
Contents

1 Changes in Virgile’s PhD 3

2 Code generation model 11
2.1 Species 11
2.2 Collection 26
2.3 Toplevel values 31
2.4 Toplevel theorems 31
2.5 Type definitions 32
2.6 External definitions 36

3 Compiler sources architecture 43
3.1 focalizec source tree .. . 43
3.2 Other tools 52
3.3 Passes and directories 52

4 Lexing / parsing 55
4.1 Lexing 55
4.2 Parsing 55

5 The environments structure 57
5.1 The generic environment 57
5.2 Scoping environment 62
5.3 Typing environment 64
5.4 OCaml code generation environment 67
5.5 Coq code generation environment 69

6 Scoping 71

7 Type-checking 75
7.1 Type inference 75
7.2 Environment and structures for the typing pass 83
7.3 Typing a species definition 84
7.4 Typing a collection definition 90
7.5 Typing a type definition 91
7.6 All other toplevel constructs 92

8 Intermediate form 93
8.1 “Computing abstractions” 93

1

9 OCaml code generation 101
9.1 Species generation 101
9.2 Collection generation 105

10 Coq code generation 107

11 Doc generation 109

12 focalizedep 111

13 Cadavers in the cupboard 113

2

Chapter 1

Changes in Virgile’s PhD

1.0.1 Type unification (1)

Section 3.3, definition 9, page 27.
Rule [SELF1] should be:mg(t,Self , t) = Self , id
Rule [SELF2] should be:mg(t, t,Self) = Self , id

1.0.2 Type unification (2)

Is the “preference ofSelf ” (see above) rule really needed ? It seems it can lead to absence of principal type. C.f. the
section 13.

1.0.3 Normal form algorithm

Section 3.7.1, page 36.
In the algorithm, line 10 should be:W1 ← ((ψi0 5 φ), X).

In the algorithm, line 13 should be:W2 ← (W2, φ).

In the running text, page 37, line 8, the same modification must be done to get “on gardeψi0 5 φ dansW1 . . . ”.

1.0.4 Typing rules for parametrised species

Section 3.8, figure 3.2, page 43.
Rule [COL-PRM] should be:
C,Ω ⊢ eS : a C + C : A(a,C),Ω ⊢ species S(prms) inherits eS

1 , . . . eS
hf

= Φ1 . . . Φn : tS

C,Ω ⊢ species S(C is eS , prms) inherits eS
1 , . . . eS

hf
= Φ1 . . . Φn : (C is a)tS

1.0.5 Dependency on the carrier

Section 3.9.4, definition 28, page 50.
The definition should be: “Soit une expressione, si une sous-expression dee ———-a le typefait référence à (“contient”)
Self , il y a une decl-dépendance vis-à-vis du type support.”.
In English: ”Let’s havee an expression, if a sub-expression ofe ———–has typemakes reference to (“contains”)Self ,
then there is a decl-dependency on the carrier”.

This is more accurate since an expression having typeint → Self does not have typeSelf , but when we state
its type,Self occurs in the type and must be bound somewhere (and the decl-dependency on the carrier is just there
for this purpose).

3

1.0.6 Dependencies in a species

Section 3.9.5, definition 31, page 53.
Lines 3 and 4 should be:

∀j < n, yj ∈ * yi +S ∪ ** yj+1 ++S

x1 <def
S x2 =̂ ∃{yi}i=1...n tel que y1 ©S x1, yn ©S x2,∀j < n, yj ∈ ** yj+1 ++S

1.0.7 Parameters used by a method

Section 3.9.5, definition 66, page 124.
To understand the rules[BODY] , [TYPE] , [DEF-DEP] , [UNIVERS] and[PRM] , it should be stated that implicitly
the parameterCp′ has the form:

Cp′is/in τp′

.

1.0.8 Instanciation of species parameters

Section 3.9.5, definition 67, page 124.

Second rule should be:
x Á S = Sh E(Sh) = (C1 ¦ τ1, . . . , Cpf

¦ τpf
) lh = e1 . . . epf

InstS(x) = {InstCp
(ep)Cp∈USh

(x)}

1.0.9 Translation example inOCaml

Section 8.2, page 152.
The code sample shown and the explanation aboutcreate at the top of the page is wrong or at least not complete.

In effect, if presented this way, we don’t know from wherecreate comes. In fact, we must used the one coming
from the species we “implement”. So a qualified notation (i.e. module name + function name) is required.

1.0.10 Dependencies of a method

Section 8.3.1, definition 72, page 153.

Missing notion of order

All along the rules, dependencies are stated as a set of names. In fact this is incomplete since there can be dependencies
between these names for a collection parameter. So they mustbe ordered according to their own dependencies (i.e.
according to def-dependencies inside the hosting species that is that collection parameter).
For instance:

species S1 ... =
let eq = ... ;
theorem th1 : all x in ..., !eq (...) ...
proof = ... ;

end ;;

species S2 (P is S1) ... =
theorem th2 : all x in P, ...
proof = ... property P!th1 ... ;

end ;;

In S1, th1 decl-depends oneq . In S2, methodth2 has a dependencies on its collection parameterP methods.
Especially, onP!th1 , and completions rules require to addP!eq (in order to express the “type” ofth1 , i.e. its

4

statement). Since inP, th1 decl-depends oneq , when makingλ-liftings to abstractP’s methods in the dependencies
on methods of parameters inS1, we must ensure thateq is λ-filter beforeth1 otherwiseeq will be unbound inth1 .

This order is given be the dependencies of the methods insidethe species used as collection parameter.

Missing rule

The rules [DEF-DEP], [UNIVERS] and [PRM] can add dependencies on parameters after rule [BODY] and [TYPES].
However, the added methods can have decl-dependencies via their “types”. An this is not taken into account by the
current set of rules. To circumvent, a new rule is added, [DIDOU] (better name to be found, but the day I thought to
this rule, I was very poor in naming schemes,). This rule intuitively takes the all dependencies found by[BODY],
[TYPES], [DEF-DEP], [UNIVERS] and [PRM] as initial set and performs a fixpoint by adding for each method
of dependencies, its decl-dependencies coming from its “type” (i.e. ML-like type for computational methods, and
statement for logical methods). Of course, when tracking decl-dependencies of a method, we address the method body
in its species. But this species is a collection parameter. So before adding the found method to the set of dependencies
on collection parameters of the analysed species, we must replace in the method, occurrences ofSelf by the by the
species parameter from where this method comes.

Missing substitution in rule [PRM]

First, the rule[PRM] needs further explanations to understand its presentation. It must first be understood that in this
rule, the speciesS has the following form:

species S(Cp is . . . , Cp′ is S′(Cp))
Moreover, implicitlyip′ is the interface ofCp′ . And Cp is a valid implementation of the parameterC ′

k (having the
interfacei′k) of the speciesS′.

Now, the rule says:
z ∈ Deps(S,Cp′)[x]

ip′ = S′(e1, . . . , Cp, . . .) E(S′) = (C ′
1 ¦ i′1, . . . , C

′
k is i′k, . . .) y ∈ Deps(S′, C ′

k)[z]

y ∈ Deps(S,Cp)[x]
This rule forget to show that we must instantiate the formal parameter ofS’ by the effective argument provided.
In effect, in the bodies/types of the methods ofS’ (those methods the conclusion adds to the currently computed
dependencies set), parameters are those ofS’ , not our current ones we use to instantiate the formal ones ofS’ ! To
prevent those ofS’ to remain in the expressions and be unbound, we do the instanciation here.

Inconsistency between inherited/re-computed dependencies

When computing dependencies on collection parameters of a method, it is never clearly stated about how to compute
them when the method is inherited.

One way is to compute from scratch the dependencies from the body of the inherited method. The second is
to recover the inherited dependencies and to perform substitution of formal parameters of the inherited species by
effective arguments used in theinherits species expression.

This last process is in fact very difficult due to the amount ofinformation recorded in the parameters/methods
descriptions (moreover, making severe usage of sharing).

So we really prefer to use the first method that naturally create the data-structures and information to record. The
only problem is that during inheritance, some dependenciespresent in the original inherited species may “disappear”
due to parameters instantiations.
For example:

In fact, the problem is that when we compute dependencies on collection parameters, in the case where we inherit
from a species having 2 parameters instantiated by the same argument, we get into a fusion of the methods we depend
on.

But, the method generator coming from the originally inherited method expects to be applied to as many arguments
thatlambda-lifting were created.

5

species Simple =
signature equal : Self -> Self -> bool ;

end ;;

species Couple (S is Simple, T is Simple) =
signature morph: S -> T;
let equiv(e1, e2) = T!equal(!morph(e1), !morph(e2)) ;

end ;;

species Bug (G is Simple) inherits Couple (G, G) =
theorem theo : true
proof =

<1>1
prove true
<2>f qed assumed { * * }

<1>2 qed by definition of equiv ;
end ;;

In the above example,S andT are instantiated both byG. So we get 1 dependency onG!rep (the carrier) and
1 on G!equal although the method generator expects 3 arguments : twiceG!rep and oneG!equal because in
Couple was abstracted on the carrier ofS, the carrier ofT andT!equal . Because we work with sets to represent
dependencies, twiceG!rep is . . . 1G!rep . And same thing forG!equal .

We described the problem here via a dependency on the carrier, but its is the same thing with dependencies on
other methods: we would just need to makeequiv depending for instance onS!equal andS!equal .

The solution is to make a mix between the two initial solutions. First, we compute the abstractions due to depen-
dencies on collection parameters in the body of the method once inherited. This way, we naturally let data-structures
be created and sharing what they need. In fact, this gives us a“skeleton” of dependencies where someλ-liftings may
have disappeared compared to the number of required in the inherited species. But, we know that all the methods
involved in the dependencies are present, may be not with theright number of occurrences. Then we take the depen-
dencies scheme of tin inherited method and we rebuild a final dependencies structure by replacing in the inherited one
all the occurrences of dependencies on the formal parameterby the corresponding effective argument (used during
instanciation) ones. This way, we just “remap” the computeddependencies on the inherited ones’ scheme.

In the example above, this means that we compute inBug that we have dependencies onG!rep andG!equal .
We look back in the inheritedCouple dependencies, we findS!rep , S!rep andT!equal . So we construct the
final dependencies asS!rep[S<-G] S!rep[S<-G] andT!equal[T<-G]

Dependencies on collection parameters for record type

Computing real dependencies on collection parameters for record type is not clearly stated. ForOCaml, it is quite
trivial since we don’t have any logical methods, hence we canonly have dependencies via “types”. ForOCaml, the
situation is more tricky. In fact, due to logical methods (theorems and properties), dependencies may more complex,
involving types and methods found in the expressions forming the logical statements.

The same kind of problems arises than above (missing rule): an extra rule is needed (the [DIDOU] rule), but the
only difference is that since the record type only shows “types”, the initial set of dependencies to close is the one
obtained by the rule [TYPE].

It is not yet formally clear that computing dependencies required by the record type is complete. Experiment seems
to show that yes, but further theorical investigations should be performed.

Taking a wider set of dependencies (for instance the same than those computed method per method, all grouped in
a single big union) would lead to extra arguments (byλ-lifting) to the record type that would not be used. This is un-
wanted for 2 reasons: efficiency/readability of the generated code, and more importantly, the risk to have variables not
bound to a type, infered as polymorphics, and for whichCoq would say that it “can’t infer a type for this placeholder”.

6

1.0.11 Coq code generation model

The problem

The initial Coq code generation model appeared to have a strong weakness. Moreover, it was strongly different from
theOCaml one. Let’s understand the weakness on a simple example. . . The problem is:

species IntModel inherits Basic_object =
representation = basics #int ;
let one in Self = 1 ;
let modulo (a, b) = if true then a else (if false then b else one) ;

end ;;

species Me (Naturals is IntModel, n in Naturals) =
representation = Naturals ;

theorem lookatme : all x in Self, basics #base_eq (n, Naturals! one)
proof : assumed { * * } ;

let reduce (x in Naturals) in Self = Naturals!modulo (x, n) ;
end ;;

The generatedCoq code follows (at least, for the interesting part of our problem, i.e. thelookatme theorem):
We see that there is aSection for the speciesMe. The theoremlookatme is in a nestedSection (Chapter

is a synonym forSection in Coq).
It depends onone coming fromNatural (which is a collection parameter), and onn which is an entity parameter.
Hence, naturally, we will need to abstract these 3 things (one , n and the typeNatural). This really performed

by the 4Variable s at the beginning of theSection lookatme . Hence, looking at the type of thetheorem
generatorMe__lookatme inside theSection lookatme , we see that is has type:
since theSection is not closed, because theVariable s are not yet abstracted by theCoq’s Section mechanism.

We now close theSection , then naturally thetheorem generatorMe__lookatme turns having the type:
Great ! theVariable s have been abstracted for us byCoq. Now, the idea is that this generator will be used to

create a collection like:
Let’s continue and close theChapter (≃ a Section) of speciesMe. And then, here the theorem generator

Me__lookatme turns unfortunately to have type:
We see that we have an extraNaturals_T : Set in

forall (Naturals_T _p_Naturals_T : Set) ...
So now, we have 2 arguments of typeSet . Why ?

Let’s have a look in the outerSection related to the speciesMe. We had aVariable already abstracting the
type of the collection parameterNatural , namelyVariable Natural_T : Set . And so, by closing the outer
Section of the speciesMe, Coq abstracted once again. Then, it is the outerSection that brings the problem, not
the inner one.

And obviously, this typing problem makes so that when we try to create collection like above, we do not apply the
method generator to the number of arguments thatCoq expects.

A solution could be to say “let’s remove theVariable Natural_T : Set from the outerSection ”. Right,
no ! Since we do notλ-lift in properties (generated asHypothesis in Coq), if a FoCaLize property needs to make
reference to this type, we need a way to speak of if. And if we remove it, then we are not able anymore to speak of
it. . .

A few remarks

• The annoyingSection is then the outer one, the one of the species. Indeed, when we leave the inner
Section , the theorem gets right abstracted on the innerVariable .

• This only arises on theorems because they are the only ones tobe in a nestedSection .

7

• Moreover, we can note in this code generation model that theLocal self_xxx are always generated even
when the methodxxx is inherited. The reason is that since we do notλ-lift in properties (leading toCoq
Hypothesis), if a property depends on another method, it really need to have a way to speak of it in the
property’s statement. And namely, that’s via thisself_xxx . However, in theOCaml code generation model,
inherited methods are not generated again, hence do not leadto local_xxx definitions. This is not really
homogeneous.

Conclusion

In order to solve this problem and to makeCoq andOCaml code generation models (henceCoq andOCaml generated
codes), we decided to use the same model, withoutSection s andChapter ’s, and to manage abstractions ourselves
via explicitλ-liftings even for properties and theorems.

