

elimination can be done during a proof).

To allow functional bindings in logical expressioReCal.ize provide thelogical let construct. It
serves to introduce a parameterised logical expressioichwhn be applied to effective arguments to obtain
a logical proposition. Our example would be expressed by:

use "basics" ;;
open "basics" ;;
species S =
iuogical let f(x: inint,y inint)=x<y/Ax+y<10;
end ;
Sincelogical let binds an identifier to a logical expression, the body of thiend®n must ob-

viously be of type bool . Once definedf can be used as a regular function, but only in properties and
theorems statements. For instance:

use "basics" ;;
open "basics" ;;

species S =

let m (x in Self) = ... ;
logical let f(x: inint,y inint)=x<yAx+y<10;

property p: all ain Self, all b, c inint f (c, b) =>f (m (a), b) ;
end ;

See other examples in the standard library where this earigin is used to define associativity, com-
mutativity, ...

45

3.2.4.6 Conditional expression

A conditional expression has the form:

if exp,then exp; else exps

Its evaluation starts by the evaluation of #hey; expression which must be of type boolean. If its value
is true then the result value of the whole expression is the value:pf, otherwise (i.e. if its value igalse)
the value ofexps. This obviously implies thatzp, andexps must have the same type. This construct is
then a binary conditional expression (i.e. with 2 branches)

let f(= if xthen1elseOin .. [

The functionf will return 1 if the effective argument provided faris true, otherwise it will return).

I et is_too_small (x) = ... in
let y = .. in
| et y_corrected = i f is_to_small (y) then O elsey in ..

In this example, we assume we have a funct®ntoo _small checking if a value is “too small” and
an identifiery bound to a certain value. The result of the conditional essice bound tgy _corrected
will be either0 if the condition is met oy otherwise.

3.2.4.7 Match expression

The match-with construct is a generalised conditional construct withgoattnatching. By “gener-
alised”, we mean that unlike thethen-else which has only 2 branches, the present expression can
have several branches. The notion of condition here is nghare a boolean value. Instead, the con-
struct allows to discriminate on the different values anregpion is evaluated into. The basic structure of
amatch-with consists in a discriminating expression followed by an eexation of cases (callgglat-
terns). The dicriminating expression is evaluated and its vaduaatched against the patterns, following the
textual ordering of these patterns, until a match succeBusn the expression associated with the matchng
pattern is evaluated to obtain the value of the whole exjmessatch-with

0 -> "zero"
5 -> "five"
1 -> "one"
10 -> "ten"

match a + 5 with
|

|

|

|

| -> "other" in

The discriminating expression in this casaist 5 of typeint . We can then react to each (or some of
the) values of this expression. Whan+ 5 is equal ta0 the result of the wholenatch-with expression
(bound to the identifiex) is the string “zero”. Whera + 5 is equal tol, the result is the string “one”,
and so on. The final patterrstands for “anything that was not in the previous casesb(eddled “catch-all
pattern”). Hence, the order of the patterns is importarthdfcasé _ -> was put before the casel ->,
then this last case would never be reached since pla¢tern would have caught the discriminated value.

As a consequence of the structure of this construct, typst@nts must be respected in order to have
the whole expression well-typed:

e The type of the discriminating expression must be compatibth the type of the patterns.

e thus all the patterns must have compatible types.

46

e The types of all the result expressions in the rightmostspafrthe cases must be compatible.

In the example above, the patterns were constants. A valtehesa constant pattern if and only if it
is equal to this constant. In addition to this multi-brarekenditional feature, thmatch-with construct
provides trugopattern matching. That is, patterns may be built from constants, value coogirs, variables
and the catch-all symbal Any value matches any variable pattern and tipattern. For general patterns
built from value constructors, variables, constantspughly speaking, a value matches a pattern if this
pattern can be seen as a prefix of this value. Then, the vesialblthe pattern get bound to the parts of the
discriminating expression that are “at the same place” thase variables. For example:

let e = ... in

let x =
match e with
| (O, 0) > 1
[0. % y) >x+y
| (1, X) -> X
| (%, Z) > X +y+z

< PrXxO0

According the the type-checking mechanism, the examinpdessione must have here typ@gnt *
int * int) . The first pattern will be chosenéfis equal to the tupl€0, 0,0). We say here “equal” since
there is no variable in the pattern, hence the only way to difgéttern is to simply be equal. If this pattern
is not fitted, the we examine the second pattern. It will besehafe has a0 as first component and any
integer for the second and the third ones. In this case, fudt ralue will be the evaluation of the expression
x + y where x will be bound to the effective second component of/etiee ofe andy will be bound to
its third component. We can notice that no “catch-all pattés needed since the enumerated patterns cover
all the possible values of tuples with 3 components (lookatiast pattern that do not put any constraint on

the tuple components, hence will match all the remaininggias
The previous example used tuples as matched expressionatiedng, but patterns also contain sum

type value constructors, hence allowing to “match” on any $ype structure. For example:

type t =
| A
| B (int)
| C (nt = int)

let e in
let x
match e with

| A->0
3) > 4

) > 10

This example shows different cases following the structifithe typet . Note the use of the “catch-all”
pattern inside patterns. In fact, the “catch-all” pattectsdike a variable unused in the rightmost part of the
case. It is however preferable to usé thstead of a variable sinc®@Caml generates warning for unused
variables and the generat®Caml code generated dyoCalize will not change unused variables intds.

Patterns also allow to match record values (c.f. 3.2.4i¥2)to match on values of the fields:

| type t = { name : string ; birth : int } ;; ‘

a7

let r = .. in

let x =
match r with
| { name = "Alexandre" } -> ...
| { name = n ; birth = 2003 } -> ..
| { name = n } -> ..

In such a pattern, fields not specified are considered agt@difcpatterns. Hence, the last case catches
all the record values not caught before since the fielehe’s value is bound to a variable (so, any value can
match it) and the fieldhirth is absent (so, consideredlaisth =).

3.2.4.8 Application expression

We previously saw that thiet-in construct allows to define functions by binding an identifeea func-
tional value. Using a function by providing it with effectivarguments to get its result value is called
application. Hence, in an application there are 2 distinct parts: thdicgijve part that must be an ex-
pression leading to a functional value and the effectivaiments that are expressions whose values will
be provided to the function to make its computation. Theaytibr application is simply the juxtaposi-
tion of the applicative expression and the comma-sepatpcessions used as arguments embraced by
parentheses:

let f(x) = .. in
let g (X, y) = ... T (y) ... in
g (f(3) 4

As described in 3.2.4.3, the evaluation of an applicatioa fafnction to its effective arguments start by
the evaluation of these arguments (the order of the evaluafiseveral arguments is left unspecified). Then
these effective values are substituted to the correspgruimameters inside the body of the function and
the so-obtained expression (the substituted body) is atedu For instance, having the following function
and application:

let g (X, y) = (Y, X in
g (true, 1)

The evaluation of thi¢et-in expression first binds the identifigrto afunctional value also called
closure Then the application expressian (true, 1) is evaluated. So the values gfand of the
expressiontrue,1) are elaborated: the evaluation @freturns a closurefrue is evaluated into the
booleanvalue true, 1 into the integewnvalue 1. The next step is to evaluate the body of tesure of
g, replacing the formal parametgrby the effective argument-ue andy by 1. The body ofg creates a
tuple from its 2 arguments, puttingin the first component and in the second. Hence, the result of the
application is the tuplealue (1, true).

3.2.4.9 Operator application expression

Since operators are designed to be used in infix or prefixiposipplication of operators consists simply
in providing arguments according to the operator infix/prefiture. For infix operators, arguments are on
left and right sides. For prefix operators, the operator fsant of the argument expression.

3.2.4.10 Record expression

As stated in 3.2.1.3, record types are defined by a list ofdabi¢h their types. As usual a record expression
follows the same structure, replacing the type expressibrise definition by values of these types. For
instance, assuming the given record type definition, tHeviahg example shows a possible record value:

48

type identity = {
name : string ;
birth : int ;

living : bool

P o

{ name = "Nobody" ; birth = 42 ; living = fal se }

If the record type definition is in a different compilationiyryou may qualify the record fields by the
“#" notation:

{ my_file#name = "Nobody" ; my_file#birth = 42 ; my_file#liv ing = false}

3.2.4.11 Cloning a record expression

Itis sometimes needed to create a new value of a record typ®difying a few fields of an existing record,
leaving the other fields unchanged. If the record type deimitontains numerous fields, manually copying
the old fields values to create the new record value appeargtend error prone:

typet={a:int;b:int;c:int;d:int;e:int; f:int}

let vi={a=1;b=2;c=3d=4;e=5;f=61} in

[¢]
-

<
N

1
—~

a=vla;b=vlb;

c =5; (x Changed value. x)

d = vilc ; (*» an error since the requested value was "vl1.d".)
e =6 ; (* Changed value. x)

f=vif} in

Instead of manually copy the unchanged fielisCaLize provides a way to clone a record value, that
is to create aew, afresh value from an existing one, only by specifying the fields wehealues differ from
the old record value:

type t = .. (* Like above. x)
let v1 = .. (* Like above.)

let v2 ={vl withc=5;e=6} 1in

As for other record value expressions, if the record typendifn is in a different compilation unit, you
may qualify the record fields by theé*" notation.

3.2.4.12 Record field access expression

Once a record value is created by aggregating values of lis fiee is possible to recover the value of one
field by a dot notation. For instance, assuming the type dieimand record values of the previous example:

.. vlia ..
.. V2.C ..

respectively get the value of the field®f vl andc of v2, thatis,1 and5. If the record type definition is
in a different compilation unit, you may qualify the recordldis by the #” notation: t1.my _source#a .

49

3.2.4.13 Parenthesised expression

The parentheses can be used around any expression, toeettierassociativity or evaluation order of
expressions. Simple expressions (i.e. atomic) can alsatemihesised without changing their values.

3.2.5 Core language expressions and definitions

In the previous sections, we described the syntax of express Expressions rarely appear outside any
definition but it is still possible to have top-level expriess. They will be directly evaluated and not bound
to any identifier, but this implies that these expressiomspgviously written definitions.

As further explained in (c.f. 4.1.2) species are made of outh Some methods contain expressions
(functions, properties, theorems). Function-methodsirareduced by thdet keyword, using the same
syntax (hence expressions) that teein construct except the fact they do not havdra™ expression.
The idea is that theifi ” expression is implicitly the remaining of the species. p&ndies and theorems
are respectively introduced by the keywopdsperty andtheorem and may contain expressions. The
section 3.2.7 is dedicated to their detailed explanation.

open "basics" ;;

speci es My _Setoid inherits Basic_object =
signature (=) : Self -> Self -> bool ;
signature element : Self ;
| et different (x, y) = basics#not_b (x =vy) ;

property refl : all x in Self, x = x ;
property symm : all xy in Self, Selfl(=) (X vy) >y =Xx;
end ;;

Toplevel-definitions are definitions introduced outsideanf species. General functions and general
theorems, i.e. that do not depend on a particular speciebecariroduced as toplvel-definitions. Toplevel-
functions are introduced by thet keyword and don’t have arf ” expression, this part being implicitly the
remaining of the program (i.e. the current compilation @mi¢l those using the current). Toplevel-theorems
are introduced by ththeorem keyword. These definitions must be ended by a double semi’)*

| et is_failed (x) =
match x with
| Failed -> true

| Unfailed (1) -> fal se
t heor em int_plus_minus: all xy z in int

(* X +y =2z ->y =27 - X *)

#base_eq (#int_plus (X, y), z) -> #base_eq (y, #int_minus (z , X))

proof :

coq proof {=*

intros x y z;
unfold int_plus, int_minus, base_eq, syntactic_equal in |- x;
intros H;

unfold bi__int_minus;
apply EQ_base_eq; apply Zplus_minus_eq;

symmetry in |- *;
apply (decidable _ _ _ (Z_eq_dec (x + y) z) H).
Qed.