This raises a technical problem however sinceZenon does not support yet higher order. And in fact, with this
generation model, out theorems get parametrised by all theλ-lifted definitions. o circumvent this problem, we decided
to only reintroduceSection s in the code dedicated to be sent toZenon, then map back the proved theorems onto
regularλ-lifted definitions. This means that onZenon’s the point of view, there is noλ-lifts, all is first order, and it
can exhibit a proof. Once we get the proof done, we apply it to the stated theorem in theSection to get a temporary
version of the theorem. And finally, after closing theSection for Zenon, we transform this temporary version into
a fully λ-lifted definition.

8

Chapter Me.
Record Me (Naturals_T : Set) (_p_n_n : Naturals_T)

(_p_Naturals_one : Naturals_T) : Type :=
mk_Me {

Me_T :> Set ;
(* From species ok__in_example#Me. *)
Me_lookatme :

forall x : Me_T, Is_true ((basics.base_eq _ _p_n_n _p_Naturals_one)) ;
(* From species ok__in_example#Me. *)
Me_reduce : Naturals_T -> Me_T
}.

(* Variable abstracting the species parameter [Naturals]. *)
Variable Naturals_T : Set.
(* Variable abstracting the species parameter [n]. *)
Variable n_n : Naturals_T.

(* Carrier representation. *)
Let self_T : Set := Naturals_T.

(* Variable(s) induced by dependencies on methods from species
parameter(s). *)

Variable Naturals_modulo : Naturals_T -> Naturals_T -> Naturals_T.
Variable Naturals_one : Naturals_T.

(* From species ok__in_example#Me. *)
Section lookatme .
(* Due to a decl-dependency on species parameter carrier type ’Naturals’. *)
Variable _p_Naturals_T : Set.
(* Due to a decl-dependency on method ’one’ of species parameter’Naturals’. *)
Variable _p_Naturals_one : _p_Naturals_T.
(* Due to a decl-dependency on method ’n’ of species parameter ’n’. *)
Variable _p_n_n : _p_Naturals_T.
Theorem Me__lookatme :

forall x : self_T, Is_true ((basics.base_eq _ _p_n_n _p_Naturals_one)).
(* Artificial use of type ’Naturals_T’ to ensure abstraction of it’s
related variable in the theorem section. *)
assert (___force_abstraction_p_Naturals_T := _p_Naturals_T).
(* Artificial use of method ’_p_Naturals_one’ to ensure abstraction of
it’s related variable in the theorem section. *)
assert (___force_abstraction__p_Naturals_one := _p_Naturals_one).
(* Artificial use of method ’_p_n_n’ to ensure abstraction of it’s
related variable in the theorem section. *)
assert (___force_abstraction__p_n_n := _p_n_n).
apply basics.magic_prove.
Qed.
End lookatme .

Let self_lookatme :
forall x : self_T, Is_true ((basics.base_eq _ n_n Naturals_one)) :=
Me__lookatme Naturals_T Naturals_one n_n.

...
End Me.

Me__lookatme :
self_T -> Is_true (basics.base_eq _p_Naturals_T _p_n_n _p_Naturals_one)

9

Me__lookatme :
forall (_p_Naturals_T : Set) (_p_Naturals_one _p_n_n : _p_Naturals_T),

self_T -> Is_true (basics.base_eq _p_Naturals_T _p_n_n _p_Naturals_one)

collection ConcreteInt implements IntModel ;;
collection ConcreteMe implements Me (ConcreteInt, ConcreteInt! one) ;;

Me__lookatme :
forall (Naturals_T _p_Naturals_T : Set)

(_p_Naturals_one _p_n_n : _p_Naturals_T),
Naturals_T ->

Is_true (basics.base_eq _p_Naturals_T _p_n_n _p_Naturals_one)

10

Chapter 2

Code generation model

The code generation model is the now closely the same for bothOCaml andCoq generated source files. The main
difference comes from the fact that inOCaml, logical methods are discarded. However, except for the case ofZenon
proofs where we introduceCoq Section , the generation model for “computation” and logical methods are exactly
the the same. This especially means that dependencies are “manually” abstracted by explicitλ-lifting instead of using
(like in the previous compiler) theCoq’s Section mechanism. In the same order of idea, in order to have a common
model, bothOCaml andCoq code are based on a record-oriented structure for the species and collection, with explicit
record fields accesses.

2.1 Species

2.1.1 Species header

The generated code for a species is hosted by a module whose name is the species’ name. This way, it is possible
to have species having the same names of methods without conflict. The module hence defines the name-space of
“things” contained in and induced by a species.

2.1.2 Carrier representation

In OCaml, if the structure of the carrier of the species is known (i.e.if the methodrepresentation was de-
fined), then we generate a type definition whose name isme_as_carrier and body is the type translation of the
correspondingFoCaLize type expression.

In such a type definition, carriers of species parameters appearing in the species’ carrier are abstracted by type vari-
ables. The naming scheme of these variable is ”’ ” + the species parameter’s name un-capitalised + “_as_carrier ”
+ an integer stamp that is unique (inside this type definition). Since species names inFoCaLize are capitalised and
capitalised identifiers inOCaml are reserved for modules and sum type value constructors, weneed to un-capitalise
the name when generatingOCaml code. For the stamp, it is required to prevent several type variable from having the
same name in case the species is parameterised by both a collection parameter and an entity parameter whose names
differ only by the capitalisation of the first letter.

For instance, the following header of a species definition:

species Cartesian_product(A is Setoid, B is Setoid) =
representation = A * B;
...

will generate theOCaml type definition:

module Cartesian_product =
struct
(* Carrier’s structure explicitly given by "rep". *)

11

type (’a0_as_carrier, ’b1_as_carrier) me_as_carrier =
’a0_as_carrier * ’b1_as_carrier

...

In fact,a posteriori, I think now that it’s useless in case of a species, even closed. This type definition is only used
in the case of a collection.

In Coq, no definition generated, the knowledge of the structure of the carrier being reflected directly is needed in
the methods (see later).

2.1.3 The record type

The type of data representing a species is a record type. We first examine its header, i.e. stuff before this type
definition’s body, then it’s body.

The record header

The name of this type is alwaysme_as_species . It can be parametrised due to various abstraction requirements
induced by the late-binding feature ofFoCaLize. OCaml requires a parameter not needed forCoq: this is the only
fundamental difference. We will see that abstractions (hence, parameters) required byCoq can involve methods but
this is only because some of the dependencies that are present in theCoqcode are always trivially absent in theOCaml
code.

1. First come all the species parameter carriers appearing in thetypesof the methods of the species. Each carrier
will be abstracted by one type variable. This allows to “late-bind” the representation of the species
parameters. We say here “appearing in thetypes. . . ”: be aware that the type of “computational” methods
are ML-like types and the ones of logical methods are theirstatement ! We do not explain here how these
parameters are found: this is the role of dependency computation on species parameters.

The naming scheme of these type variable inOCaml is the same than described above for the carrier represen-
tation.

In Coq these parameters of the type are not “really type variables”but arguments of typeSet (simply a
technical question). Their naming scheme is the species parameter’s name + “_T”.

2. Next, only in the OCaml code, the record type is always parametrised by a type variable representing the
carrier of (i.e. the internal representation of the type encapsulated in this) species. By convention, this type
variable is always named’me_as_carrier (don’t confuse withme_as_carrier that is the name of the
type definition representing the effective structure of thecarrier when it is known).

In Coq we don’t have this mandatory type parameter, but instead of it, we will have one extra field in the body
of the record. This variable enable to “late-bind” therepresentation of the species.

3. Finally come all the methods of the species parameter appearing in thetypes of the methods of the species.
Since inOCaml the type of a method can only involve type constructors (a ML-like type), it is clear that we
won’t have any such parameters. In effect, inOCaml the logical methods are discarded. However, since for the
type of a logical method is its logical statement, toCoq’s side, we can have any expression inside their type..
In particular, we can have calls to some collection parameters’ methods. Having these parameters in the record
type allows the “late-binding” on the collection parameteritself (i.e. on by which effective collection will be
used to instantiate the parameter). The naming scheme for the parameters induced by these dependencies is
“_p_ ” + the species parameter’s name +_ + the method’s name.

There is a special a case: the entity parameters. We will explain this after the following example.

Let’s now change our previous example to illustrate the header of our record type inOCaml andCoq:

12

species Cartesian_product(A is Setoid, B is Setoid) =
representation = A * B;
let make (x in A, y in B) in Self = (x, y) ;
let equiv (x in Self) = ... A!equal (...) && B!equal (...) ;
theorem thm : all x in A, A!tst (x) -> ...
proof = ... by property A!commutes ... ;

...

We can see that we have:

• the carrier defined,

• a methodmake of typeA -> B -> Self

• a methodequiv having typeSelf -> bool , having dependencies on the methodsequal of the collection
parametersA andB, but in itsbody, not in its type (equal doesn’t appear inequiv ’s type). Hence, the record
type (inCoq and inOCaml) won’t have any parameter to abstract the dependencies on these methods.

• a theoremthm of “type” all x in A, A!tst (x) -> ... and “body” (proof)... by property
A!commutes Hence, it has dependencies onA!tst in its type and onA!commutes in its body. This
means that inCoq the record type will have a parameter to abstract the dependency found in the type of the
theorem, i.e.A!tst but not forA!commutes

The record type forOCaml will then look like:

module Cartesian_product =
struct
(* Carrier’s structure explicitly given by "rep". *)
type (’a0_as_carrier, ’b1_as_carrier) me_as_carrier =

’a0_as_carrier * ’b1_as_carrier
type (’a0_as_carrier, ’b1_as_carrier, ’me_as_carrier) me_as _species =
...

In Coq a record is introduced by a constructor. By convention, we always name itmk_record . The record type
for Coq will then look like:

Module Cartesian_product.
Record Cartesian_product (A_T : Set) (B_T : Set)

(_p_A_tst : A_T -> basics.bool__t) : Type :=
mk_record

...

The entity parameters In OCaml they can never appear in the record type since in ML-like types, we can’t have
expressions. However, inCoq it is possible to have dependency on an entity parameter in a theorem or property
statement (i.e. in the type of a logical method). For example:

species Me (Naturals is IntModel, n in Naturals) =
representation = Naturals ;

theorem myth : all x in Self,
basics #syntactic_equal (n, Naturals!un)

proof = assumed { * * } ;
end ;;

The theoremmyth shows a dependency on the entity parametern. In this case, the record type will be parametrised
by this entity parameter like if it was a collection parameter’s method. Obviously, an entity parameter doesn’t have
methods since it is a “value” and not a species. So we don’t have any notion of method in the naming scheme. We
choose to name these entity parameters by “_p_ ” + the entity parameter’s name +_ + the the entity parameter’s name
again.

13

Module Me.
Record Me (Naturals_T : Set) (_p_n_n : Naturals_T)

(_p_Naturals_un : Naturals_T) : Type :=
mk_record

...

The record type forOCaml will then look like:

module Cartesian_product =
struct
(* Carrier’s structure explicitly given by "rep". *)
type (’a0_as_carrier, ’b1_as_carrier) me_as_carrier =

’a0_as_carrier * ’b1_as_carrier
type (’a0_as_carrier, ’b1_as_carrier, ’me_as_carrier) me_as _species =
...

The record type forCoq will then look like:

Module Cartesian_product.
Record Cartesian_product (A_T : Set) (B_T : Set)

(_p_A_tst : A_T -> basics.bool__t) : Type :=
mk_record

...

The entity parameters In OCaml they can never appear in the record type since in ML-like types, we can’t have
expressions. However, inCoq it is possible to have dependency on an entity parameter in a theorem or property
statement (i.e. in the type of a logical method). For example:

species Me (Naturals is IntModel, n in Naturals) =
representation = Naturals ;

theorem myth : all x in Self,
basics #syntactic_equal (n, Naturals!un)

proof = assumed { * * } ;
end ;;

The theoremmyth show a dependency on the entity parametern. In this case, the record type will be parameterised
by this entity parameter like if it was a collection parameter’s method. Obviously, an entity parameter doesn’t have
methods since it is a “value” and not a species. So we don’t have any notion of method in the naming scheme. We
choose to name these entity parameters by “_p_ ” + the entity parameter’s name +_ + the the entity parameter’s name
again.

Fields and their types

Now we saw the header of the record type definition, we must address its body, i.e. its fields. Roughly speaking, the
fields will be all the methods with their types hosted in the species in normal form. By “all” we mean the methods
declared, defined in the species and those inherited. Because the species is in normal form, this means that we do not
have several times a method: inheritance has been resolved and chose the right version of each method to keep.

The type accompanying each method is, like we previously said, a ML-like type for “computational” methods and
a logical statement for logical methods. This especially means that since logical methods are discarded inOCaml, in
this target language, we will only have ML-like types.

The only important difference betweenOCaml andCoqis that inCoq we always have an extra (and first) field
representing the carrier of the species (remember that inOCaml, instead, we had a type definition that we didn’t have
in Coq). This field always appears asrf_T :> Set ; and represents the type encapsulated in the species. In
OCaml, the field corresponding to a method is straight the method’sname. InCoq, the field’s name is “rf_ ” + the
method’s name (“rf” forrecordfield).

Let’s now take a simple example and seen the record types inOCaml and inCoq.

species Me (Naturals is IntModel, n in Naturals) =
representation = Naturals ;

14

theorem daube : all x in Self,
basics #syntactic_equal (n, Naturals!un)

proof = assumed { * * } ;

let junk (x in Self) in int = 1 ;

let reduce (x in Naturals) in Self =
Naturals!modulo (x, n) ;

end ;;

module Me =
struct
(* Carrier’s structure explicitly given by "rep". *)
type (’naturals0_as_carrier, ’n1_as_carrier) me_as_carrier =

’naturals0_as_carrier
type (’naturals0_as_carrier, ’n1_as_carrier, ’me_as_carrie r) me_as_species = {
(* From species ok__in_example#Me. *)
junk : ’me_as_carrier -> Basics._focty_int ;
(* From species ok__in_example#Me. *)
reduce : ’naturals0_as_carrier -> ’me_as_carrier ;
}

Module Me.
Record Me (Naturals_T : Set) (_p_n_n : Naturals_T)

(_p_Naturals_un : Naturals_T) : Type :=
mk_record {

rf_T :> Set ;
(* From species ok__in_example#Me. *)
rf_daube :

forall x : rf_T,
Is_true ((basics.syntactic_equal _ _p_n_n _p_Naturals_u n)) ;

(* From species ok__in_example#Me. *)
rf_junk : rf_T -> basics.int__t ;
(* From species ok__in_example#Me. *)
rf_reduce : Naturals_T -> rf_T
}.

Note that in the generatedCoq code, the methoddaube (in fact, the theorem) contains an application of
basics.syntactic_equal . We can see the mechanism of explicit polymorphism and the interest of having
kept in theCoq code generation environment the number of extra arguments (_s) that must be added to identifiers in
applicative position.