*}

50

3.2.6 Files and uses directives

FoCalize provides 3 directives that are not expressions. This mdatsthhey do not lead to values or
computation.

3.2.6.1 Theuse directive

This directive is followed by the name of the file to open betwedouble quotes without the “.fcl” extension.
Before being allowed to use the qualified notation for an tifien (i.e. the #"-notation), the qualifying
compilation must be declared as “used” thanks to this diuectn other terms, “using” a compilation units
allows to access its entities from the current compilatioit. u

3.2.6.2 Theopen directive

This directive is followed by the name of the file to open betwedouble quotes without the “.fcl” extension.
As previously introduced (c.f. 3.2.4.3 and 3.1.12) tipeen directive loads in the current name resolution
(scoping) environment the definitions of the compilatiorit mamed in theopen directive. This prevents
the user from having to explicitly qualify definitions of ghinit by the #” notation. Definitions imported
by the directive hide (“mask”) those wearing the same nameadi/ defined in the current compilation unit
from the point the directive appears. Remember that it isdvewpossible to recover the hidden definitions,
using the #” notation without compilation unit name.

Note that theopen directive implicitly implies theuse directive. This means that it is not useful to add
ause together with aropen directive.

‘ open "sets";;

This directive loads the definitions of the compilation ufséts.fcl” in the current name resolution
(scoping) environment.

The path of the compilation unit is never specified. The filkk b@ searched in the library search path
specified with thel option (c.f. 7).

3.2.6.3 Thecoq _require directive

Some source files of a development may be directly writteddg to provide external definitions (more de-
tailed further in 9.0.5) to import and use in theCal.ize source code. In this case, theq code generated
for the FoCalize source code must be aware of the need to import the exterfiaitides from the manu-
ally written Coq file. For this reason, thEoCaLize source must explicitly indicate by tleq _require
directive that it makes references to definitions hostediim@oq source file. For example, the file “well-
fc;un%ed.fcl" of the standard library needs “wellfoundexternals.v’ and signals this fact in its early lines
of code:

open "basics";;
open "sets_orders";;
coq_require "wellfounded_externals";;

51

3.2.7 Properties, theorems and proofs

Properties are first order logic propositions and theorerageoperties with their proofs. We will study
here first the structure of logical expressions used to egpifee statements, show properties and theorems
forms and shorty present the 3 available ways to write proofs

3.2.7.1 Logical expressions

Logical expressions are those used to write first order lfmyimulaes.

Logical expressions:
logical _expr := all lident |, lident] = in type_expr Universal quantification
| ex lident [, lident] * in type_expr EXistential quantification

| logical _expr —> logical _expr Implication

| logical _expr <—> logical _expr Equivalence

| logical_expr |\ logical_expr Conjunction

| logical_expr \ / logical _expr Disjunction

| ~ logical_expr Negation

| expr Arbitrary FoCalize expression (atom)
| (logical _expr) Parenthesised logical expression

Logical expressions contain the usual logical connectionply” (=), “and” (A), “or” (), “there exists”
(3), “for all” (), “is equivalent” ¢&) and “not” (~). Moreover, logical expressions embed #a&Cal ize
expressions used in computational methods (i.e. idemtif@nditionals, application, ...). This allows to
have connected propositions using the previously definectitns and species methods.

species S ... =
signature gt : Self -> Self -> bool ; (* Greater than... x)
signature geq : Self -> Self -> bool ; (» Greater or equal... *)
signature equal : Self -> Self -> bool ; (*» Equal to... x)
si gnat ur e different : Self -> Self -> bool ; (» Different of... x)
property gt is_It : all xy in Self,

(gt (x, y) -=> ('geq (x, y) N !different(x, Y)))
A

(‘geq (x, y) -> (gt (x, y) V lequal(x, y))) ;
end ;;

Since propositions in logical expressions are truth valtieés obviously imply that the arbitrary expres-
sions used between connectors must have lud .

3.2.7.2 Properties

A property is a logical expression bound to an identifier. féisn is the name of the property, a colon
character (*:") and the logical expression being its staeinSee the example given in 3.2.7.1.

Properties:
property ::= property lident : logical_expr

52

3.2.7.3 Proofs

FoCalize currently provides 3 ways to write proofs. We only give hersiraple description of these 3
means without going deeply in the technical mechanism®gims problem will be especially addressed in
section 5 and 9.0.6.

e Consider the proof as “assumed” This way is the simplest but also the weakest one since #istsn
in saying that no proof is given and the system must trustttited statement.

species S =
representation = int;
|l et equal = (=0x);
theoremsymetry : all xy in Self, Selflequal (x, y) -> equal (y, X)
proof : assuned
{*The equality of machine integers i s admitted to be symetric *}
end ;;

Following theassumed keyword is a mandatory message used for sake of informatistification,
traceability of the proof absence. Although such a prooficanduce inconsistencies if the “theorem
is not a tautology and thus decrease confidence in the coesscbf thd-oCal.ize program, there are
several cases where using this keyword may help.

— The first case is simply that the developer doesn’t know (yétow to make the proof, doesn’'t
have time yet to write it, is not interested in proofs butl sténts his program to compile to get
the executable code.

— Second case deals with import of external code, i.e. codevritien in FoCalize and con-
sidered as external. In this case, since the imported coele miat fit theFoCalize model and
more accurately, does not have formal properties, it is Bajide to make any proof droCal -
ize’s side based on the structure of this code and its non-egigtiplementation properties. In
other terms, things coming outsif@Cal.ize universe can not be modeled BgpCalize. The
developer only can import them providing a binding is gived anust trust them.

— Last case addresses “well-known” mathematical propettti@isdo not actually hold in comput-
ers since they are finite machines, working on bounded agitics1r The most obvious example
is the fact that since an integer is coded on a machine woren(®t? or 264 bits nowadays), the
mathematical propertyx € N,z + 1 > z does not hold anymore.

However, conceptually, except when dealing with boundattds property holds and we need to
achieve further proofs. For this reason, assuming thatribaf nolds is legitimate, if the devel-
oper is able to guaranty that the integer computations rexexflow. If he cannot guaranty non-
overflow, then this is a true problem of specification or desidnich should be re-considered.

In any case, we advice the reader to use the test tool (or @mmtban) to comfort the confidence in
the statement of the theorem.

e Write an automated proof script. FoCalLize provides a syntax, thEoCalize Proof Language, to
split proofs into steps that may be proved by #®non theorem prover. Without entering deeply
into the syntax further described in chapter 5, the mairufeatare the following. The user may state
hypotheses, demonstrate subgoals that will serve as lefiomagigher level goal and may give hints
about definitions or declarations of methods. TEemon tries to automatically guess a proof of this

53

goal, then tries to prove those lemmas, hence building & pre® until the top goal (i.e. the theorem)
is proved. Below follows an example of such proof.

t heor em zero_is_unique : all oin Self,
(all x in Self, lequal (x, !plus (x, 0))) -> lequal (o, !'zero)
proof =

<1>1 assune o in Self,
assune H1: all x in Self, lequal (x, !plus (x, 0)),
prove lequal (o, !zero)
<2>1 prove l!equal (!zero, !plus (!zero, 0))
by hypot hesis H1
<2>3 prove l!equal (o, !zero)
by step <2>1
property zero_is_neutral, equal_transitive, equal_symmetric
<2>4 concl ude
<1>2 concl ude

e Write a Coq script This way is the most difficult since it means to directly wrii®q code. It
requires the understanding of bdfloq and the mapping thEoCalize compiler does to generate
Coq code fromFoCalize source code. The section 9.0.6 describes Ro@alize definitions are
mapped ont@€Coqg names.

The Coq script is introduced by the keyword®q proof and surrounded by* and* }. Below
follows an example of such proof.

t heor em int_minus_plus: all xy z in int
(* X -y =2z ->X =y + 7z %)
#base_eq (#int_minus (X, y), z) -> #base_eq (x, #int_plus (y , 2))
proof :

coq proof {=

intros x y z; unfold int_plus, int_minus, base_eq,
syntactic_equal in |- x;

intros H;
unfold bi__int_minus;
apply EQ_base_eq; rewrite <- (Zplus_minus y Xx);
apply Zplus_eq_compat; trivial; apply decidable.
apply Z_eq_dec. assumption.

Qed.

*} 5

3.2.7.4 Theorems

Now we know how to write a logical statement and (neatly how to write a proof, the structure of a
theorem appears simple since it contains both the stateamehthe proof inside the same construct. The
theorem is introduced by the keywaditteorem and the proof by the keywongroof followed by a colon
character (*:").

Theorems:
theorem ::= theorem lident : logical_expr proof = proof

For instance:

speci es Meet_semi_lattice inherits Setoid =

t heor em inf_right_substitution_rule : all xyz in Self,
equal(y, z) -> equal(linf(x, y), linf(x, z))

54

proof:
by property
inf_left_substitution_rule,
inf_commutes,
equal_transitive ;

end ;;

The kind of proof used here is written FoCalize Proof Language and must not be a matter of under-
standing at this point since this particular point will beleessed with more details in chapter 5.

Notice that theorems can be hosted in a species or can begbgieorems. Unlike theorems, properties
cannot appear at toplevel since there is no way to inherdggdével, hence no way to give a proof after the
property definition in a “parent”.

55

Chapter 4

The FoCalLize model

As stated in section 1, tHeoCalLize language is designed to build an application step by stapgdmom
very abstract specifications to the concrete implememtdatioough a hierarchy of structures. At first sight
species seem quite similar to classes in an Object-Oriezuatext. However, despite of inheritance and
late-binding featuresi-oCal.ize is definitively not an Object-Oriented language as C++, Ja@iz. are.

In the following we focus on the basic concepts underlyifkgp&al.ize development, that is:

e Top-level definitions

Species

Collections

Parametrisation

e Inheritance
e Late-binding

To ensure that this part can be read independently of thmseltwe duplicate some explanations.

4.1 Basic concepts

4.1.1 Top-level Definitions

We calltoplevel-definition (just one word) a definition which appears outside specidsakections. Such
definitions can only be:

e Species

e collections,

type definitions,

general theorems (not depending on a species)

general functions (not depending on a species),

56

e expressions to be directly evaluated (but there is no wayni their value to an identifier).

Any toplevel-definition is terminated by a double semi-etwder (*;;”).

4.1.2 Species

Speciesare the nodes of thEoCalize hierarchy. A species is a sequencar@thodsor fields, each one
being terminated by a semi character (*;”). Hence, a bascisp looks like:

speci es Name =
methl ;
meth2 ;

end ;;

Species names are alwagapitalised As any toplevel-definition, a species ends with a doublei-sem
character (“;;”). There are several kinds of methods:

e Therepresentation It defines the type of the entities manipulated in the sjgeael is a kind of alias
type (see section 3.2.3). The representation can be a tyjadlaand then is said to be “not yet de-
fined” or “only declared” and is not explicitly introducedt.can be bound to a type defined by a more
complex type expression possibly containing type varilfiletroduced via collection parameters).
Either, this type value is obtained by inheritance or isadticed by the keywortepresentation
followed by= followed by a type expression. Ultimately to get@mpletgfully defined) species, the
representation must be a fully instantiated type (direatlipy 4.3.1).

In the context of a species, the representation is denot&ely .

Note that a representation is never a polymorphic type. Whsnonly declared, it is a type vari-
able, which can receive only one instantiation. In otherdsothis type variable is not universally
quantified, as are the type variables of polymorphic types.

e Signatures They introduce names of constants and functions, unigpedyiding their type as a
type expression. A signature begins with the keywsigthature followed by the introduced name
followed by: followed by a type expression. For instance:

speci es IntStack =
signature push : int -> Self -> Self ;
end ;;

As we saw aboveSelf represents the representation (thus a type) of the cupecies. Hence an
operation pushing an integer onto a stack takes as paratheteteger to push, the stack on which to
push and give back a new stack, that is, an entity of &gk .

e Functions. They are implementations of signatures, providing effectode. A function is intro-
duced by thdet keyword followed by the name followed by followed by a definition, which
is similar to ML definitions. Recursive functions are intuogd bylet rec to make explicit the
recursivity.

speci es IntStack =

representation = int list ;

let push (v inint, s in Self) =v i s;
end ;;

57

Function parameters can be entities (that is, values) dffikeies itself (which type is the representa-
tion, thus denoted b$elf), entities of known collections, values of known types.

Functions can use in their body other methods of the speoigievel-definitions of functions, meth-
ods of collections (described further in 4.1.5), or methoiisollections parameters (see 4.2.1).

When we say “other methods of the species”, this includestioins only introduced by their signa-
tures. This means that it is possible to use something ordiack, without yet effective implemen-
tation. We will address this point later in detail in sectiod.1.

Although FoCalize is a functional language, function application must alwlgdotal. This means
that any function call must be provided all the effectiveusingnts of the function. As previously
described in the core syntax (c.f 3.2.4.8), function appian is “a la C”, that is with arguments
comma separated and enclosed by parentheses.

Properties. They are first order formulae containing names alreadydhitced. When stating a
property, the proof that it holds is not yet provided (butlvmidve to be ultimately provided). A
property can be viewed as a declaration.

speci es IntStack =

property push_returns_non_empty :
all vinint, all s in Self, push (v, s) -> " is_empty (s) ;
end ;;

Proofs of properties can loelayed that is, done afterwards usingpaoof field in a species. The
way to give proofs will be seen further.

speci es IntStack2 i nherits IntStack =
proof of push_returns_non_empty = ... ;
end ;;

Theorems They are properties with their proofs. In fact, when defijnenproperty, we only give the
statement of a theorem, leaving its proof for later. A theoman be viewed as a definition.

speci es IntStack =

t heor em push_returns_non_empty :
all vinint, all s in Self, push (v, s) -> 7 is_empty
(s)
proof = ... ;
end ;;

One important restriction on the type of the methods is the&mnot be polymorphic. Howevefp-

Calize provides another mechanism to circumvent this restrictiom parametrisation as explained further
(c.f. 4.2).

4.1.3 Complete species

A species is saidompleteif all its methods aralefined i.e. have an implementation. In other words this
means that there is no more methods aidglared This notion implies that:

e The representation has been associated with a type definitio

58

e Every declaration is associated to a definition.

e A proof is given for every property.

Obviously, it is possible to build a species without sigmasuand properties, only providing functions
and theorems directly. In this case, if the representa@isio defined, then the obtained species is trivially
complete.

The important point for a species to be complete is that itieaturned into effective executat@ECaml
code and effective checkablog code, since all the components are known.

Important : Although we said that only a complete species can lead exi#fe executable code, of
course species even not complete are compiled ! This meahydl do not need to have a complete
species to compile your source code ! It is very common to speeies not complete in source files since
programs are written in a modular fashion, in several filemrédver, a library may provide species with
methods not defined, leaving the user the freedom to chodéeativee implementation for some algorithms.

4.1.4 Interfaces

Theinterface of a species is the list of the declarations of its methodsortesponds to the end-user point
of view, who wants to know which functions he can use, and tipimoperties these functions have, but
doesn't care about the details of the implementation.

The interface of a species is obtained by keeping the siggmtand properties and retaining only the
signatures of the let methods and the statement of the timsor€he representation is hidden thus abstract
(only unifiable with itself). Hence, getting the interfackaospecies can roughly be seen as erasing the
representation, turning the functions into signaturesthadheorems into properties.

While this abstraction is easy within programming langsagdeis not always possible when dealing
with proofs and properties. Such problematic species geetesl byFoCalize and will be described later
in4.4.2.

An interface has mame, which is the name of the underlying speci@$ere should be no confusion
between species names and interface names as interface aemenly used to declare formal collection
parameters (see section 4.2.1) and to apply methods ottotiparameters.

4.1.5 Collections

A collection is a kind of “grey box”, built from acompletespecies by abstraction of the representation.
A collection has exactly the same sequence of methods tleacotimplete species underlying it, apart the
representation which is hidden. Note that creating a datledrom it is the only way to turn methods of a
complete species into executable code. This point is engethby the syntax:

collection name-collectionmplements name-species

The interface of a collection is the one of the complete g®itiimplements. The interfack of a
collectionC is compatiblewith an interfacels if I; contains all the components 6f.

Thus, implementing a complete species creates a colleatibich is a kind of abstract data-type. This
especially means that entities of the collection cannotiteetly created or manipulated as their type is not
accessible. So they can only be manipulated by the methatie mhplementedpecies.

59

speci es Full =
rep = int ;
| et create_random in Self = random_foc#random_int (42) ;
| et double (x in Self) =x + x ;
et print (x in Self) = print_int (x) ;
end ;;

col I ecti on MyFull_Instance i mpl enents Full ;;

| et v = Full.create_random ;;
Full.print (v) ;;

I et dv = Full.double (v) ;;
Full.print (dv) ;;

In this example, we define a complete spe€iet . Then we create the collectidviyFull _Instance
And we use methods of this collection to create entities isf¢bllection. We print the result of the evalua-
tion of the top-level definitions of anddv.

Note that two collections created from a same species argypetcompatible since their representation
is abstracted making impossible to ensure a type equivalenc

As a conclusion, collections are the only way to get somgtkimat can be executed since they are the
terminal items of &FoCalize development hierarchy. Since they are “terminal”, thi®alseans that no
method can be added to a collection. Moreover, a collectiag not be used to create a new species by
inheritance (as explained in the next section).

4.2 Parametrisation

This section describes a first mechanism to incrementallgt bew species from existing ones: the parametri-
sation.

4.2.1 Collection parameters

Remember that methods cannot be polymorphic (c.f. 4.1&)ekample, how to implement the well-known
polymorphic type of lists ? Grouping elements in a list doesdepend of the type of these elements. The
only constraint is that all elements have the same type. éemd/L-like representation of lists would be
like:

type ’'a list =
| Nil
| Cons of (a = ’a list)

The’a is a parameter of the constructor tyl , which is indeed a polymorphic ML type.
In FoCalize we would like to create a species looking like:

speci es List =

signature nil : Sel f ;
signature cons : 'a -> Self -> Self ;
end ;;

Instead of abstracting the type parameter and leavingatifrehe context of the species, FoCalize
we parametrisethe species by eollection parametercalledElem in the example:

speci es List (Elem i s Basic_object) =
signature nil : Self ;
signature cons : Elem -> Self -> Self ;
end ;;

60

Collection parameters are introduced by their name foltble theis keyword, followed by arin-
terface name(remember that an interface has the same name as its undesiyecies). In the example,
Basic _object is a pre-defined species from the standard library, comtgionly few methods and this
name is used here to denote the interface of this speciesllekiion parameter can be instantiated by any
collection which interface isompatiblewith the one required by the parametrised species (c.f }.14
the example, any effective parameter instantiakfgm is a collection which interface contains at least the
methods listed in the interface Bfasic _object

In the example, we use the paramefdem to build the signature of our methambns . Note that
collection names can be used in type expressions to deretalibtracted” representation of the collection.
Here “abstracted” means that the representation is ndileisiut we can refer to it as an abstract type. In
other wordsElem -> Self -> Self stands for the type of a function:

e taking a first argument whose type is the representation oflaction having a compatible interface
with the interfaceBasic _object . (This especially means that such an argument is created usi
methods of the compatible collection),

e taking a second argument whose type is the representatitve clirrent species,
e and returning a value whose type is the representation afutirent species.

Why a collection parameter and not a species parameter?

The answer to this question is especially important to wstdad the programming modelkoCalize.

It is a collection parameter because ultimately, at the terminal nodes of the developntieis parameter
will have to be instantiated by an entity where everythindgined, so at least a complete species. Imagine
how to build an executable code if a parameter can be inatadtby a species with some methods only
declared. .. This is the first reason.

Remember that properties mentioned in the collection faxter have been proved in the underlying
complete species. Indeed in the hosting species, theseethe@an be used as lemmas to do current proofs.
If the collection representation was not abstracted, themesnethods of the hosting species would have the
ability to directly manipulate entities of the collectioanameter, with the risk of breaking some invariants
of the collection parameter. This is the second reason. Tffeuseepresentation of a collection parameter is
abstract for the hosting, exactly as is the representafiarcollection (c.f 4.1.5).

To summarize, declaring a collection parameter for a pairéged species means providing two things:
the (capitalized) name of the parameter and the interfaeeoteéd by a species name) that the instantiation
of this parameter must satisfy.

Itis important at this point to note thebCal.ize deals with dependent types, and thereforettiabrder
of the parameters is importanflo define the type of a parameter, one can use the precediageters.
For instance, assuming that a parametrised spécsés declares the basic operations over lists, one can
specify a new species working on couples of respectivelyegand lists of values like:

speci es MyCouple (E is Basic_object, L is List (E) =
representation = (E * L) ;

end ;;

The representation of this species represents the(lggpe* (‘a list)) . This means that the type
of the values in the first component of the couple is the saie tie type of the elements of the list in the
second component of the couple.

61

A parametrized species (like in the example the spddigSouple) cannot be only partially instanti-
ated. An instantiation foall its parameters is required.

The previous example used a parameter to build the repeggemof the species. Collection parameters
can also be used via their other methods, i.e. signaturestiés, properties and theorems, denoted by the

parameter’s name followed by the “!” character followed bg tnethod name.

To create a species describing a notion of generic coupseiffices to use two collection parameters,
one for each component of the couple. To define a printing (ekirning a string, not making side effect
in our example) method, it suffices to require each collecparameter to provide one. Now the printing
method has only to add parentheses and comma around ancehetvkat is printed by each parameter’s
printing routine.

(* Mninal species requirenent : having a print routine. x)
speci es Base_obj =

signature print : Sel f -> string ;
end ;;

speci es Couple (C1 is Base_obj, c2 is Base_obj) =
representation = (C1 * C2) ;
et print (c in Self) =
match () wth
| (componentl, component2) ->
"(" © Cllprint (componentl) *

éZTprint (component2) ™)" ;
end ;;

Hence,C1l!print (componentl) means “call the collectio®€1's methodprint with the argu-
mentcomponentl .)]])