2.1.4 Methods

Once the record type is defined, it is time to generate the definitions corresponding to the various methods of the
species. Several cases exist: a method can be declared, defined and in each case either at the current inheritance level
or inherited from an ancestor.

Inherited, declared, defined ?

First of all, the point is that methods only declared orinherited arenever leading to generated code, neither inOCaml,
nor inCoq. This means that only methods freshly defined in the species are leading to code.

Defined methods

In term of generation model, there is no difference betweenOCaml andCoq. The point is because inOCaml we don’t
have logical methods, all what we will explain about theorems and proof is trivially out of the subject forOCaml.
Hence we won’t make any difference in our explanation here, simply considering both kinds of methods independently
of the target language.

15

There are 2 kinds of methods: “computational” and logical. The generation model makes only a difference for
theorems because they have a proof, but the final definition ofboth kinds of method uses the same mechanism: making
explicit abstractions (λ-lifts) for all the types anddeclaredmethods (fromSelf or from the species parameters) the
defined method depends on. Moreover, an entity parameter (since it’s in fact a value) will appear as an argument of a
method if it is used by it: it becomes hence an argument of the method.

To help us, we need 3 notions. We don’t examine here how they are computed. This will be investigated later and
is mostly described in Virgile Prevosto’s PhD.

• The carriers present in the methods from parameters (and in the type of entity parameters) and methods ofSelf
the method depends on. Since they are atomic types, there is no ordering issue in this set.

• The “minimal typing environment”. It represents theordered set of methods ofSelf a method depends on. It
must be ordered because some of the dependencies can depend on some others. Because of the well-formation
property, we are sure this order exists.

• Theordered set of methods from parameters the method depends on.

A method will lead to alet of theorem definition depending on its kind. The generated name is the same than
in the FoCaLize source. labelident-stringification Only a “stringification” is done when the method is an operator
(e.g.=, +, +=e, . . .). This stringification is done on the fly using a very simple mechanism (check function
pp_vname_with_operators_expanded in the source file
focalize/focalizec/src//basement/parsetree_utils.ml .

The generated definition is in fact amethod generator, not the method itself. Its is a function that is parametrised
by all the thing the method depends on, and whose body is the method’s body”. This mechanism serves the late-
binding feature and allow to really create a method once things it depends on are defined by applying the generator to
the effective definitions of the methods the current method depends on. Hence, until the method we depend on are not
yet defined, one can still work with our method generator. Moreover, this allows to make several effective methods
from a same generator, by applying different effective definitions forλ-lifted parameters of the generator.

Next come all theλ-lifts that represent the dependencies of the method: In thefollowing order come:

1. The parameters representing the carriers of species parameters appearing in the method (i.e. used in its whole
definition). Their name is “_p_ ” + the species parameter’s name + “_T.

2. The parameters representing the methods of species’ parameters the current method depends on. They are
ordered in 2 directions. First, all the methods of a same parameter are consecutive and weλ-lift following the
order of apparition of the species parameters. Second, for each species parameter, the consecutive list of its
methods is ordered according to their own dependencies together.

The first point naturally ensure that following the species parameters’ order, definitions of methods of a param-
eter can only depend on former parameters (otherwise, scoping and type-checking would have told “Unbound
...”). The second point is not obtained for free. We must really order the methods of a species parameter accord-
ing to their own dependencies “on Self’s methods” in their hosting species. For instance, let’s imagine that in a
species, we need to abstractP1!eq_refl : all x in Self, !equal (x, x) andP1!equal :
Self -> Self -> bool , clearly to haveP1!eq_refl well typed,P1!equal must be known, hence
appear sooner (i.e. must beλ-lifted beforeP1!eq_refl).

Methods are named by “_p_ ” + the species parameter’s name + “_” + the method’s name.

The translation mechanisms of expressions is not studied inthis section since it isn’t really part of the “species”
compilation model. We can however note that in the body of a species parameter’s method, calls performed
to other methods ofthis parameter (i.e. so, obviously, on which the method of the parameter depends on) are
done using the naming scheme: “_p_ ”+ the species parameter’s name + “_” + called method’s name (flag
SMS_from_param used when calling the function
Species_record_type_generation.generate_logical_exp r).

16

3. The parameters representing the methods of ourselves (i.e. of Self) we decl-depend on. They are named by
“abst_ ” + the method’s name. The only exception is in case where the method is therepresentation , the
name will beabst_T .

Methods on which wedef-depend are not abstracted (i.e. not represented byλ-lifting). In effect, since we
depend on theirdefinition, they are defined (the compiler ensures that) and their effective definition must be
used in the body of the method that depends on. Otherwise, their would be no link between the fact the method
depends on a definition and aλ-lift that would represent any definition that will be provided one days, nobody
know when and where ! This deals with the first sentence of the last paragraph of page 116 (below definition
58) in Virgile Prevosto’s PhD.

Finally comes the translation of the method definition itself, i.e. it’s parameters (if the definition is functional) and
its body. As above, we leave for later the translation mechanisms of expressions. We can however note that in the
body of a method, calls performed to other methods ofSelf (i.e. so obviously on which we depend) are done using
the naming scheme: “abst_ ”+ the called method’s name (flagSMS_abstracted used when calling the function
Species_record_type_generation.generate_logical_exp r).

Attention, theoremsrequire some intermediate cooking before one can directly build their method gen-
erator. In effect, their proof may involve a script forZenon and in this case, a complex process must be inserted in
order to get the proof done to finally get the method generator. This will be explained in section??odo1.

Sample code to help to summarise

We take a part of the example given in Virgile Prevosto’s Phd,section 2.2.2 starting page 14 to illustrate the model we
exposed until now. Attention, we explicitly skipped (removed in the generated listings) code dealing with collection
generator we will explain in the next section.

species Setoide inherits Basic_object =
signature (=) : Self -> Self -> bool ;
signature element : Self ;
let different (x, y) = basics #not_b (x = y) ;

property refl : all x in Self, x = x ;
property symm : all x y in Self, Self!(=) (x, y) -> y = x ;

end ;;

species Monoide inherits Setoide =
signature (*) : Self -> Self -> Self ;
signature un : Self ;
let element = Self! un * !un ;

end ;;

species Setoide_produit (A is Setoide, B is Setoide) inherits Setoide =
representation = (A * B) ;

let (=) (x, y) =
and_b

(A!(=) (basics #fst (x), basics #fst (y)),
B!(=) (snd (x), snd (y))) ;

let creer (x, y) in Self = basics #pair (x, y) ;
let element = Self!creer (A!element, B!element) ;
let print (x) =

"(" ^ A!print (fst (x)) ^ "," ^ B!print (snd (x)) ^ ")" ;

proof of refl = (* by definition of (=) *) assumed { * * } ;
proof of symm = assumed { * * } ;

end ;;

17

module Setoide =
struct
type ’me_as_carrier me_as_species = {
(* From species ok__phd_sample#Setoide. *)
element : ’me_as_carrier ;
(* From species ok__phd_sample#Setoide. *)
equal : ’me_as_carrier -> ’me_as_carrier -> Basics._focty_bool ;
(* From species basics#Basic_object. *)
parse : Basics._focty_string -> ’me_as_carrier ;
(* From species basics#Basic_object. *)
print : ’me_as_carrier -> Basics._focty_string ;
(* From species ok__phd_sample#Setoide. *)
different : ’me_as_carrier -> ’me_as_carrier -> Basics._focty_bool ;
}

let different abst__equal_ (x : ’me_as_carrier) (y : ’me_as_carrier) =
(Basics.not_b (abst__equal_ x y))

end ;;

module Monoide =
struct
type ’me_as_carrier me_as_species = {
(* From species ok__phd_sample#Monoide. *)
un : ’me_as_carrier ;
(* From species ok__phd_sample#Monoide. *)
star : ’me_as_carrier -> ’me_as_carrier -> ’me_as_carrier ;
(* From species ok__phd_sample#Setoide. *)
equal : ’me_as_carrier -> ’me_as_carrier -> Basics._focty_bool ;
(* From species basics#Basic_object. *)
parse : Basics._focty_string -> ’me_as_carrier ;
(* From species basics#Basic_object. *)
print : ’me_as_carrier -> Basics._focty_string ;
(* From species ok__phd_sample#Monoide. *)
element : ’me_as_carrier ;
(* From species ok__phd_sample#Setoide. *)
different : ’me_as_carrier -> ’me_as_carrier -> Basics._focty_bool ;
}

let element abst_un abst__star_ = (abst__star_ abst_un abst_u n)
end ;;

module Setoide_produit =
struct
(* Carrier’s structure explicitly given by "rep". *)
type (’a0_as_carrier, ’b1_as_carrier) me_as_carrier =

’a0_as_carrier * ’b1_as_carrier
type (’a0_as_carrier, ’b1_as_carrier, ’me_as_carrier) me_as _species = {
(* From species ok__phd_sample#Setoide_produit. *)
creer : ’a0_as_carrier -> ’b1_as_carrier -> ’me_as_carrier ;
(* From species basics#Basic_object. *)
parse : Basics._focty_string -> ’me_as_carrier ;
(* From species ok__phd_sample#Setoide_produit. *)
print : ’me_as_carrier -> Basics._focty_string ;
(* From species ok__phd_sample#Setoide_produit. *)
equal : ’me_as_carrier -> ’me_as_carrier -> Basics._focty_bool ;
(* From species ok__phd_sample#Setoide_produit. *)
element : ’me_as_carrier ;
(* From species ok__phd_sample#Setoide. *)
different : ’me_as_carrier -> ’me_as_carrier -> Basics._focty_bool ;
}

let creer (x : ’a0_as_carrier) (y : ’b1_as_carrier) = (Basics.pair x y)
let print _p_A_print _p_B_print (x : ’me_as_carrier) =

(Basics._hat_ "("
(Basics._hat_ (_p_A_print (Basics.fst x))

(Basics._hat_ "," (Basics._hat_ (_p_B_print (Basics.snd x)) ")"))))
let _equal_ _p_A__equal_ _p_B__equal_ (x : ’me_as_carrier)

(y : ’me_as_carrier) =

18

(Basics.and_b (_p_A__equal_ (Basics.fst x) (Basics.fst y))
(_p_B__equal_ (Basics.snd x) (Basics.snd y)))

let element _p_A_element _p_B_element abst_creer =
(abst_creer _p_A_element _p_B_element)

<<<< ATTENTION: >>>>
<<<< SKIPPED THE COLLECTION GENERATOR STUFF THAT WE EXPLAINLATER >>>>

end ;;

Module Setoide.
Record Setoide : Type :=

mk_record {
rf_T :> Set ;
(* From species ok__phd_sample#Setoide. *)
rf_element : rf_T ;
(* From species ok__phd_sample#Setoide. *)
rf__equal_ : rf_T -> rf_T -> basics.bool__t ;
(* From species basics#Basic_object. *)
rf_parse : basics.string__t -> rf_T ;
(* From species basics#Basic_object. *)
rf_print : rf_T -> basics.string__t ;
(* From species ok__phd_sample#Setoide. *)
rf_different : rf_T -> rf_T -> basics.bool__t ;
(* From species ok__phd_sample#Setoide. *)
rf_refl : forall x : rf_T, Is_true ((rf__equal_ x x)) ;
(* From species ok__phd_sample#Setoide. *)
rf_symm :

forall x y : rf_T,
Is_true ((rf__equal_ x y)) -> Is_true ((rf__equal_ y x))

}.

Definition different (abst_T : Set)
(abst__equal_ : abst_T -> abst_T -> basics.bool__t) (x : abst_T)
(y : abst_T) : basics.bool__t := (basics.not_b (abst__equal_ x y)).

End Setoide.

Module Monoide.
Record Monoide : Type :=

mk_record {
rf_T :> Set ;
(* From species ok__phd_sample#Monoide. *)
rf_un : rf_T ;
(* From species ok__phd_sample#Monoide. *)
rf__star_ : rf_T -> rf_T -> rf_T ;
(* From species ok__phd_sample#Setoide. *)
rf__equal_ : rf_T -> rf_T -> basics.bool__t ;
(* From species basics#Basic_object. *)
rf_parse : basics.string__t -> rf_T ;
(* From species basics#Basic_object. *)
rf_print : rf_T -> basics.string__t ;
(* From species ok__phd_sample#Monoide. *)
rf_element : rf_T ;
(* From species ok__phd_sample#Setoide. *)
rf_different : rf_T -> rf_T -> basics.bool__t ;
(* From species ok__phd_sample#Setoide. *)
rf_refl : forall x : rf_T, Is_true ((rf__equal_ x x)) ;
(* From species ok__phd_sample#Setoide. *)
rf_symm :

forall x y : rf_T,
Is_true ((rf__equal_ x y)) -> Is_true ((rf__equal_ y x))

}.

Definition element (abst_T : Set) (abst_un : abst_T)
(abst__star_ : abst_T -> abst_T -> abst_T) : abst_T :=

19

(abst__star_ abst_un abst_un).

End Monoide.

Module Setoide_produit.
Record Setoide_produit (A_T : Set) (B_T : Set) : Type :=

mk_record {
rf_T :> Set ;
(* From species ok__phd_sample#Setoide_produit. *)
rf_creer : A_T -> B_T -> rf_T ;
(* From species basics#Basic_object. *)
rf_parse : basics.string__t -> rf_T ;
(* From species ok__phd_sample#Setoide_produit. *)
rf_print : rf_T -> basics.string__t ;
(* From species ok__phd_sample#Setoide_produit. *)
rf__equal_ : rf_T -> rf_T -> basics.bool__t ;
(* From species ok__phd_sample#Setoide_produit. *)
rf_element : rf_T ;
(* From species ok__phd_sample#Setoide. *)
rf_different : rf_T -> rf_T -> basics.bool__t ;
(* From species ok__phd_sample#Setoide_produit. *)
rf_refl : forall x : rf_T, Is_true ((rf__equal_ x x)) ;
(* From species ok__phd_sample#Setoide_produit. *)
rf_symm :

forall x y : rf_T,
Is_true ((rf__equal_ x y)) -> Is_true ((rf__equal_ y x))

}.

Definition creer (_p_A_T : Set) (_p_B_T : Set)
(abst_T := ((_p_A_T * _p_B_T)%type)) (x : _p_A_T) (y : _p_B_T) :
abst_T := (basics.pair _ _ x y).

Definition print (_p_A_T : Set) (_p_B_T : Set) (_p_A_print :
_p_A_T -> basics.string__t) (_p_B_print : _p_B_T -> basics.string__t)
(abst_T := ((_p_A_T * _p_B_T)%type)) (x : abst_T) : basics.string__t :=
(basics._hat_ coq_builtins.___a_string

(basics._hat_ (_p_A_print (basics.fst _ _ x))
(basics._hat_ coq_builtins.___a_string

(basics._hat_ (_p_B_print (basics.snd _ _ x))
coq_builtins.___a_string)))).