The qualification mechanism using “!" is general and can lzelus denote the method of any available
species/collection, even those of ourselves 8&if). Hence, in a species instead of calling:

speci es Foo ... =
let ml (..)
let m2 (.)
end ;;

if .. then .. else ml(.);

it is allowed to explicitly qualify the call tan1by “!” with no species name, hence implicitly telling
“from myself”:

speci es Foo ... =
let ml (..)
let m2 (..)
end ;;

if .. then .. else Iml (.);

In fact, without explicit “1”, the FoCaLize compiler performs the name resolution itself, allowing a
lighter way of writing programs instead of always needind”acharacter before each method call.

4.2.2 Entity parameters

There is a second kind of parameter: #mity-parameter. Such a parameter can be instantiated by an

entity of a certain collection.

For example, to obtain a species offering addition moduléinggger value, we need to parametrise it
by an entity of a collection implementing the integers andit@ a way to build an entity representing the
value of the modulo. Such a parameter is calle@mtity parameter and is introduced by the keywoid .

speci es AddModN (Number i s InterfaceForints, val_mod in Number) =
representati on = Number ;

62

let add (x in Self,y in Self) =
Number!modulo (Numberladd (x, y), val_mod) ;
end ;;

speci es

Hence, any collection created froAddModNembeds the addition modulo the effective value instan-
tiating val _-mod. It is then possible to create various collections with eadpecific modulo value. For
instance, assuming that the speciekiModNis complete and have a methrdm _int able to create a
value of the representation from an integer, we can creatextion implementing addition modulo 42. We
also assume that we have a collect®@ollimplentinglnts having at leastnterfaceForints
as interface.

col I ecti on AddMod42 i npl enents AddModN
(AColllmplentingints, ACollimplentingInts!from_int (4 2)

wn

Currently, entity parameters must livin“” a collection. It is not allowed to specify an entity paraeret
living in a basic type likeint , string , bool ... This especially means that these basic types must be
embedded in a collection if we want to use their values asygpdirameters.

4.3 Inheritance and its mechanisms

In this section, we address the second mechanism to builghlesrspecies based on existing ones. It will
cover the notion oinheritanceand its related feature thate-binding

4.3.1 Inheritance

FoCalize inheritanceis the ability to create a species, not from scratch, but tagirating methods of other
species. The inheritance mechanism also allows to redefitieanis already existing as long as they keep
the same type expression. For theorems to have the samestgpafly to have the same statement (but
proofs can differ).

During inheritance, it is also possible to replace a sigmahy an effective definition, to redefine a
property by a theorem and in the same idea, to agdoaf of to a property in order to conceptually
redefine it as a theorem. Moreover new methods can be addee itthieriting species.

Since inherited methods are owned by the species that ighttrey are called exactly like if they were
defined “from scratch” in the species.

For instance, assuming we have a spetiéSouple that represent couples of integers, we want to
create a specigSrderedIntCouple in which we ensure that the first component of the couple igtow
or equal to the second. Instead of inventing again all theispewe will take advantage of the existing
IntCouple and “import” all its methods. However, we will have to chartbe creation function since it
must ensure at creation-time of a couple (so at run-time)itigindeed orderedOrderedintCouple
has all the methods dhtCouple , exceptcreate which is redefined and the propeiiy _ordered)
stating that the couple is really ordered).

speci es IntCouple =

representation = (int * int) ;
et print (x in Self) = ..;
let create (x inint,y inint) = (x,y);

et first (c1, c2) = cl ;

63

end ;;
speci es OrderedIntCouple
let create (x inint, y
if x <y then (x, y)

property is_ordered :

inherits (IntCouple) =
inint) =
else (y, x) ;

all c in Self, first (¢c) <= scnd (c) ;

end ;;

Multiple inheritance, i.e. inheriting from several species is allowed by specgyseveral species sep-
arated by comma in thaherits clause. The inheriting species inherits of all the methddalerited
species. In case of a same name appears in several inh@éeids the compiler proceeds as follows.

If all the inherited species have only declared represienistthen the representation of the inheriting
species is only declared, unless it is defined in this iningrispecies. If some representations are declared,
the other ones being defined, then the totally defined repi@sens of inherited species must be the same
and this is also the one of the inheriting species. In thewlig example, species3 will be rejected while
speciesS4 hasint as representation.

speci es SO; -- no defined representation
end;;

species S1 =

representation = int ; end ;;

species S2 =

representation = bool; .. end;;

species S3 inherits S1, S2 = end;;
speci es S4 inherits SO, S1 = end;;

If some methods of inherited species have the same nameyiatie all signatures or properties, if these
species have no parameters, then signatures must be ageptaperties must be identical. If some of these
methods have already received definitions, if they havedheestype, then the definition which is retained
for the inheriting species is the one coming from the righgtazfined parent in thieherits clause. For
instance below, if species, B andC provide a methodnwhich is defined irA andB but only declared it
thenB!m is the one which is inherited.

speci es Foo inherits A B, C, D =

em () e
end ;;

Inheritance and parametrisation If a speciesS1 inherits from a parametrised specg, it must instanti-
ate all the parameters &0. Due to the dependent types frameworkSff is itself parametrised, it can use
its own parameters to do that.

Assume we have a speciest parametrised by a collection parameter representing tiek ddi ele-
ments of the list. We want to derive a specigstUnique in which elements are present at most once.
We buildListUnique by inheriting fromList

speci es List (Elem is ..) =

representation = Elem list

let empty = ... ;

let add (¢ in Elem, | in Self) = ..;

| et concat (I1 inSelf, 12 in Self)=..;
end ;;
speci es ListUnique (UElem is ..) i nherits List (UElem) =

let add (¢ in UElem, | in Self) =

. (* Ensure the element e is not already present. *) ;
| et concat (11 in Self, 12 in Self) =
(* Ensure elenents of |1 present in |2 are not added. x) ;

end ;;

64

UElem is a formal collection parameter @fistUnique which acts as an effective collection pa-
rameter in the expressidnistUnique . The representation dfistUnique is UElem list . The
representation dElem is hidden: it denotes a collection. But, the value constmscof the typdist are
available, for instance, for pattern-matching.

As a consequence, if two methods in inherited species havedime name and if at least one of them
is itself a parametrised one, then the signatures of thefleoai® are no longer required to be identical but
their type must have a common instance after instanciafidimeccollection parameters.

Species inheriting species parametrised bgelf A species can also inherit from a species parametrised
by itself (i.e. bySelf). Although this is rather tricky programming, the standibdary of FoCalize
shows such an example in the filesak structures.fclin the specie€ommutative _semi _ring . Indeed
this species specifies the fact that a commutative semisiagemi-ring on itself (as a semi-ring of scalars).
In such a case, this implies that the current species mudlyfifvehen inheritance is resolved) have an
interface compatible with the interface required by thdemtion parameter of the inherited species. The
FoCalLize compiler collects the parts of the interfaceQ#lf obtained either by inheritance or directly in
the species body. Then it checks that the obtained intei$andeed compatible with the required interfaces
of the parametrised inherited species. if so, the comslable to build the new species. Thus the compiler
tries to build a kind of fix-point but this process is alwayst@ating, issuing either the new species or
rejecting it in case of interface non-compliance.

4.3.2 Species expressions

We summarize the different ways of building species. The ¥it@y is to introduce a simple collection
parameter, requiring that the effective parameter cam affé¢he methods listed in the associated interface.

‘ speci es List (Elem i s Basic_object) = ... ; [

Then, we can iterate the process and build a species parsedddy a parametrised species, like in the
example:

‘ speci es MyCouple (E is Basic_object, L is List (E)) = ... 5 [

Going on, we can inherit from species that are referencegllmntheir name, like in:

‘ speci es OrderedIntCouple inherits (IntCouple) = ... ;; [

And finally, we mix the two possibilities, building a specieg inheritance of a parametrised species,
like in:

‘ speci es ListUnique (UElem is ..) i nherits List (UElem) = ... ;; [

Hence, we can now define more accurately the notiospeties expressionised for both inheritance
and parametrisation. It is either a simple species nameeoapiplication of a parametrised species to as
many collection expressions as the parametrised specqsahnameters.

4.4 Late-binding and dependencies

4.4.1 Late-binding

When building by multiple inheritance (c.f. 4.3.1) somensitures can be replaced by functions and prop-
erties by theorems. It is also possible to associate a defirof function to a signature (c.f 4.1.2)or a proof

65

to a property. In the same order, it is possible to redefine thadesven if it is already used by an existing
method. All these features are relevant of a mechanism krshate-binding

During compilation, the selected method is alwaysrttust recently definedalong the inheritance tree.
This especially means that as long as a method is a signatuie, children the effective implementation of
the method will remain undefined (that is not a problem sindis case the species is not complete, hence
cannot lead to a collection, i.e. code that can really begrecyet). Moreover, if a methoahpreviously
defined in the inheritance tree uses a methdceshly redefined, then thisresh redefinition of n will be
used in the methorh

This mechanism enables two programming features:

e The mean to use a method known by its type (i.e. its prototyperm of Software Engineering), but
for which we do not know, or we don'’t need or we don't want yeptovide an implementation.

e To provide a new implementation of a method while keepingii@l implementation for the inher-
ited species. For example, the inheriting species can gecs®me new information (representation,
functions, ..) which allow a more efficient implementatidraayiven function.

4.4.2 Dependencies and erasing

We previously saw that methods of a species can use otheod®edi this species and methods from its
collection parameters. This induce what we adpendencies There are two kinds of dependencies,
depending on their nature:

e Decl-dependencies
e Def-dependencies

In order to understand the difference between, we must ah$peher the notion of representation, function,
and theorem.

4.4.2.1 Decl-dependencies

When defining a function, a property or a theorem it is possibluse another functions or signatures. For
instance:

speci es Bla =
signature test : Self -> bool ;
let f1 (x in string) = ... ;
let 2 (y in Self) = ..fl ("Eat _at _Joe’s") ... ;
property pl : all x in Self, test (f2 (x)) <-> test (f1 ("So _what")) ;
theoremtl : all x in Self, pl <> test (f1 ("Bar"))
proof = .. ;
end ;;

In this cases, knowing the type (or the logical statementhefused methods is sufficient to ensure that
the using method is well-formed. The type of a method beingiged by itsdeclaration, we will call these
induced dependenciekecl-dependencies

Such dependencies also arise on the representation asstontgpe of a method makes reference to
the typeSelf . Hence we can have dependencies on the representationl as walother methods.

Hence, in our exampldgest ,f2 ,fl (since it is used ipl andtl as the argument dest which
expects an argument of ty[@elf), p1 andtl have a decl-dependency on the representation. Moreover,

66

f2 has one oifil . The propertypl has decl-dependencies tast ,fl andf2 andSelf . And finallytl
decl-depends opl,test ,fl andSelf .

4.4.2.2 Def-dependencies

A methodm has adef-dependencyover another one if the system needs to know tluefinition of p to
ensure thatn is well-formed.

A definition of function can create only decl-dependenciasn@ethods differing from the represen-
tation since the type system &bCalize only needs the types of the names present in the body of this
function. Note also that whemsing a signature in another method, since signature only cotypigs, no
def-dependencies can arise.

Now remember thatepresentation is also a method and there is no syntactical way to forbid
constructions likef representation = int .. in function or properties. Such definitions would
have adef-dependencyon the representation. For consistency reasons going dehmanual but that
will be shortly presented below in 4.4.3.2, theCal.ize system rejects functions and properties having
def-dependencies on the representation

There remains the case of theorems. This case is the mosteoosipce it can lead to def-dependencies
in proofs. For the same reasons than for propertiesi-tieal ize system rejects theorems which state-
ments have def-dependencies on the representatio®ther def-dependencies are accepted. These depen-
dencies must be introduced by the statement of the proof @gyntax given in sectiod?). Now, what
does mean for a theorem to def-depend on a method ? This Ihasieans that to make the proof of the
theorem statement, one must use not only the declaratiometlaod, but also its definition, its body. This
is a needed and powerful feature.

4.4.2.3 Erasing during inheritance

As a consequence of def-dependencies and late-bindingniéthod is redefined, all the proofs of theo-
rems having def-dependencies on these methods are erdssdndans that since the body of the method
changed, may be the proof is not correct anymore and mustie algain. In practice, it can happen that
the proof still holds, but the compiler can't ensure thispdewill turn the theorem into a property in the
species where the redefinition occurred. The developethveii have to provide a new proof of the inherited
theorem thanks to theroof of field. For example, any sorting list algorithm must satisfg tnvariant
that its result is a sorted list with the same elements adféstve argument but the proof that indeed this
requirement is satisfied depends on the different possitgdeimentations of sort. It is perhaps possible to
decompose this proof into different lemmas to minimize ie@by redefinition, some lemmas needing only
decl-dependencies over the redefined method.

4.4.2.4 Dependencies on collection parameters

Since collection parameters always have their representabstracted, hidden, onlyecl-dependencies
can appear in the parametrised species using them. Henceahaever lead to erasing. These dependen-
cies are only used internally by tik®@Calize compiler in order to generate the target code. For this reaso
we will not focus anymore on them.

67

4.4.3 More about methods definition

We will now examine more technical points in methods definii

4.4.3.1 Well-formation

FoCalize providing late-binding, it is possible tteclarea methodnOand use it in anothatefined method
ml

species SO =
signature mO : Sel f ;
let ml1 = moO ;

end ;;

an another specieS1, it is also possible tadeclarea methodnland use it in anothatefined method
m

species S1 inherits SO =
signature ml : Self ;
let mO = x ;

end ;;

As long as these two species have no interactions no proldararcse. Now, we consider a third species
S2 inheriting from bothSO andS1.

species S2 inherits SO, S1 =

end ;;

The inheritance mechanism will take each metdedinition from its hosting species: froi80 for m1
and fromS1 for m2 We have hence a configuration whem8callsmlandmlcallsmQ, i.e. the two methods
are now mutually recursive although it was not the case wbacé of them wadefined

To avoid this situation, we will say that a species is welhkied if and only if, once inheritance is
resolved, no method initially not recursive turns to becaewursive. Theé~oCalize compiler performs
this analysis and rejects any species that is not compliatiti$ criterion. In the above example, an error
would be raised, explaining how the mutual recursion (theecgf dependencies) appears, i.e. frorhto
mO(and implicitly back tom1from m0Q).

Species 'S2’ is not well-formed. Field 'm1’ involves a non-d eclared recursion

for the following dependent fields: ml -> moO.

4.4.3.2 Def-dependencies on the representation

As we previously said (c.f. 4.4.2.2) def-dependencies enrépresentation are not allowed in properties
and theorems. The reason comes from the need to createteahsigecies interfaces. Let's consider the
following species with the definitions:

speci es Counter =

representation = int ;

let inc (x in Self)=x+1;

t heor em inc_spec : all x in Self, inc (x) >>x + 1
proof = .. ;
end ;;

The statement ahc _spec contains a def-dependency on the representation sinc@eectyeck this
statement, one need to know that the representation is To create the species’ interface, we must make

68

the representation abstract, hence hiding the fact theitit i . Without this information it it now impossible
to type-checknc _spec body since it makes explicit reference+tp<=, 1 that are operations about .

In practice, such an error is reported as a typechecking &llong thatrepresentation “is not
compatible with type't wheret is the type expression that was assigned to the represenfag.int in
our example).

69

Chapter 5

The FoCalize Proof Language

5.1 Proofs of theorems

As presented in 3.2.7.F0CalLize proposes 3 ways to make proof of properties. We will only desak
with proofs written in thecoCalize Proof Language. As a reminder, proofs written as difeat| scripts
will be addressed in 9.0.6. And the last kind of proof,dssumed doesn’t need anymore description since
it consists in bypassing the formal proof mechanism.

The syntax of proofs is as follows.

Proofs:
proof ::= proof _step x qed_step
| by fact +
| conclude

A proof is either a leaf proof or a compound proof. A leaf pr¢iotroduced with theby or conclude
keywords) invokesZzenon with the assumptions being the given facts and the goal hbiegyoal of the
proof itself (i.e. the statement that is proved by this leaiof). See below for the kinds of facts that can be
given.

Theconcludekeyword is used to invok&enon without assumptions.

A compound proof is a sequence of steps that ends withdestep. The goal of each step is stated in
the step itself, except for thed step, which has the same goal as the enclosing proof.

Proof steps:
proof_step ::= proof_bullet statement proof

A proof step starts with a proof bullet, which gives its les&hesting. The top level of a proof is 0. In
a compound proof, the steps are at level one plus the levhegiroof itself.
For example, consider the following proof.

theorem foo : A -> (B -> A)
proof =
<1>1 assume hl: A,
prove B -> A

70

<2>1 assume h2: B,
prove A
by hypothesis hl
<2>2 ged
by step <2>1
<1>2 ged
conclude

In this proof, the steps1>1 and<1>2 are at level 1 and form a compound proof of the top-level
theorem. Stegl>1 also has a compound proof, composed of ste&bsl and<2>2. These are at level 2
(one more than the level of their enclosing step).

After the proof bullet comes the statement of the step. Ththe statement that is asserted and proved
by this step. At the end of this step’s proof, it becomes aldl as a fact for the next steps of this proof.
In our example, steg2>1 is available in the proof 0£2>2, and<1>1 is available in the proof 0£1>2.
Note that<2>1 is not available in the proof of1>2: see section 5.1.1 for the scoping rules.

After the statement is the proof of the step. See below (uStiiements) for a description of what is
the current goal for this proof.

QED steps:
ged_step ::= proof_bullet qed proof
| proof_bullet conclude

A gedstep is similar to a normal step, except that its statemeheigoal of the enclosing proof. It may
be reduced to the wordoncludewhen its proof is reduced toconclude In our example, we could have
replacedk1>2 with:

<1>2 conclude

Statements:
statement ::= {assume assumption ,}* {prove logical_expr}?

A statement must be non-empty: at least aasumeor theprove part must be present.

A statement appearing in a step has two readings: internbégtiernal. The external reading is for the
rest of the proof: the current step proves that the assumgptimoply the conclusion (i.e. thiegical_expr
that appears aftgrrove). The internal reading is for the proof of the step: the auirigoal is theprove
expression, and the assumptions are available as facts.

Assumptions:
assumption ::= ident in type_expr
| ident : logical _expr

An assumption can either introduce a new (universally dfied} variable with its type (first form), or
a new named hypothesis (second form).

71

Facts:
fact := definition of {ident?# }?ident {{, ident?#}?ident}*
| hypothesis ident {, ident}x
| property {{{ident?# }?ident}?'}?ident {{{{, ident?# }?ident}?!}?ident }x
| theorem {{{ident?# }7ident}?'}?ident {{{{, ident?#}7ident}?!}?ident}x*
| step proof _bullet {, proof _bullet }x*

A fact used in a leaf proof can be a definition, a hypothesisppgrty, a theorem, or a step.

Giving a definition as a fact allow&enon to unfold this definition in the goal and in the other facts.

Giving a hypothesis/property/theorem as a fact alldeson to use this hypothesis/property/theorem
to prove the goal.

Giving aproof_bullet as a fact allowZenon to use the (external reading of the) corresponding step as
an assumption to prove the goal. Note that even if severnas stee labelled with this proof bullet, only one
of them is in scope at any point, so there is no ambiguity (segan 5.1.1).

5.1.1 Scoping rules

The scope of a step bullet extends from the end of the proolatf 4tep to the end of the proof of the
enclosing step (i.e. the end of the proof of tiexl step that has the same level as this step). This means that
proof bullets can be reused in other branches of the prodditeendifferent steps.

The scope of an assumption is the proof of the step whereghigw@ption appears.

72

Chapter 6

Recursive function definitions

In the current alpha-release, the logical counterpart @iingve functions is not completely handlegdog
code generation). We are still working on the point: reagr$unctions are planed to be fully supported as
soon as possible, in addition with new material to help wgitihe required termination proofs.

73

Chapter 7

Compiler options

When invoking the=oCaLize compiler with thefocalizec command, various command line options can be
provided. The compiler can process several files in theierod apparition in the command line. Several
types of files are handled. By default, if no option is spedifihe default behaviour is of the compiler is:

“ml” and “.mli” files are compiled with theODCaml compiler producing bytecode. It is possible to
customise the compiler code generation using-theaml-comp-mode option. The version of
OCaml used is automatically selected from the configuration ogtiselected durinffoCalize’s
installation. TheFoCalize standard library path is implicitly passed@Caml.

“.v" files are compiled with th&Cogcompiler. The version afoq used is automatically selected from
the configuration options selected duriRgCal.ize’s installation. TheFoCalize standard library
path is implicitly passed t€oq.

“.zv” files are compiled byZenon via zvtov. The generated “.v” file is then compiled I6§oq as
describe above.

“.fcl” files are compiled byfocalizec, generating both the “.mlIOCaml source and the “.zv" pre-
Cogsource. The “.ml” file is then sent ©©Camland the “.zv” file is sent t&Zenonto finally get a
“.v” file that is sent toCoq.

It is possible to control the kind of files generated fogalizec (no Coqg, no OCaml, “.zv", “.v" using
options described bellow.

*

—dot-non-rec-dependencieslirectory name Dumps non-let-rec dependencies of the species present
in the compiled source file. The output format is suitabledaybaphically displayed bgiotty (free
software available via thgraphviz package). Each species will lead tdatty file into the argument
directory. Files are names by “deps the source file base name (i.e. without path and suffix) + the
species name + the suffix “.dot”.

—focalize-docGenerates documentation. The result file gets located isdlree directory than the
compiled file, replacing the suffix “.fcl” by “.fcd”. This fileontains XML in plain ASCII text and
need to be processed before being read. Consult s&Ritor more details.

——experimental Reserved for development purpose. Never use. Invoking dhgpider with this
option may trigger unpredictable results.

74

—i. Prints the interfaces of the species present in the cothpdarce file. Result is sent to the standard
output.

—I directory name Adds the specified directory to the path list where to semchompilation units.
Several-1 options can be used. The search order is in the standasdhfildirectory first (unless the
—no-stdlib-path option is used, see below), then in the threzs specified by the| options in their
apparition order on the command line.

—impose-termination-proof. Make termination proofs mandatory for recursive functiolfia recur-
sive function doesn’t have its termination proof, then tleédfvill be considered as not fully defined
and no collection will be built on the species hosting thection. By default this option is not en-
abled and if a recursive function does not have any ternuingtroof, a warning is printed during
compilation when trying to make a collection from this sjgsci

—methods-history-to-text directory name Dumps the methods’ inheritance history of the species
present in the compilation unit. The result is sent as plkax files into the argument directory. For
each method of each species a file is generated wearing treemande of “history’ + the source file
base name (i.e. without path and suffix) + 4 the hosting species name + the suffix “.txt".