Definition _equal_ (_p_A_T : Set) (_p_B_T : Set) (_p_A__equal_ :
_p_A_T -> _p_A_T -> basics.bool__t) (_p_B__equal_ :
_p_B_T -> _p_B_T -> basics.bool__t) (abst_T := ((_p_A_T * _p_B_T)%type))
(x : abst_T) (y : abst_T) : basics.bool__t :=
(basics.and_b (_p_A__equal_ (basics.fst _ _ x) (basics.fs t _ _ y))

(_p_B__equal_ (basics.snd _ _ x) (basics.snd _ _ y))).
Definition element (_p_A_T : Set) (_p_B_T : Set) (_p_A_element : _p_A_T)

(_p_B_element : _p_B_T) (abst_T : Set)
(abst_creer : _p_A_T -> _p_B_T -> abst_T) : abst_T :=
(abst_creer _p_A_element _p_B_element).

(* From species ok__phd_sample#Setoide_produit. *)
Theorem refl (_p_A_T : Set) (_p_B_T : Set) (abst_T : Set)

(abst__equal_ : abst_T -> abst_T -> basics.bool__t) :
forall x : abst_T, Is_true ((abst__equal_ x x)).

(* Proof assumed because " ". *)
apply coq_builtins.magic_prove.
Qed.

(* From species ok__phd_sample#Setoide_produit. *)
Theorem symm (_p_A_T : Set) (_p_B_T : Set) (abst_T : Set)

(abst__equal_ : abst_T -> abst_T -> basics.bool__t) :
forall x y : abst_T,

Is_true ((abst__equal_ x y)) -> Is_true ((abst__equal_ y x)).
(* Proof assumed because " ". *)
apply coq_builtins.magic_prove.

20

Qed.

<<<< ATTENTION: >>>>
<<<< SKIPPED THE COLLECTION GENERATOR STUFF THAT WE EXPLAINLATER >>>>

End Setoide_produit.

Defined recursive methods

The compilation scheme of a recursive function is pretty different and will be explained in the dedicated section??. It
however finally uses the same abstraction mechanism (i.e.λ-lifted things). The main difference is induced by the use
of theCoq construct “Function ” and the need for a termination proof.

2.1.5 Fully defined species

In case a species is fully defined, i.e. all its methods are defined, no more remaining only declared, the species can
be turned into a collection by animplements . To allow creating collections, we must then add to this species a
collection generator. The intuitive view of such a generator is that it is a function that takes the parameters required
by the method generators and feed them with their related parameters to produce a bunch of effectivemethods.
Hence, the collection generator takes as many parameters asthe method generators of the species need to abstract the
dependencies of the methods (i.e. in fact, theλ-lifts of each method generator) and apply each method generator to
the set of parameters it needs. Hence applying the collection to effective arguments will create a bunch of effective
methods of the species by applying the method generators. Technically, this bunch of methods is stored in a value of
. . . the record type representing the species. Hence, a collection is just a value of this record type, storing functions
(methods) provided to process value whose type is the carrier of the species.

You may note that this carrier type is not recorded in the record structure. However, methods of the record will
obviously have traces of this type in their own type schemes.Turning the carrier abstract (i.e. not exporting its internal
structure), it becomes impossible to manipulate it except via the provided methods, i.e. functions stored in the record
value representing one collection.

Collection generator function’s header

As presented above, the collection generator is a function.Its name is alwayscollection_create . As we said,
this functions take arguments that represent all the thingsabstracted in the method generators of the species.

Attention : Because to have a collection generator, the species must befully defined, it is clear that the only things
that can remain abstracted are species parameters’ carriers, species parameters’ methods and entity parameters ! Never
some methods of “Self ” since all the methods of “Self ” are . . . defined !

Local functions

For each method of the species, we will create a “real method”, i.e. create a local function of the collection generator,
applying the method generator to its required arguments taken among the effective arguments of the collection gen-
erator. Hence, for each method of the species, we build (locally to the collection generator) a function. These local
functions will be named: “local_ ” + method’s name. We have 2 possible cases to find the method generator to use
to create the collection generator:

• Either the method generator belongs to the current inheritance level (i.e. the method was defined at this level in
the species). In this case, this generator is simply the nameof the method because a local function in the module
was generated with this name. In the following sample code, that’s the case for the methodscreer , print ,
element , . . .

• Or the method generator belongs a previous inheritance level (i.e. the method was defined previously, in an
ancestor). In this case, the name of the method generator is qualified by the module hosting the ancestor. This
means that is the ancestor belongs to another compilation unit, we need to also specify the module on which the

21

compilation unit is mapped. This gives a name like: file as module + “. + hosting species name + “. + name of
the method corresponding to this generator. In the following sample code, that’s the case for the methodparse
defined in the speciesBasic_object of the compilation unit “basics.fcl ”.

Creating the record value

Now we have our bunch of functions representing the methods of the species, we just need to create a value of the
record type by feeding each record fields with its related function we locally created.

And then, the return value of the collection generator is therecord value. Hence, this shows clearly that a collection
is in fact a value whose type is the record type we created to model the species.

Sample code to help to summarise

Like we did to explain the code generation model of species in2.1.4, we use the same sample we used in 2.1.4 and
complete the parts about collection generators we previously snipped in the speciesSetoide_produit (the other
species, not being fully defined, don’t have a collection generator).

[language=MyOCaml]

<<<< ATTENTION: >>>>
<<<< STUFF BEFORE, PREVIOUSLY SEENIN PREVIOUS EXPLANATIONS >>>>

module Setoide_produit =
struct
<<<< ATTENTION: >>>>
<<<< STUFF BEFORE, PREVIOUSLY SEENIN PREVIOUS EXPLANATIONS >>>>

(* Fully defined ’Setoide_produit’ species’s collection generator. *)
let collection_create () _p_B_element _p_B__equal_ _p_B_pri nt _p_A_element

_p_A__equal_ _p_A_print =
(* From species ok__phd_sample#Setoide_produit. *)
let local_creer = creer in
(* From species basics#Basic_object. *)
let local_parse = Basics.Basic_object.parse in
(* From species ok__phd_sample#Setoide_produit. *)
let local_print = print _p_A_print _p_B_print in
(* From species ok__phd_sample#Setoide_produit. *)
let local__equal_ = _equal_ _p_A__equal_ _p_B__equal_ in
(* From species ok__phd_sample#Setoide_produit. *)
let local_element = element _p_A_element _p_B_element local_ creer in
(* From species ok__phd_sample#Setoide. *)
let local_different = Setoide.different local__equal_ in
{ creer = local_creer ;

parse = local_parse ;
print = local_print ;
equal = local__equal_ ;
element = local_element ;
different = local_different ;

}

end ;;

In the aboveOCaml you may notice that the collection generator takes a “spurious” () (“unit ”) parameter. This
is not a mistake and is only used to prevent a collection generator that does not need any parameter (because there is
no collection and entity parameter for this species) from having no argument.

In effect, in this case, for sake of non-expansivity, ML typesystem doesn’t allow to generalise type variables
appearing in values that are not functional (roughly, very roughly speaking, since there are other cases . . . Let’s say
that functional value can have their type generalised).

This is a problem since type variables appearing the the module representing a species won’t be generalisable,
then, as soon we create a collection, we instance these type variables by the carrier representation and by parameters’
carriers. And if we want to create another collection, sincethe variables are now instantiated (they are not polymorphic)

22

we can’t instantiate them by other types. And we get a type error onOCaml side. For a full example, see the sample
code in section 2.1.5.

Obviously, we could add this extra parameter only if the collection generator has no parameter, but for sake of
simplicity and homogeneity, we prefer to add it in all the cases.

[language=MyCoq]

<<<< ATTENTION: >>>>
<<<< STUFF BEFORE, PREVIOUSLY SEENIN PREVIOUS EXPLANATIONS >>>>

Module Setoide_produit.
<<<< ATTENTION: >>>>
<<<< STUFF BEFORE, PREVIOUSLY SEENIN PREVIOUS EXPLANATIONS >>>>

(* Fully defined ’Setoide_produit’ species’s collection generator. *)
Definition collection_create (_p_A_T : Set) (_p_B_T : Set) _p_A_element

_p_A__equal_ _p_A_print _p_B_element _p_B__equal_ _p_B_ print :=
let local_rep := ((_p_A_T * _p_B_T)%type) in
(* From species ok__phd_sample#Setoide_produit. *)
let local_creer := creer _p_A_T _p_B_T in
(* From species basics#Basic_object. *)
let local_parse := basics.Basic_object.parse local_rep in
(* From species ok__phd_sample#Setoide_produit. *)
let local_print := print _p_A_T _p_B_T _p_A_print _p_B_print in
(* From species ok__phd_sample#Setoide_produit. *)
let local__equal_ := _equal_ _p_A_T _p_B_T _p_A__equal_ _p_B__equal_ in
(* From species ok__phd_sample#Setoide_produit. *)
let local_element := element _p_A_T _p_B_T _p_A_element _p_B_element

local_rep local_creer in
(* From species ok__phd_sample#Setoide. *)
let local_different := Setoide.different local_rep local__equal_ in
(* From species ok__phd_sample#Setoide_produit. *)
let local_refl := refl _p_A_T _p_B_T local_rep local__equal_ in
(* From species ok__phd_sample#Setoide_produit. *)
let local_symm := symm _p_A_T _p_B_T local_rep local__equal_ in
mk_record (_p_A_T : Set) (_p_B_T : Set) local_rep local_creer local_parse
local_print local__equal_ local_element local_differen t local_refl
local_symm.

End Setoide_produit.

Sample code for extra () parameter forOCaml

As described in 2.1.5, here is a full example showing the needto have an extra() in OCaml for collection generators.

use "basics" ;;
open "basics" ;;

let print_bool =
internal bool -> string
external | caml -> { * string_of_bool * } | coq -> { * (* [Unsure] *) * }

;;
let ext_nil =

internal list (’a)
external | caml -> { * [] * } | coq -> { * (* [Unsure] *) * }

;;
let ext_cons =

internal ’a -> list (’a) -> basics #list (’a)
external | caml -> { * (fun e l -> e :: l) * } | coq -> { * (* [Unsure] *) * }

;;
let ext_head =

internal list (’a) -> ’a
external | caml -> { * List.hd * } | coq -> { * (* [Unsure] *) * }

23

;;
let ext_tail =

internal list (’a) -> list (’a)
external | caml -> { * List.tl * } | coq -> { * (* [Unsure] *) * }

;;

species Concrete_list (E is Basic_object) =
representation = basics #list (E) ;
let equal (x in Self, y in Self) in bool = syntactic_equal (x, y) ;
let nil in Self = ext_nil ;
let cons (e, l) in Self = ext_cons (e, l) ;
let head (l in Self) in E = ext_head (l) ;
let tail (l in Self) in Self = ext_tail (l) ;
let rec map (f, l) =

if equal (l, nil) then nil
else
let h = head (l) in
let q = tail (l) in
let h2 = f (h) in
let q2 = map (f, q) in
cons (h2, q2) ;

end ;;

Once compiled toOCaml we get the following code:

let print_bool = string_of_bool ;;
let ext_nil = [] ;;
let ext_cons = (fun e l -> e :: l) ;;
let ext_head = List.hd ;;
let ext_tail = List.tl ;;

module Concrete_list =
struct
(* Carrier’s structure explicitly given by "rep". *)
type ’e0_as_carrier me_as_carrier = ’e0_as_carrier Basics._f octy_list
type (’e0_as_carrier, ’me_as_carrier) me_as_species = {
(* From species test#Concrete_list. *)
cons : ’e0_as_carrier ->

’e0_as_carrier Basics._focty_list -> ’me_as_carrier ;
(* From species test#Concrete_list. *)
equal : ’me_as_carrier -> ’me_as_carrier -> Basics._focty_bool ;
(* From species test#Concrete_list. *)
head : ’me_as_carrier -> ’e0_as_carrier ;
(* From species test#Concrete_list. *)
nil : ’me_as_carrier ;
(* From species test#Concrete_list. *)
tail : ’me_as_carrier -> ’me_as_carrier ;
(* From species test#Concrete_list. *)
map : (’e0_as_carrier -> ’e0_as_carrier) ->

’me_as_carrier -> ’me_as_carrier ;
}

let cons (e : ’e0_as_carrier) (l : ’e0_as_carrier Basics._focty_list) =
(ext_cons e l)

let equal (x : ’me_as_carrier) (y : ’me_as_carrier) =
(Basics.syntactic_equal x y)

let head (l : ’me_as_carrier) = (ext_head l)
let nil = ext_nil
let tail (l : ’me_as_carrier) = (ext_tail l)
let rec map abst_cons abst_equal abst_head abst_nil abst_tail

(f : ’e0_as_carrier -> ’e0_as_carrier) (l : ’me_as_carrier) =
if (abst_equal l abst_nil) then abst_nil else let h = (abst_head l)

in
let q = (abst_tail l) in
let h2 = (f h)
in

24

let q2 = (map abst_cons abst_equal abst_head abst_nil abst_tai l f q)
in
(abst_cons h2 q2)

(* Fully defined ’Concrete_list’ species’s collection generator. *)
let collection_create !!! WE REMOVED THE EXTRA() !!! =
(* From species test#Concrete_list. *)
let local_cons = cons in
(* From species test#Concrete_list. *)
let local_equal = equal in
(* From species test#Concrete_list. *)
let local_head = head in
(* From species test#Concrete_list. *)
let local_nil = nil in
(* From species test#Concrete_list. *)
let local_tail = tail in
(* From species test#Concrete_list. *)
let local_map = map local_cons local_equal local_head local_n il

local_tail in
{ cons = local_cons ;

equal = local_equal ;
head = local_head ;
nil = local_nil ;
tail = local_tail ;
map = local_map ;

}

end ;;

If we check the interface of theOCaml compilatio unit, we can see that the moduleConcrete_list has type:

module Concrete_list :
sig
type ’a me_as_carrier = ’a Basics._focty_list
type (’a, ’b) me_as_species = {

cons : ’a -> ’a Basics._focty_list -> ’b ;
equal : ’b -> ’b -> Basics._focty_bool ;
head : ’b -> ’a ;
nil : ’b ;
tail : ’b -> ’b ;
map : (’a -> ’a) -> ’b -> ’b ;

}
val cons : ’a -> ’a Basics._focty_list -> ’a list
val equal : ’a -> ’a -> bool
val head : ’a list -> ’a
val nil : ’a list
val tail : ’a list -> ’a list
val map :

(’a -> ’b -> ’b) ->
(’c -> ’b -> bool) ->
(’c -> ’a) -> ’b -> (’c -> ’c) -> (’a -> ’a) -> ’c -> ’b

val collection_create : (’_a, ’_a Basics._focty_list) me_as_species
end

where the functioncollection_create has a non generalised type variable’_a . Hence, to continue the
example, we just need to create two collections, one withint as carrier, the other withbool and to create 2 collections
of lists using these 2 collections as argument.

species Contrete_int inherits Basic_object =
representation = basics #int ;
let print = string_of_int ;

end ;;
collection Int implements Contrete_int ;;

species Contrete_bool inherits Basic_object =
representation = basics #bool ;

25

let print = print_bool ;
end ;;
collection Bool implements Contrete_bool ;;

When creating the last collection implementing list of booleans, the’_a type variable was already instantiated by
int , hence leading toOCaml complaining:

File ".....", line 210, characters 13-33:
This expression has type

int -> int Basics._focty_list -> int Basics._focty_list
but is here used with type

bool -> Bool.me_as_carrier Basics._focty_list -> me_as_c arrier

Hence, adding a dummy parameter to the collection generator, it can now be generalised (i.e. become polymorphic)
and there is no more instanciation issue.