—no-ansi-escapeDisables ANSI escape sequences in the error messagesfa@jtdehen an error

is reported, bold, italic, underline fonts are used to maksiez reading the message. Using this
option removes all these text attributes and may be usediiftgominal doesn’t support ANSI escape
sequences or, for example, if compiling undenacs.

—no-coqg-code Disables theCoqg code generation. By defaultoq code is always generated.

——no-ocaml-code Disables th@@Caml code generation. By defau@Caml code is always gener-
ated.

—no-stdlib-path. Does not include the standard library installation divegtin the libraries search
path. This option is rarely useful and mostly dedicated &dRtCalize compiler build process.

—ocaml-comp-modefile name Specifies th&©Caml compiler code generation mode. This option is
folowed by a string that can be "byt” for bytecode compilatitbin” for native code compilation, or
"both” for bytecode and native code compilation. This optleas no effect i~ —no-ocaml-codeis
used.

—pretty file name (Undocumented: mostly for debug purpose). Pretty-pitidsparse tree of the
FoCalize file as aFoCal.ize source into the argument file.

—raw-ast-dump. (Undocumented: mostly for debug purpose). Prints onstderraw AST structure
after parsing stage.

—scopedpretty file name (Undocumented: mostly for debug purpose). Pretty-ptimsparse tree
of theFoCal.ize file once scoped askoCalize source into the argument file.

—stop-before-cogWhenCoq code generation is activated, stops the compilation psdoefore pass-
ing the generated file t680q. The generated pré€oq source is sent tdenon then the compilation
process stops. The produced file is hence ended by the suffix This option has no effect if
—No0-cog-codeor —stop-before-zenons used.

75

—stop-before-zenon WhenCoq code generation is activated, stops the compilation psobefore
passing the generated file Znon. The produced file is then a pf@eq source file, ended by the
suffix “.zv". This option has no effect #no-coqg-codes used.

—verbose Sets the compiler in verbose mode. It will then generatetrdee of the steps and op-
erations is does during the compilation. This feature isttyased for debugging purpose but can
also explain the elaboration of the model during compitatior people interested iRoCalize’s
compilation process.

—V. Prints theFoCalize version then exits.
—version. Prints the fullFoCaLize version, sub-version and release date, then exits.
—where. Prints the binaries and libraries installation dire@srihen exits.

—help ——help. Prints the summary of command line options (i.e. this dcentation) on the stan-
dard output.

76

Chapter 8

Documentation generation

When invoked with the-focalize-doc option, the commantbcalizec generates an extra file (with
the “.fcd” suffix) containing “documentation” informaticextracted from the compiled source file.

This information describes the different elements founthésource file (species, collections, methods,
toplevel definitions, type definitions) with various anrtaas like type, definition/inheritance locations.
It also contains the special comments previously cadliedotations (c.f 3.1.3) and that were kept during
the compilation process. Moreover, these annotations catain special tags used by the documentation
generator ofoCal.ize.

8.0.2 Special tags

FoCalize’s documentation system currently supports 5 kinds of tagey impact the content of the final
generated document, either in its content or in the way imé&tion is displayed depending on the output
format. These tags start with the “@” character and the comtkthe tag follows until the end of the line.
It is then possible in an annodation to mix regular text thiditrvat be interpreted and tags.

8.0.2.1 @title

This tag must appear (i.e. is only taken into account) in tte¢ éinnotations block of the source file. The
following text is considered to be the title of the source filed will appear in the header of the final
document.

See example provided for ti@description tag below.

8.0.2.2 @author

This tag must appear (i.e. is only taken into account) in tte &innotations block of the source file. The
following text is considered to be the author of the source dihd will appear in the header of the final
document.

See example provided for tl@description tag below.

8.0.2.3 @description

This tag must appear (i.e. is only taken into account) in thet &nnotations block of the source file.
The following text is considered to be the description of tieatent of the source file (what services it

77

implements) and will appear in the header of the final documen

For example:
(***)
(* FoCaL conpil er *)
(» Copyright 2007 LIP6 and I NRI A *)
(» Distributed only by perm ssion. *)
(***)
(**

@itle FoC Project. Basic al gebra.
@ut hor The FoC proj ect
@lescription Basic sets operations, orderings and |attices.

*)

will lead to a document header like (displayed in HTML forjnat

FoC Project. Basic algebra.

The FoC project

Basic sets operations, orderings and lattices.

You may notice in the above source code example that the hedidenation is located in an annotation
that is not thdirst one. In effect, the top-most banner starting by

(***)

is in fact also an annotation since it starts by the sequeftté ‘However all these annotation belong
to the same annotations block as requiered.

8.0.2.4 @mathml

This tag must appear in the document comment preceding achddfinition. It indicates the sequence of
MathML code to use to replace the name of the method everynihghe current document. This tag only
affects the HTML display since it allows to show more usuahbgls rather than identifiers in a browser.
This is expecially useful for mathematical formulaes whene prefer to see the siga rather than an

identifier “equal .
For example:

(** In a setoid, we can test the equality (note for logicians: this is
a congruence). *)
speci es Setoid inherits Basic_object =
(** @mthm <eq/> *)
signature equal : Self -> Self -> bool ;
property equal_transitive : all xyz in Self,
equal (X, y) -> equal (y, z) -> equal (x, 2) ;

will replace any occurrence of the methedqual by the “<eq/> ” MathML sequence that displays a
= sign when displayed by an HTML browser.

78

Urdered set as join semm lattice - Urdered lattice - Urdere:
back to index of files

species Setoid

|In & setoid, we can test the equality (note for logicians: this is a cong

species Setoid inherits Basic object

signature :

equal

|equa1€ self —self —bool

property :
equal_symmetric

thSMLvyESMLx:y=y:x

8.0.3 Transforming the generated documentation file

The generated documentation file is a plain ASCII text coimai some XML compliant witlFoCal.ize’s
DTD (focalize/focalizec/src/docgen/focdoc.dtd). Like for any XML files processing is
performed thank to the commamdltproc with XSL stylesheets (“.xsl” files).

You may write custom XSL stylesheets to process this XML bt distribution already provides 2
stylesheets to format this information.

8.0.3.1 XML to HTML

Transformation from “.fcd” to a format that can be read by aBMEowser is performed in two passes.

1. Convert the “.fcl” file to HTML with MathML annotations. T$ is done applying the stylesheet

focalize/focalizec/src/docgen/focdoc2html.xsl with the commandsltproc.
For example:
xsltproc "directory to the stylesheet”/focdoc2html.xs | mysrc.fcd > tmp

2. Convert the HTML+MathML temporary file into HTML. This iode applying the styleshefetcalize/focalizec
with the commandsiltproc.
For example:

xsltproc “directory to the stylesheet”/mmictop2_0.xsl mysrc.fcd > mysrc.xml

Attention: You may note that the final result file name must be ended byufiix $.xml” other-
wise your browser won'’t be able to interpret it correctly amsh't display symbols£-,€,4, —,...)
correctly.

8.0.4 XML to LaTeX

Currently not officially available.

79

Chapter 9

Hacking deeper

9.0.5 Interfacing FoCalize with other languages

9.0.6 Dealing with hand-written Coq proofs

80

Chapter 10

Compiler error messages

Unable to find file 'name’ in the search path.

Description The source file made reference té¢aCalize compilation unitname (by theopen or use
directives, or by explicit qualification with the “#” notatn) but the relateéfoCalLize file was not found in
the current libraries search path.

Hints: Locate in which directory the missing file is and add thisediory to the libraries search path
with the-I compiler option.

Invalid or corrupted compilation unit’ name’. May be it was compiled with
another version of the compiler.

Description The source file made reference t&@Calize compilation unitname (by theopen or use
directives, or by explicit qualification with the “#” notati but the relateéfoCalL.ize file was found with an
incorrect format.

Hints. May be the compilation unit was compiled with another vansbf FoCalize or was mangled
and you must compile it again with your current version.

Invalid file extension for 'name’.

Description The FoCalize compiler expects compilation units to be ended by the suffisl”; “.ml",
“.mli”, “.zv’or “.v". If the submitted input file doesn’t endby one of these suffixes, this error message arises
with the namename of the involved file.

Hints. Change the extension of the input file name or ensure theitteldnmput file name is the correct
one.

System error - sysmsg.

Description During the compilation process an error related to the atpey system occurred (I/O error,
permission error, file-system error, . ..). The original sa&gesysmsg of the system explaining the problem
follows theFoCalize’'s message.

81

Hints: Consult the original message of the system and get an apgsolution depending on this
message.

Invalid OCaml compiler kind 7 string” for option -ocaml-comp-mode. Must
be "byt”, "bin” or "both”.

Description By default, if someOCaml code was generated, tReCalize compiler sends the generated
code to theOCaml compiler. The default compilation mode is bytecode productlt is possible to select
the native code production using the optimcaml-comp-mode followed by the string “bin” or to select
both code production modes by the string “both”. The arguns&ing “byt” is not required since it is the
default mode. Any other string is invalid and leads to theseng error message.

Hints: Select “byt”, “bin” or “both” as argument to th@@caml-comp-mode option.

No input file. FoCal is cowardly and gives up...

Description TheFoCalize compiler needs one input file to compile. If none is supplibi error message
arises.
Hints: Add the input source file to compile on the command line.

Lexical error str

Description In the currently submitted source file, a sequence of chkersds not recognised as legal
according to thé&oCalize programming language legal words structure. The involVedtacterstr follows
in the error message.

Hints: Change the source code at the indicated location.

Syntax error

Description In the currently submitted source file, a phrase of the mmogdoesn’t followFoCalize’s
syntax.

Hints: Change the source code at the indicated location. It samsthappens that the location gets
fuzzy due to the parsing process. If the error is notimmed@you, explore the neighbours of the specified
location. If you still can’t find out the error, have the folling emergency process: comment your code and
incrementally uncomment it to find the point where the erpgpears without having to search in the whole
file. Once the error appears, have a look at the part of codeiyoommented since the previous successful
compilation and try to guess the syntactic cause.

Unclear syntax error msg.

Description An error occurred during the syntactic analysis but wagepbrted to be due to a syntax non-
compliance. This error is not clearly identified and this sage is displayed as post-mortem report with the
exceptionmsg that caused the error.

Hints: None

82

Compilation unit’ m’ was not declared as "use”

Description It not possible to use a qualified notation for a compilationt name (i.e. using an entity
from this compilation unit by explicitly specifying the unwith the “#’-notation) before this compilation
unit is declared “use” or “open”. This error message indisahe location where an identifier refers to a
compilation unit that was not qualified either by thee or open directive. Note that thepen directive
implicitly implies use .

Hints: Use theuse directive on the compilation detected unit.

Parameterised species expected arguments but was providedn,.

Description A species expression (used in species parameter expressioherits clause) applies a
species wit; argument(s) although its definition declared it as usingrgument(s).
Hints: None.

Non-logical let must not bind "ident’ to a property.

Description A let construct (not dogical let) attempts to bind the identifieklent to a logical
expression although it can only bind it to a computationgregsion.

Hints. Source program to fix. May be thet should be turned into kbgical let if the body of
the binding is really a logical expression.

Delayed termination proof refers to an unknown method 7dent’ of the species.

Description A proof of clause was found in a species for the propedynt but this property was not
found in the species.
Hints: None.

Ambiguous logical expression. Add explicit parentheses tassociate theside
argument of the /\ properly.

Description A logical expression contains 4 (logical “and”) with at least one argument being=a

(logical “implication”) or a<-> (logical “equivalence”) without parentheses around tlée argument

(“left” or “right”). Since this is not clear of how to assot&é& we ask the user to explicitly add parentheses.
Hints: Explicitly add the parentheses to make the associatioranaboiguous.

Ambiguous logical expression. Add explicit parentheses tassociate theside
argument of the \ / properly.

Description A logical expression contains\g (logical “or”) with at least one argument beinga (log-
ical “implication”) or a<-> (logical “equivalence”) without parentheses around ¢hé argument (“left”

or “right”). Since this is not clear of how to associate, wk tee user to explicitly add parentheses.
Hints: Explicitly add the parentheses to make the associatioranabiguous.

83

Unbound sum type value constructor hame’.

Description An identifier representing a sum type value constructorneigound among the available sum
type definitions.

Hints: Source program to fix. Since in core expressions capithlidentifiers are considered as sum
type value constructors, may be you tried to use a capithlizene for one of your variables. In this case,
as any variables, make it starting with a lowercase lettéievise, may be your type definition is missing
or not reachable in the current scope (missing explicitifjoation with the “#” notation olopen directive
if your type definition is hosted in another source file).

Unbound record field label 'name’.

Description An identifier representing a record type label was not foamibng the available record type
definitions.

Hints. Source program to fix. May be your type definition is missimgiot reachable in the current
scope (missing explicit qualification with the “#” notationopen directive if your type definition is hosted
in another source file).

Unbound identifier ' name’.

Description An identifier (expected to be bound byet , a pattern of a function parameter declaration)
was not found.

Hints: Source program to fix. May be your definition should be toplend is missing or not reachable
in the current scope (missing explicit qualification witle th#” notation oropen directive if your definition
is hosted in another source file).

Unbound type 'name’.

Description The definition of an identifier expected to be a type construwas not found.
May be your type definition is missing or not reachable in thigent scope (missing explicit qualifica-
tion with the “#” notation oopen directive if your type definition is hosted in another soufitas.

Unbound compilation unit’ name’.

Description A open or use directive or an explicit qualification by the “#” notation kes reference to a
compilation unit that was not found in the current librarsesirch path.

Hints: Locate in which directory the missing file is and add thisediory to the libraries search path
with the-I compiler option.

Unbound speciesname’.

Description The definition of the speciesame was not found in the current scope.

84

Hints: May be your species definition is missing or not reachablaéncurrent scope (missing explicit
qualification with the “#” notation oopen directive if your species definition is hosted in anotherreeu
file).

Type name name’ already bound in the current scope.

Description In a source file it is not allowed to redefine a type definitidhis means that each type name
definition must be unique inside a file. However, it is pogstbl have several type definitions with the same
names as long as they are in different source files (even yf @he used together viapen directives of
explicit qualification by the “#” notation).

Hints: None.

Species nameriame’ already bound in the current scope.

Description In a source file it is not allowed to redefine a species dafimitiThis means that each species
name definition must be unique inside a file. However, it issfiids to have several species definitions
with the same names as long as they are in different sourse(élen if they are used together wpen
directives of explicit qualification by the “#” notation).

Hints: None.

Typest, and t, are not compatible.

Description The typechecking system detected a type conflict betweerexpressions, andts that were
expected to be type-compatible.

Hints: Source program to fix. This is mostly due to an attempt to hisayipe of aepresentation
although it is turned abstracted by the collection or patasaion mechanisms. In this case, ensure that
you are not trying to make assumptions on the type of a calegtarameter or a collection.

Type t; occurs int, and would lead to a cycle.

Description The FoCalize type system does not allow cyclic types. This especiallymadhat a type
expression must not be a sub-part of itself to prevent cycles
Hints: None.

Type constructor 'name’ used with conflicting arities: n, and n.

Description A type expression applies a type constructarne to n; argument(s) although its definition
declared it as using- argument(s) (or in the other order, depending on the wayrtioe was detected: in
any way the definition and the usage of the type involve 2 ifienumbers of arguments).

Hints: None.

85

No expected argument(s).

Description A type expression applies a type constructor to argumdttisuah this constructor needs
none.
Hints: None.

In method 'name’, type schemesch contains free variables.

Description As presented in 4.1.2, species methods cannot be polyicorphe method.ame has a type
scheme shown bych which is polymorphic.

Hints: You may explicitly add type annotations (constraints) femarguments or/and return type of your
method definition. If you need some kind of such polymorphiase the collection parameter mechanism.

Sum type value constructor name’ expectedn; arguments but was used with
ny arguments.

Description The sum type constructorame is used with a bad number of arguments. It was declared to
usen; arguments but is used withy.
Hints: None.

Unbound type variable name.

Description In a type expression, a type variableme is not bound.
Hints: Source program to fix. May be the type expression appearsperametrised type definition
where you forgot to specify the type constructor’s paramietbead of the definition.

Method 'mname’ multiply defined in species 'sname’.

Description Like for toplevel definitions, method definitions inside @esies must not bind several times
the same name. In the specigsime, the methodnname is defined several times.

Hints: Source program to fix. May be you defined several times theesaethod and in this case,
remove one of the definitions. Or if the different occurrenoé mname refer to different conceptual
functions, change the names to make them different.

Delayed proof of 'name’ was found several times in the species. Other occur-
rence is at: loc.
Description A delayed proof of the propertyame was found several times in the same species (i.e. not

via inheritance but directly in the species body). Only onestibe kept.
Hints: None.

86

In species sname’, proof of ' pname’ is not related to an existing property.

Description In the speciesname a delayed proof of the properpname was found but the statement of
this property doesn’t exist in the current species evennharitance.

Hints: May be you forgot to write the property, or you mistook on gheperty name the proof is related
to or you forgot to inherit from a species having this propert

Representation is multiply defined.

Description In a species, the metha@presentation is multiply defined in the body of the species
although at most one definition must be provided.

Hints: Source program to fix. Remove the spurious definitions.

If the representation method is not directly present in the body, that is becaussypcies inherits
from a parent where the representation is already definethidriast case, since the parent’s structure is
already established, you must remove tpresentation method in the species where the error was
reported.

Representation is multiply defined by multiple inheritanceand was formerly
found of type ¢; and newly found of typet,.

Description In the species, several parents brought by inheritanceralemcompatible definitions of the
representation. The error message repgrandts,, two incompatible types found for the representation

definition.
Hints; None.

'Self’ can’'t be parametrised by itself.

Description This error appears whe®elf appears as a species identifier used in a species expresaion t
is a parameter of the current defined species.
Hints: None.

A’is” parameter can only be instantiated by an identifier of a collection.

Description In a species expression, a parametrised species by ay patmeteri§ -parameter) is pro-
vided an effective argument that is not a collection idestifi
Hints: None.

Collection ’s;’ is not compatible with * s5’. In method ' name’, types t; and ¢,
are not compatible.

Description During collection parameter instantiation, the inteefaaf the provided collection; is not
compatible with the interface,, because it doesn’t have a signature containing at le&smethods with

87

compatibles types. The wrong fieldime is reported with the two type§ andt, expected and actually
found.
Hints: None.

Collection ’s;’ is not compatible with ’ s5’. In method * fname’, type t; occurs
in £, and would lead to a cycle.

Description During collection parameter instantiation, the inteefaaf the provided collection; is not
compatible with the interface,, since type compatibility check detected a cyclic type.sTheans that the
typet; is a sub-part of itself via the typg.

Hints: None.

Collection ’s;’ is not compatible with ’ s5’. In method * fname’, the type con-
structor ' tname’ i1s used with the different arities n; and n..

Description During collection parameter instantiation, the inteefaaf the provided collection; is not
compatible with the interface,, since the type constructor (not sum type construcies)ne is used with
an improper number of arguments versusns.

Hints: None.

Collection 's;’ is not compatible with *s;’. Method *name’ is not present in

S1 .
Description During collection parameter instantiation, the inteefaaf the provided collection; is not
compatible with the interface,, because it doesn’t have a signature containing at ke&stmethods and

especially not the methadime.
Hints: None.

Parameterised species is applied ta arguments.

Description A parameterised species is applied to a wrong numhgreffective arguments.
Hints: None.

Species sname’ cannot be turned into a collection. Method 'fname’ is not
defined.

Description A collection is built out of a completely defined specied.(d.1.5), i.e. a species whegd!
the methods ardefinedand not only declared. In the speciesime, the methodnname is only declared,
hence the species is not complete and no collection can kected from it.

Hints: Add an effective definition of the method, either by writingode or by inheritance, according
to your program model.

88

Species sname’ cannot be turned into a collection. Method ’'fname’ does not
have a termination proof.

Description A collection is built out of a completely defined specied.(4.1.5), i.e. a species wheadl the
methods arelefinedand in particular proofs of properties are done. This alggi@pto recursive functions
which must have a termination proof provided. The recurkinetion fname of the speciesname doesn'’t
have its termination proof.

This error message only arises if thmpose-termination-proof option is used on the com-
mand line. Otherwise, it is turned into a warning and the denpvill automatically generate an assumed
proof.

Hints: Add an effective termination proof to the function or do imvboke the-impose-termination-proof
option when compiling the source file.

In the delayed termination proof, parameter 'name’ does not refer to a pa-
rameter of the original function.

Description As any proof, termination proofs can be made later afterfinetion definition. However it
must refer to the original function’s parameters names.héndurrent proof, the identifietame doesn't
exist among the original function’s parameters.

Hints: Change the parameter name in the proof to make it matchanfutiction definition’s ones.

Method *mname’ was found with incompatible types during inheritance. In
species &;’: 71, in species 5" 7.

Description During inheritance, a methogmane was found with 2 incompatible types. Remind that all
along the inheritance tree, methods must not change thgr fhe two found types and the species hosting
the definitions having these types are provideddysand 7; (resp. 'so’and 72).

Hints: None.

Logical method 'mname’ appearing in species 5, should have the same
statement than in speciessy’ at source — location.

Description During inheritance, a theorem or a property:ane was redefined but with a different state-
ment. As described at the beginning of 4.3.1, the inherdganechanism also allows to redefine methods
already existing as long as they keep the same type expne$3io theorems to have the same type is sim-
ply to have the same statement. A same property can be wiittegveral semantically equivalent ways.
For instance, transitivity of an operation can be written byvz,y,z € S;Se Oy = y©z =z ® z Or
Va,y,z € S,(x @y ANy ® z) = x ® z. FoCalize does not try to establish the equality of these two
expressions. It only compares syntactically the statesneradulo variables renaming (i.e.-conversion)
and non-significant parentheses.

Hints. The simplest way is to rewrite the logical statement of tifeeriting species as it was written in
the inherited species.

89

Definition ' name’ is considered as both logical and non-logical.

Description In the inheritance tree of the current species, a methode was previously found a “logical”
and is now found no more “logical’.

Hints: Ensure that you did not define 2 methods with the same namfeibdifferent purposes (one to
help in stating logical expressions and the other for younmatational behaviour).