2.2 Collection

Collections are compiled differently as species but they start by exactly the same kind of record type definition. This
record type will represent the type of data in the target language collections are mapped onto.

Things differ after. In effect, we do not need anymore to create the methods since all were already defined in
the fully defined species we “implements . The aim to get a collection, it to get a value of the record type, where
fields are filled with the functions representing methods of the species we “implements ”. In this species we created
a “collection generator” that was a function taking arguments representing dependencies on the species parameters
(collection and entity) and returning a value of the record type . . . a collection. So, to compile a collection, we will
apply the collection generator to things it need to give us material to finally create the collection value that will always
be namedeffective_collection .

Once done, we will get from the record generated by the collection generator of the species we “implements ”,
each field’s value and put it in a record whose type isour (i.e. the collection) type. It is then simply a verbatim copy
since collection never add fields; so the species the collection implements and the collection have the same methods,
so the records have the same fields. With this process, we ensure that the collection will be only type-compatible with
itself and won’t be type-compatible with the species it “implements ” and also not with other collections extracted
from this species (with the same arguments).

Now, the question is to know what to apply to the collection generator of the species we “implements ”. In
fact, we need to apply this generator to the methods of the collections used to instantiate the collection parameters of
the species we “implements ”. For instance, going on with our example started in 2.1.4, we add a fewFoCaLize
code to create aMonoide_produit some fully defined species to represent integers to finally build a collection
representing couples of integers:

MoreFoCaLize code to create collections

species Monoide_produit (C is Monoide, D is Monoide)
inherits Monoide, Setoide_produit (C, D) =

...
end ;;

species Entiers_concrets inherits Monoide =
representation = basics #int ;

...
end ;;

collection Les_entiers implements Entiers_concrets ;;

collection Couple_d_entiers implements
Monoide_produit (Les_entiers, Les_entiers)

;;

26

We get interested directly by the way to get the collectionCouple_d_entiers since it is more interesting be-
cause the implemented species has collection parameters. For the collectionLes_entiers , the process is the same,
except there is no problem of instanciation because there isno parameter. Here we see that the collection parameters
CandDof Monoide_produit were instantiated by the collectionsLes_entiers andLes_entiers . The col-
lection generator ofCouple_d_entiers is parametrised (due to dependencies on species parameters) by several
methods of the species parameters (amongst others, trust me,, un , print , element , . . .). We then must apply the
collection generator to the corresponding methods of “by what C” was instantiated and “by what D” was instantiated,
i.e fromLes_entiers and fromLes_entiers .

Now, where can we get these methods ofLes_entiers ? Since it is a collection, the module hosting the
collection contains aeffective_collection value that has a type being a record. Then we just need to pick in
the fields of this value to have the arguments we want to give tothe collection generator.

Note: It appears that in this case, since the 2 parameters are “is the same collection”, the dependencies will be
the same twice. But that’s just for this particular case. By the way, this also means that we do not “optimise” telling
“Oh, I see the dependencies are exactly on the same functionsof the same species, so let’s keep only one occurrence
of the parameter. . . ”. No we keep the model without exception.

We then get the generatedOCaml code for the 2 create collections:

OCaml code for collections

module Les_entiers =
struct
(* Carrier’s structure explicitly given by "rep". *)
type me_as_carrier = Basics._focty_int
type ’me_as_carrier me_as_species = {
(* From species ok__phd_sample#Entiers_concrets. *)
parse : Basics._focty_string -> me_as_carrier ;
(* From species ok__phd_sample#Entiers_concrets. *)
print : me_as_carrier -> Basics._focty_string ;
(* From species ok__phd_sample#Entiers_concrets. *)
un : me_as_carrier ;
(* From species ok__phd_sample#Entiers_concrets. *)
star : me_as_carrier -> me_as_carrier -> me_as_carrier ;
(* From species ok__phd_sample#Entiers_concrets. *)
equal : me_as_carrier -> me_as_carrier -> Basics._focty_bool ;
(* From species ok__phd_sample#Monoide. *)
element : me_as_carrier ;
(* From species ok__phd_sample#Setoide. *)
different : me_as_carrier -> me_as_carrier -> Basics._focty_bool ;
}

let effective_collection =
let t =

Entiers_concrets.collection_create () in
{ parse = t.Entiers_concrets.parse ;

print = t.Entiers_concrets.print ;
un = t.Entiers_concrets.un ;
star = t.Entiers_concrets._star_ ;
equal = t.Entiers_concrets._equal_ ;
element = t.Entiers_concrets.element ;
different = t.Entiers_concrets.different ;

}
end ;;

module Couple_d_entiers =
struct
(* Carrier’s structure explicitly given by "rep". *)
type me_as_carrier = Les_entiers.me_as_carrier * Les_entiers.me_as_carrier
type ’me_as_carrier me_as_species = {
(* From species ok__phd_sample#Setoide_produit. *)
creer : Les_entiers.me_as_carrier ->

Les_entiers.me_as_carrier -> me_as_carrier ;
(* From species basics#Basic_object. *)

27

parse : Basics._focty_string -> me_as_carrier ;
(* From species ok__phd_sample#Setoide_produit. *)
print : me_as_carrier -> Basics._focty_string ;
(* From species ok__phd_sample#Monoide_produit. *)
star : me_as_carrier -> me_as_carrier -> me_as_carrier ;
(* From species ok__phd_sample#Setoide_produit. *)
equal : me_as_carrier -> me_as_carrier -> Basics._focty_bool ;
(* From species ok__phd_sample#Setoide_produit. *)
element : me_as_carrier ;
(* From species ok__phd_sample#Monoide_produit. *)
un : me_as_carrier ;
(* From species ok__phd_sample#Setoide. *)
different : me_as_carrier -> me_as_carrier -> Basics._focty_bool ;
}

let effective_collection =
let t =

Monoide_produit.collection_create ()
Les_entiers.effective_collection.Les_entiers.un
Les_entiers.effective_collection.Les_entiers._star_
Les_entiers.effective_collection.Les_entiers._equal _
Les_entiers.effective_collection.Les_entiers.print
Les_entiers.effective_collection.Les_entiers.elemen t
Les_entiers.effective_collection.Les_entiers.un
Les_entiers.effective_collection.Les_entiers._star_
Les_entiers.effective_collection.Les_entiers._equal _
Les_entiers.effective_collection.Les_entiers.print
Les_entiers.effective_collection.Les_entiers.elemen t in

{ creer = t.Monoide_produit.creer ;
parse = t.Monoide_produit.parse ;
print = t.Monoide_produit.print ;
star = t.Monoide_produit._star_ ;
equal = t.Monoide_produit._equal_ ;
element = t.Monoide_produit.element ;
un = t.Monoide_produit.un ;
different = t.Monoide_produit.different ;

}
end ;;

TheCoq code follows exactly the same scheme. It appears to be more tricky and bigger for 2 reasons: first logical
methods are in the model, second the record access notation is much more complex inCoq that it is inOCaml (where
one just need to sayval.field).

In effect in Coq to access a field of a value of type record, one must provide, ofcourse the value and the
field name, but also all the effective arguments that were provided when the type record was created from the
mk_record that represents the species. For instance, our collectionCouple_d_entiers “implements” a
Monoide_produit . Looking at the record type ofMonoide_produit , we see:

Record Monoide_produit (C_T : Set) (D_T : Set) : Type :=
mk_record {
rf_T :> Set ;
(* From species ok__phd_sample#Setoide_produit. *)
rf_creer : C_T -> D_T -> rf_T ;
...

that is we have 2 parameters that are the carriers of the collection parameters. When we want to pick values from
the fields of the value returned by the collection generator (hence from the one ofMonoide_produit), we will need
to make explicit by what these parameters were instantiatedwhen we used the generator. And here, we instantiated
twice with the carrier ofLes_entiers . Then, accessing the fieldrf_creer (corresponding to the methodcreer
of the speciesMonoide_produit) of the valuev returned by the collection generator:

let t :=
Monoide_produit.collection_create
Les_entiers.effective_collection.(Les_entiers.rf_T)
Les_entiers.effective_collection.(Les_entiers.rf_T)

28

.... in

will look like:

t.(Monoide_produit.rf_creer
Les_entiers.effective_collection.(Les_entiers.rf_T)
Les_entiers.effective_collection.(Les_entiers.rf_T))

So the full generatedCoq code will be:

Coq code for collections
Module Les_entiers.

Record Les_entiers : Type :=
mk_record {
rf_T :> Set ;
(* From species ok__phd_sample#Entiers_concrets. *)
rf_parse : basics.string__t -> rf_T ;
(* From species ok__phd_sample#Entiers_concrets. *)
rf_print : rf_T -> basics.string__t ;
(* From species ok__phd_sample#Entiers_concrets. *)
rf_un : rf_T ;
(* From species ok__phd_sample#Entiers_concrets. *)
rf__star_ : rf_T -> rf_T -> rf_T ;
(* From species ok__phd_sample#Entiers_concrets. *)
rf__equal_ : rf_T -> rf_T -> basics.bool__t ;
(* From species ok__phd_sample#Monoide. *)
rf_element : rf_T ;
(* From species ok__phd_sample#Setoide. *)
rf_different : rf_T -> rf_T -> basics.bool__t ;
(* From species ok__phd_sample#Entiers_concrets. *)
rf_refl : forall x : rf_T, Is_true ((rf__equal_ x x)) ;
(* From species ok__phd_sample#Entiers_concrets. *)
rf_symm :

forall x y : rf_T,
Is_true ((rf__equal_ x y)) -> Is_true ((rf__equal_ y x))

}.

Let effective_collection :=
let t :=

Entiers_concrets.collection_create in
mk_record t.(Entiers_concrets.rf_T) t.(Entiers_concre ts.rf_parse)

t.(Entiers_concrets.rf_print) t.(Entiers_concrets.rf _un)
t.(Entiers_concrets.rf__star_) t.(Entiers_concrets.r f__equal_)
t.(Entiers_concrets.rf_element) t.(Entiers_concrets. rf_different)
t.(Entiers_concrets.rf_refl) t.(Entiers_concrets.rf_ symm).

End Les_entiers.

Module Couple_d_entiers.
Record Couple_d_entiers : Type :=

mk_record {
rf_T :> Set ;
(* From species ok__phd_sample#Setoide_produit. *)
rf_creer : Les_entiers.effective_collection.(Les_entiers.rf_T) ->

Les_entiers.effective_collection.(Les_entiers.rf_T) -> rf_T ;
(* From species basics#Basic_object. *)
rf_parse : basics.string__t -> rf_T ;
(* From species ok__phd_sample#Setoide_produit. *)
rf_print : rf_T -> basics.string__t ;
(* From species ok__phd_sample#Monoide_produit. *)
rf__star_ : rf_T -> rf_T -> rf_T ;
(* From species ok__phd_sample#Setoide_produit. *)
rf__equal_ : rf_T -> rf_T -> basics.bool__t ;
(* From species ok__phd_sample#Setoide_produit. *)
rf_element : rf_T ;

29

(* From species ok__phd_sample#Monoide_produit. *)
rf_un : rf_T ;
(* From species ok__phd_sample#Setoide. *)
rf_different : rf_T -> rf_T -> basics.bool__t ;
(* From species ok__phd_sample#Setoide_produit. *)
rf_refl : forall x : rf_T, Is_true ((rf__equal_ x x)) ;
(* From species ok__phd_sample#Setoide_produit. *)
rf_symm :

forall x y : rf_T,
Is_true ((rf__equal_ x y)) -> Is_true ((rf__equal_ y x))

}.

Let effective_collection :=
let t :=

Monoide_produit.collection_create
Les_entiers.effective_collection.(Les_entiers.rf_T)
Les_entiers.effective_collection.(Les_entiers.rf_T)
Les_entiers.effective_collection.(Les_entiers.rf_un)
Les_entiers.effective_collection.(Les_entiers.rf__s tar_)
Les_entiers.effective_collection.(Les_entiers.rf__e qual_)
Les_entiers.effective_collection.(Les_entiers.rf_pr int)
Les_entiers.effective_collection.(Les_entiers.rf_el ement)
Les_entiers.effective_collection.(Les_entiers.rf_un)
Les_entiers.effective_collection.(Les_entiers.rf__s tar_)
Les_entiers.effective_collection.(Les_entiers.rf__e qual_)
Les_entiers.effective_collection.(Les_entiers.rf_pr int)
Les_entiers.effective_collection.(Les_entiers.rf_el ement) in

mk_record
t.(Monoide_produit.rf_T

Les_entiers.effective_collection.(Les_entiers.rf_T)
Les_entiers.effective_collection.(Les_entiers.rf_T))

t.(Monoide_produit.rf_creer
Les_entiers.effective_collection.(Les_entiers.rf_T)
Les_entiers.effective_collection.(Les_entiers.rf_T))

t.(Monoide_produit.rf_parse
Les_entiers.effective_collection.(Les_entiers.rf_T)
Les_entiers.effective_collection.(Les_entiers.rf_T))

t.(Monoide_produit.rf_print
Les_entiers.effective_collection.(Les_entiers.rf_T)
Les_entiers.effective_collection.(Les_entiers.rf_T))

t.(Monoide_produit.rf__star_
Les_entiers.effective_collection.(Les_entiers.rf_T)
Les_entiers.effective_collection.(Les_entiers.rf_T))

t.(Monoide_produit.rf__equal_
Les_entiers.effective_collection.(Les_entiers.rf_T)
Les_entiers.effective_collection.(Les_entiers.rf_T))

t.(Monoide_produit.rf_element
Les_entiers.effective_collection.(Les_entiers.rf_T)
Les_entiers.effective_collection.(Les_entiers.rf_T))

t.(Monoide_produit.rf_un
Les_entiers.effective_collection.(Les_entiers.rf_T)
Les_entiers.effective_collection.(Les_entiers.rf_T))

t.(Monoide_produit.rf_different
Les_entiers.effective_collection.(Les_entiers.rf_T)
Les_entiers.effective_collection.(Les_entiers.rf_T))

t.(Monoide_produit.rf_refl
Les_entiers.effective_collection.(Les_entiers.rf_T)
Les_entiers.effective_collection.(Les_entiers.rf_T))

t.(Monoide_produit.rf_symm
Les_entiers.effective_collection.(Les_entiers.rf_T)
Les_entiers.effective_collection.(Les_entiers.rf_T)).

End Couple_d_entiers.

30

2.3 Toplevel values

At toplevel, since we are not in a species, there is no possible dependencies on species parameters (since there is no
parameter) and no possible dependencies on methods ofSelf (since there is no notion ofSelf). For this reason, we
do not have to wonder about how naming methods odSelf and of species parameters.

Hence, code generation for toplevel value definitions (either constants or functions) is a simple translation into the
target language with no particular analysis to do before-hand. The name of the generated definition is simply the name
given in theFoCaLize source file and the definition is generated at toplevel.

Hence, we are in the case where there is no more problems than those intrinsic to the target language. For instance,
in Coq, we will have to be careful with polymorphic identifiers and handle the explicit polymorphism by providing
extra type arguments like seen in 2.1.3.

For instance:

FoCaLize toplevel value definition

let x = 42 ;;

let fst (x) =
match x with
| (v, _) -> v

;;

GeneratedOCaml toplevel value definition

let x = 42 ;;

let snd (x : ’a * ’b) =
match x with
| (_, v) ->

(begin
v
end)

;;

In theCoq code, we see again here a hack to speak of the type of tuples. Ineffect, we must explicitly tellCoq
that the* used in the type expression(__var_a * __var_b) is the* dealing withtypes. That’s the reason of
the presence of the%type notation post-fixing the type expression of the tuple.

GeneratedCoq toplevel value definition

Let x : basics.int__t := 42.

Let snd (__var_a : Set) (__var_b : Set) (x : ((__var_a * __var_b)% type)) :
__var_b :=

match x with
| (_, v) =>

v
end.

2.4 Toplevel theorems

Toplevel theorems, like toplevel values do not have any dependencies since they are not in a species. Hence they are
generated like other theorems, with theSection mechanism for the proof part (if the proof is done inFoCaL Proof
Language), but with noλ-lifting stuff.

For instance:

FoCaLize toplevel theorem definition

theorem beq_trans :

31

all x y z in ’a, x = y -> y = z -> x = z
proof = assumed { * Import trusted external code. * } ;;

GeneratedCoq toplevel theorem definition
Theorem beq_trans :

forall __var_a : Set, forall x y z : __var_a,
Is_true ((_equal_ _ x y)) ->

Is_true ((_equal_ _ y z)) -> Is_true ((_equal_ _ x z)).
(* Proof assumed because " Import trusted external code. ". *)
apply coq_builtins.magic_prove.
Qed.

2.5 Type definitions

Type definitions always appear at toplevel, i.e. outside a species. For a given type definition named “myty ” in
FoCaLize, the corresponding generated names are historically a few different in OCaml and inCoq. In OCaml the
generated type will be named “tt _focty_” +mtty . In Coq, the generated type will be namedmtty + “__t ”.

We have 4 kinds of type definitions:

• Alias : the definition doesn’t create a new type (i.e. a new setof values inhabiting a type) but is a shortcut
for naming a (complex ?) type expression. For instance:type t = alias (int * char * int) ;; The type
constructort is only an alias for the type of tuples with 3 components whosefirst and third components are an
integer and second one is a character. In particular,t will be unifiable with any occurrence of its alias.

• Union : the definition create a new sum type and gives its valueconstructors. This new type will be compatible
with only itself. For instance:type t = |A |B (int * char) ;; The type constructort denotes the type whose
2 value constructors areA andB. The constructorB is parametrised by a pair of an integer and a character.

• Record: the definition create a new record type and gives its fields names and types. This new type will be
compatible with only itself. For instance:type t = { name :string ;birth :int } ;; The type constructor
t denotes the record type whose 2 fields are namedname andbirth and types are respectivelystring and
int .

• External : the definition establishes the link between a typeof an external language and its representation in
FoCaLize. Because they are quite complex, they will be studied in moredetails in a next dedicated section (
see 2.6.1).

2.5.1 Type alias

As stated before, such atype definition introduces a new type name (i.e. type constructor) to represent a type
expression. Fortunately, bothOCaml andCoq have the notion of type alias. Hence, we simply need to translate
theFoCaLize type expression in the corresponding target type expression. This doesn’t pose any particular problem.
The only thing to remind is that since inCoq polymorphism is explicit, if a type definition is parametrised by a type
variable, then one must explicitly give this variable the typeSet . In OCaml there is no need to give the type of this
variable, the syntax only requires to bind this variable name in the type definition’s name (i.e.
type ’a t = ... ;;).

Below follow a few simple alias type definitions examples with their corresponding generated source code inCoq
andOCaml.

GeneratedCoq type definition
open "basics" ;;

type t = alias int ;;
type u = alias (t * (char * bool * string)) ;;

32

type poly_pair (’a) = alias (’a * ’a) ;;
type inv_prod (’a, ’b) = alias (’b * ’a) ;;

GeneratedCoq type definition

type _focty_t = Basics._focty_int ;;
type _focty_u =

Basics._focty_int *
(Basics._focty_char * Basics._focty_bool * Basics._focty_string) ;;

type ’a _focty_poly_pair = ’a * ’a ;;
type (’a, ’b) _focty_inv_prod = ’b * ’a ;;

GeneratedCoq type definition

Require basics.
Definition t__t := basics.int__t.
Definition u__t :=

((basics.int__t

* (((basics.char__t * basics.bool__t * basics.string__t)% type)))% type).
Definition poly_pair__t (__var_a : Set) := ((__var_a * __var_a)% type).
Definition inv_prod__t (__var_b : Set) (__var_c : Set) :=

((__var_c * __var_b)% type).

The only technical thing is to make sure that type variables are correctly identified all along the unifications to be
sure that they are properly link between their declaration (with the type name) and their usage. This is illustrated by
the inv_prod definition where we want to have variables inverted between the binding order and their usage order.

Be careful that the aliases we made here aretuples. They use the type constructor* (star) to createone type
expression that is a tuple compound of several type (sub-)expressions. This will not have to be confused with the
problem of parametrising sum type value constructors withone tuple of several components or several values as
explained later in 2.5.2.

2.5.2 Type union (sum type)

As stated before, such a sum type definition introduces a new type name (i.e. type constructor) with its value con-
structors. Again fortunately, bothOCaml andCoq have the notion of sum type. Hence, we do not need to encode
sums, we need to translate them into the corresponding constructs in the target languages. Each value constructor in
FoCaLize will lead to a value constructor in the target languages.

In OCaml the return type of a constructor doesn’t need to be explicit.Conversely, inCoq it needs to be. Hence
for the simple sum type definition:

Simple sum type inFoCaLize

type t =
| A
| B

;;

we get the followingOCaml code where only the value constructors namesA andB are emitted:

Simple sum type generated inOCaml

type _focty_t =
| A
| B

;;

Whereas inCoq, in addition to the constructors names, one must explicitlysay that they are values of this type:

33

Simple sum type generated inCoq
Inductive t__t : Set :=

| A : (t__t)
| B : (t__t).

Parametrised value constructors are a bit more complex. We first introduce the simplest case, where value con-
structors have one parameter. In this case, inOCaml code, we have the quite obvious translation that tells “of ” the
argument’s type. InCoq the constructor will simply be considered to have a functional type whose argument is the
type of the value constructor’s argument and whose return type is the defined type itself. Hence, even for recursive
and/or parametrised type definitions, we easily generate the code of the example:

Sum types with simply parametrised value constructors
type t_poly (’a) =

| None
| Some (’a)

;;

type t_rec =
| TR1 (int)
| TR2 (t_rec)

;;

type t_poly_rec (’a) =
| TPR1 (’a)
| TPR2 (t_poly_rec (’a))

;;

in OCaml to get:

Sum type generated inOCaml
type ’a _focty_t_poly =

| None
| Some of (’a)

;;
type _focty_t_rec =

| TR1 of (Basics._focty_int)
| TR2 of (_focty_t_rec)

;;
type ’a _focty_t_poly_rec =

| TPR1 of (’a)
| TPR2 of (’a _focty_t_poly_rec)

;;

and inCoq to get:

Sum type generated inCoq
Inductive t_poly__t (__var_a : Set) : Set :=

| None : (t_poly__t __var_a)
| Some : (__var_a -> (t_poly__t __var_a)).

Inductive t_rec__t : Set :=
| TR1 : (basics.int__t -> t_rec__t)
| TR2 : (t_rec__t -> t_rec__t).

Inductive t_poly_rec__t (__var_b : Set) : Set :=
| TPR1 : (__var_b -> (t_poly_rec__t __var_b))
| TPR2 : ((t_poly_rec__t __var_b) -> (t_poly_rec__t __var_b)).

in both of which see see that the generated type constructor’s name is consistently the same between the code of the
name of the definition and the generated type expressions (so, recursive) where this type constructor’s name appears.

34

The translation of sum type is quite complete, but we still need to deal with a choice of representation to do about
value constructors that “look having” several parameters,like in

Value constructor parameterised by “several” arguments

type t_prm_val_cstr =
| C (int * int * int)

;;

In such a case, is the value constructorCparametrised bythree integers or byonetuple of 3 integers ? This makes
a particular difference inCoq because value constructors are curried. ForCoq unless an explicit tuple is stated,
the value constructor for the above example must have the functional typeint -> int -> int -> int ->
t_prm_val_cstr .

Of course, it would be possible to always group the argumentsinto one unique tuple,but making proofs using such
a value constructor would not be tractable (dixit Renaud). In OCaml, since we do not have this concern of proof, this
choice would not be a real problem.

In fact, in the syntax,FoCaLize propose two value constructor argument expressions different: one for “several”
parameters and one for 1 tuple parameter of “several” components. Hence, translation into the target languages are
not ambiguous. In a sum type definition, for a value constructor, arguments separated by, (“comma”) are considered
as “several arguments”, and arguments separated by* (“star”) are considered as grouped inside one unique argument
that is a tuple. Hence, for the followingFoCaLize example:

Value constructor parameterised by “several” arguments (2)

type t_prm_val_cstr =
| C (int * int * int)
| D (int, int, int)

;;

we get the generatedOCaml code that follows, where we do make any difference between one and several argu-
ments: all is every considered as a tuple

Value constructor parameterised by “several” arguments inOCaml (2)

type _focty_t_prm_val_cstr =
| C of ((Basics._focty_int * Basics._focty_int * Basics._focty_int))
| D of (Basics._focty_int * Basics._focty_int * Basics._focty_int)

;;

and the generatedCoq code where the types ofCandDare clearly different:

Value constructor parameterised by “several” arguments inCoq (2)

Inductive t_prm_val_cstr__t : Set :=
| C :

((((basics.int__t * basics.int__t * basics.int__t)% type)) ->
t_prm_val_cstr__t)

| D :
(basics.int__t -> basics.int__t -> basics.int__t -> t_prm_val_cstr__t).

2.5.3 Record type

As stated before, such a record type definition introduces a new type name (i.e. type constructor) with its fields labels
and types. Again fortunately, bothOCaml andCoq have the notion of record type. Hence, we do not need to encode
record, we need to translate them into the corresponding constructs in the target languages. Each field inFoCaLize
will lead to a field in the record generated in the target languages.

The translation process is simple since it map a each field label of theFoCaLize definition onto a field label of the
same name in the target language: The type of the field is generated like any type expression in the target language.

35

Record type definitions inFoCaLize
type r0 = { x0 = int ; y0 = float } ;;
type r1 (’a) = { x1 = ’a } ;;

Generated record type definitions inOCaml
type _focty_r0 = {

x0 : Basics._focty_int ;
y0 : Basics._focty_float ;

} ;;

type ’a _focty_r1 = {
x1 : ’a ;

} ;;

The only difference forCoq is (like already encountered when dealing with the record type representing species
and collections, in 2.1.3 and 2.2) that a record type definition requires a “record constructor”. By convention, it will
always be named by “mk_” + the record type’s name + “__t ”.

Generated record type definitions inCoq
Record r0__t : Type :=

mk_r0__t {
x0 : basics.int__t ;
y0 : basics.float__t
}.

Record r1__t (__var_c : Set) : Type :=
mk_r1__t {
x1 : __var_c
}.

2.6 External definitions

External definitions are intended to make the interface between code imported from foreign target languages to be able
to use it onFoCaLize’s side. There are 2 kinds of external definitions: type definitions and value definitions.

Type definitions are used either to import basic types and to allows FoCaLizeto map its internal types on them
(for instance,int , bool , etc that are built-in type inFoCaLize and that must be mapped onto theirOCaml andCoq
counterparts), or to specify the type of values developed outsideFoCaLize and that we want to use fromFoCaLize.

Value definitions are used to provide support (i.e. primitives to manipulate) and inhabitants to external types or to
provide values of a type known inFoCaLize but whose construction was done outside theFoCaLize source code.

Any external definition contains 2 aspects: its “internal” view that says how the defined entity must be seen by
FoCaLize(during its analyses) and its “external” view that says how this entity must be mapped onto target languages
(during code generation) when it is used in aFoCaLize source code.

2.6.1 External type definitions

An external type definition starts like a regular type definition, i.e. by the type constructor’s name and possibly
parameters:type (’a, ’b)t =). The body of the definition shows that it is an external by having the following
shape:

type t =
internal ...
external ...

and ...
and ...

Attention : Be careful that theand ... arenot other type definitions: they are optional and belong to the current
external type definition. We will see later the meaning.

36

The internal clause

For a type definition, theinternal clause shows at whichFoCaLize type definition the body of the external def-
inition corresponds. In fact this is equivalent to establish an alias between the structure of the external type and the
structure of the type definition insideFoCaLize.

However, since we do not always want to really have this alias(i.e. an equivalence between the internal and
external representations), this clause can be empty. In this case, the created type constructor will be fully abstract
on FoCaLize’s side and the only way to make and manipulate values of this type will have to be provided via other
external (values) definitions or via built-ins of the compiler.

So, when theinternal clause is not empty, we said that is represented a type definition. Hence this clause can
have 3 shapes: an alias, a sum or a record (the 3 kinds of type definitions in FoCaLize). For example (with the first
case representing a fully abstract type as described above):

External type definitions

type int =
internal (* Internal#int *)
...

;;

type foc_diag (’a) =
internal alias (’a * ’a)
...

;;

type list (’a) =
internal
| []
| (::) (’a, list (’a))
...

;;

type foc_record (’a, ’b) =
internal { hcode = int ; contents = (’b * ’a) }
...