Species 'sname’ is not well-formed. Methodriame’ involves a non-declared
recursion for the following dependent methods: ...

Description The speciesname doesn’t respect the well-formation rule presented in 414.8Bhe chain of
functions involved in the cycle is given in the error messag@ sequence of methods namgs— ms —
.. — my, With the implicit final pathm,, — m.
Hints: None.

No lang mapping given for the external value definition name’.

Description The external value definition allowing to linkoCalize code to foreign languages doesn't
specify how to map the value identifierime in the languagéang.
Hints: Supply a binding for this language in the external definitio

No lang mapping given for the external type definition name’.

Description The external type definition allowing to linkoCalize code to foreign languages doesn't
specify how to map the type identifianme in the languagéang.
Hints: Supply a binding for this language in the external definitio

No lang mapping given for the external sum type value constructor hame’.

Description The external sum type definition allowing to liloCalize code to foreign languages doesn't
specify how to map the sum type constructaime in the languagéang.
Hints: Supply a binding for this language in the external definitio

No lang mapping given for the external record field 'name’.
Description The external record type definition allowing to lirkoCalize code to foreign languages

doesn’t specify how to map the record fieldme in the languagéang.
Hints: Supply a binding for this language in the external definitio

90

Unable to find OCaml generation information for compiled file’ file’. Compi-
lation unit may have been compiled without OCaml code geneligon enabled.

Description The FoCalize compilation unit file file.fcl was compiled but the object file doesn’t contain
information aboutOCaml code generation. ThEoCaLize compiler allows to disable th©Caml code
production by the-no-ocaml-code option. May be this option was used.

Hints: Invoke the compiler on the source fiféle.foc without the--no-ocaml-code option.

Type definition contains a mutable field name’ that can’t be compiled to Coq.

Description Never raised in the current version since mutable recorddfigte not yet availahle

Unable to find Coq generation information for compiled file ' file’. Compila-
tion unit may have been compiled without Coq code generatioenabled.

Description The FoCaLize compilation unit file.fcl was compiled but the object file doesn’'t contain
information abouCoq code generation. THeoCalize compiler allows to disable theéoq code production
by the--no-cog-code option. May be this option was used.

Hints: Invoke the compiler on the source fiféle.foc without the--no-cog-code option.

Using a collection parameter’'s method fame) in a Zenon proof with "by
definition” is not allowed.

Description The current proof tries to used the definition of a methathe of a species parameter. Since
species parameters are always abstraatefipitions (i.e. “bodies”) of their methods aneot available in
the parametrised species. For this reason, it is impossilgeovide this definition t&Zenon.

Hints: None.

Using an only declared method of Self®{ame) in a Zenon proof with "by
definition” is not allowed.

Description The current proof tries to used the definition of a methaee only declaredin the current
species. Since the definition is not available, it is imgassio provide it taZenon.
Hints: None.

Using a local identifier (name) in a Zenon proof with by definition” is not
allowed.
Description The current proof tries to used a local variableme, i.e. an identifier not representing a

method, hence meaningless #&non.
Hints: None.

91

Using a local identifier (name) in a Zenon proof with "by property” is not
allowed.

Description The current proof tries to used a local variableme, i.e. an identifier not representing a
method, hence meaningless #&non.
Hints: None.

Assumed hypothesis/yp’ in a Zenon proof was not found.

Description The current proof makes a reference to an hypothegisthat was not found in the current
proof tree.
Hints: None.

Step '<...>...” in a Zenon proof was not found.

Description The current proof makes a reference to an proof step thanat®und in the current proof
tree.
Hints: None.

Mutual recursion is not yet supported for Coqg code generatio. At least func-
tions 'name;’ and ' names’ are involved in a mutual recursion.

Description The current version dfoCal.ize does not yet handi€oq code generation for mutual recursive
functions. At least the two functionsame; andnames were found as mutually recursive but may be the
recursion involves more functions. It is then impossibleroduceCoq source code.

Hints: Until this feature is available iRoCalLize do not try to generate theoq code for the source file
containing these functions by using thao-cog-code option.

Recursive call to mname’ contains nested recursion.

Description The function contains a recursive calltame inside a recursive call. The current version of
FoCalize doesn'’t support th€oq code generation for nested recursive calls.

Hints: Try to rewrite your function with the nested call performieefore the outer recursive call. For
instance:

let rec f (x) =

£ (f (bla))

should be turned into:

let rec f (x) =

let tmp = f (bla) in
f (tmp)

92

Recursive call to mame’ is incomplete.

Description The function contains a recursive occurrencev@ie with an incomplete number of param-
eters. Since application syntactically requires all tiggiarents to be present, this can arise if the recursive
identifier is used in non-applicative position. However &msor message is more general since future ex-
tensions may involve partial applications. Below follows example of such invalid usage of a recursive

function identifier:

let rec f (x) =

i"et tmp = f in
let ... =tmp (..) .. in
f(.)

Hints; None

Unexpected error: "msg”. Please report.

Description An error was raised and not expected during a normal exacuti the compiler. This is a
failure of the compiler and must be fixed by tReCalLize development team. The error message display
the internal reason of the failure and must be reported t&-tiizalize development team.

Hints. http://focal.inria.fr/ , link “Bug tracking”.

93

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]
[12]

P. Ayrault, T. Hardin, and F. Pessaux. Development lijele of critical software under FoCal. In
ENTCS-Elsevier, editotiarnessing Theories for Tool Support in Software-TTSS2088.

R. Bonichon, D. Delahaye, and D. DoligeZenon: An Extensible Automated Theorem Prover Pro-
ducing Checkable Proofs. loogic for Programming Atrtificial Intelligence and Reasoni(LPAR)
volume 4790 oLNCS/LNA] pages 151-165, Yerevan (Armenia), Oct. 2007. Springer.

S. Boulmé. Sgecification d'un environnemengdié a la programmation certifie de biblioteques de
Calcul Formel These de doctorat, Université Paris 6, 2000.

S. Boulmé, T. Hardin, and R. Rioboo. Some hints for polyrals in the Foc project. I€alculemus
2001 Proceedingsiune 2001.

D. Delahaye, J.-FEtienne, and V. Viguié Donzeau-Gouge. A Formal and Souraahdformation from
FoCalize to UML: An Application to Airport Security Regulations. ML and Formal Methods
(UML&FM), Innovations in Systems and Software Engineering (ISSEpRNAournal, Kitakyushu-
City (Japan), Oct. 2008. Springer.

D. Delahaye, J.-FEtienne, and V. Viguié Donzeau-Gouge. Formal Modeling afoért Security
Regulations using th€oCalize Environment. InRequirements Engineering and Law (RELAW)
Barcelona (Spain), Sept. 2008. IEEE CS Press.

D. Delahaye, J.-FEtienne, and V. Viguié Donzeau-Gouge. Certifying AirpSeccurity Regulations
using theFoCalize Environment. InFormal Methods (FM)volume 4085 olLNCS pages 48—63.
Springer, Aug. 2006.

D. Delahaye, J.-FEtienne, and V. Viguié Donzeau-Gouge. Reasoning aboytofti'Security Regu-
lations using thé-oCaLize Environment. Innternational Symposium on Leveraging Applications of
Formal Methods, Verification and Validation (ISoL,Adages 45-52. IEEE CS Press, Nov. 2006.

D. Doligez. Zenon, version 0.4.1. http://focal.infr&zenon/, 2006.

E.Jaeger and T.Hardin. A few remarks about developgayie systems in b. In IEEE, editt#ASE
2008 2008. .

T. Hardin and R. Rioboo. Les objets des mathématigR&ST | - L'objet 2004.
M. Jaume and C. Morisset. A formal approach to implenaatess controlJournal of Information

Assurance and Securjt2:137-148, 2006.

94

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

M. Jaume and C. Morisset. Towards a formal specificatbrccess control. Idoint Workshop
on Foundations of Computer Security and Automated ReagdaoirSecurity Protocol Analysis FCS-
ARSPA’06 (Satellite Workshop to LICS'2008006.

M. Maarek and V. Prevosto. Focdoc: The documentatistiesy of foc. InProceedings of the 11th
Calculemus SymposiyRome, sep 2003.

M.Carlier and C.Dubois. Functional testing in the foeavironment. In B.Beckert and R.Hahnle,
editors, Tests and Proofs, Second International Conference, TAB,Z&@&to, Italy, April 9-11, 2008.
Proceedingsvolume 4966 ot ecture Notes in Computer Sciengages 84—-98. Springer, 2008.

C. Morisset. Smantique des sysnes de conble d'ac@s PhD thesis, Université Pierre et Marie
Curie - Paris 6, 2007.

V. Prevosto.Conception et Implantation du langage FoC pour &/dloppement de logiciels ceéii
PhD thesis, Université Paris 6, sep 2003.

V. Prevosto and S. Boulmé. Proof contexts with latedbig. InTyped Lambda Calculi and Applica-
tions volume 3461 o NCS pages 324-338. Springer, 2005.

V. Prevosto and D. Doligez. Algorithms and proof inl@nice in the Foc languagdournal of Auto-
mated Reasonin@9(3-4):337-363, dec 2002.

V. Prevosto, D. Doligez, and T. Hardin. Algebraic stire and dependent records. TRHOLs'2002
volume 2410 oLNCS Springer-Verlag, 2002.

V. Prevosto and M. Jaume. Making proofs in a hierarchynathematical structures. FProceedings
of the 11th Calculemus SymposiurRome, sep 2003.

95

Index

5 o4

annotation, 22
block, 23

bang character, 59
blank, 22

category of identifiers, 24
collection, 56

parameter, 57
comment, 22
compilation unit, 19
compiler option, 71

defining a prefix operator, 26
defining an infix operator, 26
defining operators, 26
dependency, 63

decl, 63

def, 64

on representation, 64, 65

directive

coqg.require, 48

open, 30, 39, 48

use, 48
documentation, 22

erasing, 64

expression, 36
application, 45
constant, 37
identifier, 38
if, 43
let-in, 40
literal, 37
logical, 49
match, 43

96

operator, 45
record, 45
clone, 46
field, 46
sum type constructor, 37
type, 31

field, 54
fixity of identifiers, 24
function, 54

recursive, 70
functional value, 38, 45

identifier, 23, 38
delimited, 27
extended, 27
operator, 25
identifier binding, 40
if, 43
infix identifier, 24
infix in prefix position, 26
inheritance, 60
multiple, 61
parametrised bgelf , 62
parametrised species, 61
installation, 18
interface, 56
compatibility, 58

late-binding, 62

let-in, 40

lexical conventions, 22
linking files, 20

match, 43
method, 54
qualification, 39, 59

name well-formation, 65
qualification, 29, 39
resolution, 29, 39, 59

nature of identifiers, 24

operator, 25

parameter

collection, 57

entity, 59
parametrisation, 55, 57
pattern matching, 43
polymorphism, 55, 57
precedence of identifiers, 24
prefix form notation, 26
prefix identifier, 24
proof, 19

delayed, 55

step bullet, 29
property, 49, 55

qualified name, 29

recursion, 70

regular identifiers, 25

representation, 54
declared, 54
defined, 54

scoping, 39, 59

signature, 54

species, 54
complete, 55
expression, 62
name, 27

theorem, 49, 55
toplevel, 53
type
compatible, 35
definition, 32
alias, 32
record, 34
sum, 33
dependent, 58, 61
expression, 31
recursive, 33

97