;;

The first definition creates a typeint that is fully abstract. Obviously, this one will be used magically by the
internals of the compiler, so no need to have external definitions to manipulate its representation, this will be built-in
in the compiler. Consult 2.6.1 for a discussion about this mechanism.

The second definition creates a parametrised typefoc_diag that will internally be compatible with a pair of
elements of the same type.

The third definition creates a parametrised typelist that is made of 2 value constructors:[] with no argument
and :: with 2 arguments (not a tuple). Hence this corresponds to an internal representation of a sum type. We
can see here how to define the lists like they are inCoq andOCaml to directly map them onto those ofCoq and
OCaml, without making any internal hack inside the compiler. We could have defined our custom lists by a regular
type definition like

type list (’a) =
| []
| (::) (’a, list (’a))

;;

but we wouldn’t have been able to make so that constructors directly map onto their counterparts inCoq and
OCaml (in effect, these constructors being non-regular identifiers, they would have been “stringified” like we saw in
??).

The fourth and last definition creates a parametrised typefoc_record that is a record type with 2 fields:hcode
andcontents .

37

So, a question: but why to use external definitions to create such types ? It should be possible to define these sum
and record types by a regular definition ! The answer, partially given about thelist example is that this allows to
control manually and explicitly the mapping of the type and of its components (fields and value constructors) into the
target languages. We will see a clear example once we have ended the case offoc_diag .

To summarise, theinternal clause controls how the type is seen onFoCaLize’s side.

The external clause

The external clause tells how thetype constructor (not it’s components like fields, value constructors : this will be
done by the extraand ... clauses described below in 2.6.1) must bedefined into the target languages. In other
words, what to emit to define the type constructor in the target languages.

Like in anyexternal clause , we have an enumeration of mapping “language7→ external code”: we call this
an “external expression”. Languages can syntactically becoq , caml or a string for other languages not internally
handled by theFoCaLize compiler. External code is an arbitrary string enclosed by{ * and* } that will be emitted
verbatim at code generation pass when the type constructor will have to be defined.

At code generation time, the shape of the definition inOCaml will look like: type followed by the enumeration
of polymorphic type variables “_focty_ ” + type’s name= followed by the verbatim copy of the external code.
The polymorphic type variables are named as usual inOCaml. If there are several then they comma-separated and
enclosed between parentheses. Their name are, ’a , then, ’b , then, ’c and if there are more than 26, it goes on
with ’aa , ’ab etc. . . . In fact it is like printing their numbers in base 26, using lowercase letters as digits.

In Coq, it will look like: Definition followed the the type’s name + “_t ” followed by the enumeration of the
polymorphic type variables:= followed by the verbatim copy of the external code. The polymorphic type variables
are named by “__var_ ” + “a”, then “b”, then “c”. Like for OCaml the suffix is the variable’s number written in base
26. Hence the name of the 27th variable will be__var_ab . In Coq we must explicitly annotate variables with the
typeSet .

Hence, with the definitions we started in our example, the beginning of the generated code inOCaml andCoq
will look like:

OCaml code for external definitions

type _focty_int = ...
type ’a _focty_foc_diag = ...
type ’a _focty_list = ...
type (’a, ’b) _focty_foc_record = ...

Coq code for external definitions

Definition foc_diag__t (__var_a : Set) := ...
Definition list__t (__var_a : Set) := ...
Definition foc_record__t (__var_a : Set) (__var_b : Set) :=

Continuing our previous example, we state theFoCaLize external type definitions:

External type definitions (2)

coq_require "coq_stubs" ;;

type int =
internal (* Internal#int *)
external
| caml -> { * int * }
| coq -> { * Z * }

;;

type foc_diag (’a) =
internal alias (’a * ’a)
external
| caml -> { * (’a * ’a) * }

38

| coq -> { * ((__var_a * __var_a)% type) * }
;;

type list (’a) =
internal
| []
| (::) (’a, list (’a))
external
| caml -> { * ’a list * }
| coq -> { * (list __var_a) * } (* From the List module. *)
...

;;

type foc_record (’a, ’b) =
internal { hcode = int ; contents = (’b * ’a) }
external
| caml -> { * (’b, ’a) Ml_stubs.bbt_record * }
| coq -> { * coq_stubs.foc_record [’b, ’a] * }
...

;;

In the first definition we see that to define theint type constructor in OCaml, we will emit “int” and in Coq, we
will emit “Z”. That’s because we want theint type constructor to be mapped onto these existing types of the target
languages.

The second definition shows that we wantfoc_diag to be defined as a pair inOCamland inCoq.
In the third definition, we say that lists are implemented inOCaml by its native lists and inCoq, by an existing

data-type (the one provided myCoq’s module “List”).
Finally, in the last definition, we want to say that the typefoc_record is implemented by a user-defined type.

For instance, a record type in bothOCaml andCoq. Due to the way the code is emitted we can’t write directly in the
external code a record definition in each of the target languages: it would be syntactically incorrect. So, instead, we
say that the typefoc_record is implemented by a type name given in a other source file (one file for OCaml and
one forCoq). We must remember that the generated definition in the target languages will correspond to an alias (i.e.
of the formtype name= external-code inOCaml, andDefinition name:= external-code inCoq), so we must
put in the external code only things that will comply the target language’s syntax. For instance, specifying for theCoq
language a definition like:

type foc_diag (’a) =
internal alias (’a * ’a)
external
| caml -> { * (’a * ’a) * }
| coq -> { * Record : Type :=

mk_foc_diag (alpha : Set) {
fst : alpha ;
snd : alpha } * }

;;

would lead to a syntactically incorrect garbage rejected byCoq like:

Definition foc_diag__t (__var_a : Set) :=
Record : Type :=

mk_foc_diag (alpha : Set) {
fst : alpha ;
snd : alpha } .

Attention : In the sample code inFoCaLize we are studying, when we extended it, we added a first line that
readscoq_require "coq_stubs" ;; This is needed to make soCoq can see definitions of the source file
Coq_stubs.v in which we wrote our stubs forCoq. Since theFoCaLize compiler doesn’t analyse inside the
external code, it can’t see that there is a dependency forCoqonto this source file, hence can’t add itself in the gener-
atedCoq file theRequire directive. By adding thiscoq_require directive in theFoCaLize source code, we tell
the compiler to add the correspondingRequire directive in the generatedCoq code.

39

Finally, one may note in this last definition that aFoCaLize foc_record (’a, ’b) is implemented by a
(’b, ’a) Ml_stubs.bbt_record . We inverted the parameters ! This means that so they will be in the gener-
ated definition (have a look in the sample generated code below) !

We now continue to inspect the generated code in bothOCamlandCoq:

OCaml code for external definitions (2)

type _focty_int = int ;;
type ’a _focty_foc_diag = (’a * ’a) ;;
type ’a _focty_list = ’a list ;;
type (’a, ’b) _focty_foc_record = (’b, ’a) Ml_stubs.bbt_record ;;

and:

Coq code for external definitions (2)

Require coq_stubs.

Definition int__t := Z.
Definition foc_diag__t (__var_a : Set) := ((__var_a * __var_a)% type) .
Definition list__t (__var_a : Set) := (list __var_a) .
Definition foc_record__t (__var_a : Set) (__var_b : Set) :=

coq_stubs.foc_record __var_b __var_a .

To fully understand the mapping mechanism, we must now see the stubs written for each target language.

Stub file ml_stubs.ml¨
type (’c, ’d) bbt_record = {

bbt_hashing_code : int ;
bbt_contents : (’c * ’d)

} ;;
­§ ¦

Stub file coq_stubs.v¨
Require Export ZArith. (* To have type Z. *)

Record foc_record (param_a : Set) (param_b : Set) : Type :=
mk_foc_record {

hc : Z;
conts : ((param_a * param_b)% type)

}.
­§ ¦

The extra and ... clauses

Finally, there are still two things to describe. . . We know how the type constructor must be seen internally, how it must
be mapped onto target languages but we don’t know yet on what to map the sum value constructors and the record
fields names !

The extraand directive are here for this purpose and will be used only in case of sum or record type definitions.
We now complete our external definitions:

External type definitions (3)

type list (’a) =
internal
| []
| (::) (’a, list (’a))
external
| caml -> { * ’a list * }
| coq -> { * (list __var_a) * } (* From the List module. *)

40

and [] =
| caml -> { * [] * }
| coq -> { * List.nil * }

and (::) =
| caml -> { * (::) * }
| coq -> { * List.cons * }

;;

type foc_record (’a, ’b) =
internal { hcode = int ; contents = (’b * ’a) }
external
| caml -> { * (’b, ’a) Ml_stubs.bbt_record * }
| coq -> { * coq_stubs.foc_record __var_b __var_a * }

and hcode =
| caml -> { * Ml_stubs.bbt_hashing_code * }
| coq -> { * coq_stubs.hc * }

and contents =
| caml -> { * Ml_stubs.bbt_contents * }
| coq -> { * coq_stubs.conts * }

;;

We must note that forfoc_record , we mapped the record fields onto the related fields present inour stubs
source files. Obviously, an external type definition must consistently map the type constructor, its field label or value
constructor to a definition existing in the target language.For instance, if we mappedfoc_record to a typet1 , and
its field labels to labels of a typet2 or to field names that do not exist in the target language, thenthe compilation
of the generated code would fail. It is important to see that the compilation process onFoCaLize’s side wouldn’t point
out any error: howeverCoq or/andOCaml would complain.

This last set of clauses, since they are involved in how to mapvalue constructors and record fieldswhen they are
encountereddo not lead to any code when the type definition is emitted. So we do not have any more generated code
related to the type definition to examine.

External type definitions and built-in types.

As stated before, external type definition are also used to setup the basic types internally known by the compiler :int ,
unit , string , bool andchar . These definitions are in the filestdlib/basics.fcl . We could have fully
hidden these definition by directly hard-coding these typesand their components (value constructor forunit) in the
pervasive environments. But this would have been doing manually a job the compiler knows how to make. So, instead,
we used these external definitions. They magically work withthe inner of the compiler because this one is made so
that when it has to infer the type of an integer value, it will generate a type whose name is . . . justly “int” . . . exactly
the name we gave in our external type definition. This means that internally, the compiler knows that an integer value
has type ”int”, even if it doesn’t know what is an integer. This especially means that if no external definition is given
for int , the compiler is still able to infer the type of integer expressions. However, is the user writes “int”, then he
will be rejected because the scoper won’t find any definition of this type constructor.

The case ofunit is slightly different since the external definition also gives the (only) value inhabiting this type.
So, the compiler doesn’t have built-in mechanism to synthesise a typeunit : to get this type, the only ways are
either the user wrote “unit” or he wrote “()” and looking-up in the environment for the value constructor’s type we
will normally getunit . The difference with the case ofint is really that inunit , the definition gives the values
of the type although inint , they are not given by the definition but rather “hard-wired”in the compiler (it knows
syntactically what is an integer).

Hence, considering this difference point,int , char andstring are handled the same way, andunit andbool
are handled the same way.

41

2.6.2 External value definitions

External value definitions follow the same idea than types, they have aninternal and anexternal clause. The
internal clause deals with how the compiler must consider the value during its analyses: it deals with the value’s
type. Theexternal clause deals with how the compiler must map this value at codegeneration time in the target
languages.

Hence, an external definition is compound of theinternal clause followed by a type expression and tne
external clause followed by an “external expression”. For instance:

External value definitions

let int_max =
internal int -> int -> int
external
| caml -> { * Ml_builtins.bi__int_max * }
| coq -> { * coq_builtins.bi__int_max * }

;;

let (||) =
internal bool -> bool -> bool
external
| caml -> { * Ml_builtins.bi__or_b * }
| coq -> { * coq_builtins.bi__or_b * }

;;

let physical_equal =
internal ’a -> ’a -> bool
external
| caml -> { * Ml_builtins.bi__physical_equal * }
| coq -> { * coq_builtins.bi__syntactic_equal __var_a * }
(* Wrong, but don’t know how to do better. *)

;;

Such a definition is simply compiled into a definition having the same name in the target language than inFo-
CaLize (except in case where stringification is required like in||) whose body is the verbatim copy of the external
expression corresponding to the target language. InOCaml, we do not need to make the type of the definition explicit.
In Coq, we need to and also, as usual, need to handle the explicit polymorphism with the extra arguments of typeSet
to represent the polymorphic type variables (like inphysical_equal).

For the aboveFoCaLize sample code, we then simply get the generated code:

OCaml code for external value definitions

let int_max = Ml_builtins.bi__int_max ;;
let _bar__bar_ = Ml_builtins.bi__or_b ;;
let physical_equal = Ml_builtins.bi__physical_equal ;;

and:

Coqcode for external value definitions

Let int_max : int__t -> int__t -> int__t := coq_builtins.bi__int_max.
Let _bar__bar_ : bool__t -> bool__t -> bool__t := coq_builtins.bi__or_b.
Let physical_equal (__var_a : Set) : __var_a -> __var_a -> bool__t :=

coq_builtins.bi__syntactic_equal __var_a .

Hence, with this code generation model, since the identifierbound to an external definition receives, in the gener-
ated code, an effective definition, we do not need to replace each occurrence of this identifier of theFoCaLize source
code by its related external expression in the generated source code. This makes the code generation simpler since
when we “see” the identifier in theFoCaLize source code, we generate exactly the same identifier in the generated
source code. Otherwise we should have reminded for each identifier whether it is bound to an external stuff to see by
what to replace its occurrence. Too heavy, and may be could lead to incorrect syntactic forms in the generated source
!

42

Chapter 3

Compiler sources architecture

3.1 focalizec source tree

The compiler source tree is split into several directories and files described below. The root of the compiler sources
is located infocalize/focalizec . All directories and files given below are relative to this root. In some of the
directories is a sub-directory calledodoc . It can be safely ignored and is only used when invoking verb+make doc+
to store theocamldoc output (HTML documentation extracted from the source code of FoCaLize). In the below enu-
meration (d x) stands for ”directory” whose content is atx nesting level of the root (i.e. offocalize/focalizec)
and (f) stands for ”file".

• Makefile (f) : The toplevel Makefile building the compiler, the standard library, the extra libraries, the doc-
umentation generator, theFoCaLize documentations and the contributions. This Makefile indeedtrigger the
build process in all the deeper directories.

• Makefile.common (f) : Defines once for all the implicit rules and suffixes that will be used in deeper Make-
files.

• .config_var (f) : File generated during the “configure” process (invokedby the fileconfigure below and
that records the various things among installation paths, installed commands and tools, . . .

• Makefile.config (f) : Defines once for all the commands according to the information the “configure”
process recorded. It especially include the.config_var file that kept trace of what the “configure” process
defined.

• TAGS(f) : Documentation file where developers are invited to noteall the tags added to the development tree
under CVS, with a description of the status of the development tree when the tag was set (or the reason why to
put a tag).

• TODO(f) : More or less describes points that are still pending.

• configure (f) : Script used to detect available commands and tools, to ask the user where to installFoCaLize
components, . . . Parts of its output is stored in the above file.config_var .

• doc_src (d 1) : The directory containing all the documentations at destination of the users.

– Makefile (f) : Makefile triggering the documentations build.

– html (d 2) : TheFoCaLize WEB site in HML format.

∗ Includes (d 3)

· aftertitle-eng.html (f)

· aprestitre-fra.html (f)

43

· avanttitre-fra.html (f)
· basdepage-fra.html (f)
· beforetitle-eng.html (f)
· bottomofpage-eng.html (f)
· copyright-eng.html (f)
· copyright-fra.html (f)
· doctype (f)
· endofpage-eng.html (f)
· findepage-fra.html (f)
· hautdepage-fra.html (f)
· htmlc-version.html (f)
· maquette-eng.html (f)
· maquette-fra.html (f)
· powered_by_caml.html (f)
· topofpage-eng.html (f)

∗ Makefile (f)
∗ Makefile.html (f)
∗ images (d 3) : Directory containing images for the WEB site.

· focal_picture.jpg (f) : A niiiice 3D picture done with Povray,.

– man (d 2) : Directory containing the “man” manual.

∗ Makefile (f)
∗ focalizec.env (f)
∗ focalizec.man (f) : “man” for focalizec.
∗ focalizedep.man (f) : “man” for focalizedep.

– tex (d 2) : Documentations inLaTeX format.

∗ Makefile (f)
∗ refman (d 3) : Directory containing the reference manual.

· Makefile (f)
· basic_concepts.tex (f)
· bibli.bib (f) : Contains bibliography references.
· building_species.tex (f)
· compiler_err_msgs.tex (f) : About thefocalizec compiler error messages.
· compiler_opts.tex (f) : About thefocalizec compiler command line options.
· constructs_syntax.tex (f)
· doc_gen.tex (f) : About theFoCaLize automated documentation generation (optionfocalize-doc

of focalizec).
· fullpage.sty (f)
· glimpse.tex (f) : Short presentation of the language to give a first an rapid taste.
· header_html_snapshot.ps (f)
· introduction.tex (f)
· lexical_conventions.tex (f) : About FoCaLize lexical conventions, description of the

tokens and syntax.
· macros.hva (f)
· macros.tex (f) : LaTeXmacros used in the reference manual.
· mathml_snapshot.ps (f)

44

· more_on_meths.tex (f)
· motivations.tex (f)
· output.tex (f) : About what thefocalizec compiler generates.
· pres_requir.tex (f)
· proofs.tex (f)
· refman.html (f)
· refman.hva (f)
· refman.pdf (f)
· refman.tex (f) : Entry point of the reference manual.
· syntaxdef.hva (f)
· syntaxdef.sty (f)

• src (d 1) : Root of the sources offocalizec andfocalizedep.

– attic (d) : Contains miscellaneous interesting parts of code thathave been written one day, that are not
used anymore, but that we didn’t want to trash in case it couldserve in the future.

∗ ast.mli , lib_pp.ml , lib_pp.mli , misc.ml , new2old.ml , new2old.mli , oldsourcify.ml ,
oldsourcify.mli , printer.ml , printtree.ml ,
string_search_stuff.ml

∗ May be more. . .

– basement (d 2) : Contains the early basic bricks of the compiler.

∗ Makefile (f) : Trigger build in this directory.
∗ configuration.ml (f) : Manages version number (and by side effect the-help option output

text) and the command line options flags.
∗ configuration.mli (f)
∗ files.ml (f) : Contains primitives dealing with files, taking into account search path, files suffixes,

read/write object files, . . .
∗ files.mli (f)
∗ handy.ml (f) : Various general functions, on lists, pretty-printers, font setting. . .
∗ handy.mli (f)
∗ installation.ml (f) : File automatically generated by the “configure” process and record as

OCaml source, the various installation paths and commands thefocalizec compiler need to know
when dealing withFoCaLize source files.

∗ location.ml (f) : Defines the type of “locations”, i.e. point in a source file and gives primitives to
work with them.

∗ location.mli (f)
∗ miscHelpers.ml (f) : Mostly contains 1 function used during several passes to bind formal names

to their types from a type scheme and a list of formal names. May be could somewhere else to save
one file. . .

∗ miscHelpers.mli (f)
∗ parsetree.mli (f) : The description of the AST.
∗ parsetree_utils.ml (f) : General utilities to process the AST.
∗ parsetree_utils.mli (f)
∗ types.ml (f) : The description of the types structure and operations to work with them. Because

types are a complex structure with invariants, they are exported as opaque to prevent breaking these
invariants. Hence, any function dealing with the intimate representation of a type must be in this file
since his is the only location where this representation is visible.

∗ types.mli (f) :

45

– ccodegen (d) : Dedicated to the C code generation back-end. Maintained by Julien Blond and is not
currently included inFoCaLize.

∗ . . . not stable.

– commoncodegen (d 2) : Contains processing common to all target languages that is performed in any
case before emitting the target code.

∗ Makefile (f) :

∗ abstractions.ml (f) : Performs the synthesis ofλ-lifted things, summarising def and decl-
dependencies and dependencies on collection parameters methods. It especially performs the final
(complete) computation of dependencies on collection parameters, applying the various completion
rules on the dependencies found previously by the rules [TYPE] and [BODY].

∗ abstractions.mli (f)

∗ context.mli (f) : The structure of the “context”, i.e. the structure inductively passed to each
function during this pass and that group into one single record type all the information needed by the
various functions. This a handy way to prevent from having numerous parameters to pass each time
to the functions.

∗ externals_generation_errs.ml (f) : Exceptions that can be raised when generating code
for “external” definitions, i.e. definitions that are not written in nativeFoCaLizelanguage and used to
interface with other programming languages.

∗ externals_generation_errs.mli (f)

∗ minEnv.ml (f) : Compute the “Coqminimal typing environment”.

∗ minEnv.mli (f)

∗ misc_common.ml (f) : Various type definitions and functions used in several points during this
pass.

∗ misc_common.mli (f)

∗ recursion.ml (f) : Deals the the recursive functions processing.

∗ recursion.mli (f)

∗ visUniverse.ml (f) : Compute the “visible universe”.

∗ visUniverse.mli (f)

– contribs (d 2) : Contains contribution source codes written by users that are not developers of the
compiler and its framework.

∗ Makefile (f)

∗ automata (d 3) : Hierarchical automata. Maintained by Philippe Ayrault.

· Makefile (f)

· gen_def.fcl (f)

· main.fcl (f)

· request.fcl (f)

· switch_automata.fcl (f)

· switch_recovery_automata.fcl (f)

· switch_recovery_normal_automata.fcl (f)

· switch_recovery_reverse_automata.fcl (f)

∗ utils (d 3) : Various utilities. Maintained by Philippe Ayrault.

· Makefile (f)

· pair.fcl (f)

· peano.fcl (f)

∗ voter (d 3) : Model of a generic voter. Maintained by Philippe Ayrault.

· Makefile (f)

46

· etat_vote.fcl (f)

· main.fcl (f)

· num_capteur.fcl (f)

· value.fcl (f)

· vote.fcl (f)

– coqcodegen (d 2) : ContainsCoq code generation back-end.

∗ FOCAL_COQ_MAPPINGS(f) : Short (incomplete) description of howFoCaLize names are mapped
ontoCoq names in the generated source code.

∗ Makefile (f)

∗ main_coq_generation.ml (f) : Entry point ofCoq code generation. Start code generation for
a compilation unit, deals with toplevel entities (let , theorems, expressions and type definitions) and
triggers processing of species, collections.

∗ rec_let_gen.ml (f) : Manages parts of the code generation for recursive functions with stuff ded-
icated toCoq.. Especially, generates the termination lemmas and transforms arguments of a recursive
into a tuple.

∗ rec_let_gen.mli (f)

∗ species_coq_generation.ml (f) : Main part of code generation for species and collections.

∗ species_coq_generation.mli (f)

∗ species_record_type_generation.ml (f) : Deals with the generation of the record type
representing species and collections. Also generates codefor expressions.

∗ species_record_type_generation.mli (f)

∗ type_coq_generation.ml (f) : Deals with code generation for (toplevel) type definitions.

∗ type_coq_generation.mli (f)

– devdocs (d 2) : The current documentation explaining the compiler’sarchitecture and mechanisms.

∗ foc2ocaml.tex , pending.txt (f) : Oldies. Should disappear.

∗ legacy.tex (f) : The mainLaTeXfile. Compile it to get the current documentation.

∗ macros.tex (f) : Miscellaneous macros to make life easier,.

∗ mathpartir.sty : Inference rules package.

∗ phd_changes.tex : Things we changed, corrected, enhanced since Virgile Prevosto’s PhD Thesis.

– docgen (d 2) : Source forfocalizec automated documentation generation (-focalize-doc option of
the compiler) as XML files.

∗ Makefile (f) :

∗ doc_lexer.mll : Lexer to scan “@”-markups in aFoCaLize source code.

∗ env_docgen.ml : Contains the documentation environment mechanisms. Thisenvironment maps
methods names onto some optional MathML and LaTeX code.

∗ env_docgen.mli (f)

∗ focdoc.css (f) : FoCaLizeDoc-XML style sheet.

∗ focdoc.dtd (f) :

∗ focdoc.rnc (f) :

∗ focdoc.xsd (f) :

∗ focdoc2html.xsl : Transforms someFoCaLizeDoc-XML into HTML + MathML.

∗ focdoc2tex.xsl (f) : Transforms someFoCaLizeDoc-XML into LaTeX.

∗ main_docgen.ml (f) : Engine extracting information from aFoCaLize source code to produce
FoCaLizeDoc-XML.

∗ main_docgen.mli (f)

47

∗ mmlctop2_0.xsl (f) : Transforms HTML + MathML into HTML.
∗ proposition.xsl (f) : : Processing of logical expressions fromFoCaLizeDoc-XML to HTML

+ MathML.
∗ proposition2tex.xsl (f) : Processing of logical expressions fromFoCaLizeDoc-XML to La-

TeX.
∗ utils_docgen.ml (f) : Various helpers used for XML production.
∗ utils_docgen.mli (f)

– extlib (d 2) : Libraries higher level than the basic standard library. Especially contains formal calculus
structures.

∗ Makefile (f)
∗ access_control (d 3) : Access control policies. Maintained by Lionel Habib and Mathieu Jaume.

· Makefile (f)
· access_control.fcl (f)
· ensembles_finis.fcl (f)
· hru.fcl (f)
· rbac.fcl (f)
· ticket.fcl (f)
· tm (d 4)
· graph.ml (f)
· trust_management.fcl (f)
· unix.fcl (f)

∗ algebra (d 3) : Formal calculus library. Maintained by Renaud Rioboo.
· Makefile (f)
· additive_law.fcl (f)
· arrays.fcl (f)
· arrays_externals.v (f)
· big_integers.fcl (f)
· constants.fcl (f)
· integers.fcl (f)
· iterators.fcl (f)
· multiplicative_law.fcl (f)
· parse_poly.fcl (f)
· polys_abstract.fcl (f)
· product_structures.fcl (f)
· quotient_structures.fcl (f)
· randoms.fcl (f)
· randoms_externals.ml (f)
· randoms_externals.v (f)
· rings_fields.fcl (f)
· small_integers.fcl (f)
· weak_structures.fcl (f)
· weak_structures_externals.ml (f)
· weak_structures_externals.v (f)

– focalizedep (d 2) : The dependencies generator to create Makefiles.

∗ Makefile (f)

48

∗ directive_lexer.mll (f) : Lexer to scanopen anduse directives in aFoCaLize source.

∗ make_depend.ml (f) : Source of the generator.

– mlcodegen (d 2) : ContainsOCaml code generation back-end.

∗ FOCAL_ML_MAPPINGS(f) : Short (incomplete) description of howFoCaLize names are mapped
ontoOCaml names in the generated source code.

∗ Makefile (f)

∗ base_exprs_ml_generation.ml (f)

∗ base_exprs_ml_generation.mli (f)

∗ main_ml_generation.ml (f)

∗ main_ml_generation.mli (f)

∗ misc_ml_generation.ml (f)

∗ misc_ml_generation.mli (f)

∗ species_ml_generation.ml (f)

∗ species_ml_generation.mli (f)

∗ type_ml_generation.ml (f)

∗ type_ml_generation.mli (f)

– parser (d 2) : Contains the lexical and syntactic analysers to processFoCaLize source code.

∗ Makefile (f)

∗ dump_ptree.ml (f) : Dumps the AST structure of a file in raw text mode. Used fordebugging
purpose.

∗ dump_ptree.mli (f)

∗ lex_file.ml (f) : Initial attempt to have a small “main” to check the behaviour of the lexer on a
file at the early stages of development. This is not used anymore.

∗ lexer.mll (f) : The lexer description inocamllex.

∗ lexer.spec (f) : Trace of thoughts we had all along the time. Initially contained ideas about the
language syntax, (at lexical level) to make it smooth.

∗ parse_file.ml (f) : Initial attempt to have a small “main” to check the behaviour of the parser on
a file at the early stages of development. This is not used anymore.

∗ parse_file.mli (f)

∗ parser.mly (f) : The parser description inocamlyacc.

∗ parser.spec (f) : Trace of thoughts we had all along the time. Initially contained ideas about the
language syntax, (at syntactic level) to make it smooth. Next other ideas were added, beyond syntax,
more oriented toward the AST structure.

∗ sourcify.ml (f) : Dumps the AST structure of a file inFoCaLize syntax. Gives back a source
code from a parsed code. This is mostly useful for debugging purpose. May be used bu customers to
pretty-print their source, but I don’t recommand. This morespecially serves to report pieces of code
in a good-looking form in error messages. Each time we need totell the user something involving a
piece of code, we pretty-print it with functions provided here.

∗ sourcify.mli (f)

∗ sourcify_token.ml (f) : Not used anymore. Was used to test the lexer at the early stages of
development. It was used to print the found token.

∗ test (d 3) : Oldies originally used to test the lexer/parser in theearly times. No used anymore.

· sets_orders.fcl (f) : First translation of a file of the standard library used ti test the lexer/-
parser. Not used anymore.

– scoper (d 2) : Old stuff. Was discarded a long time ago. The directoryis empty by the way.

49

– stdlib (d 2) : The standard library. Most of these sources are maintained by Renaud Rioboo. A few
ones (basics and built-ins) are low-level code close to the compiler and maintained by the core compiler
development team.

∗ Makefile (f)

∗ basics.fcl (f) : Basic bricks and internal-related stuff. Contains theprimitive type definitions and
some very basic functions forFoCaLize.

∗ coq_builtins.v (f) : Basic bricks and internal-related stuff especially dedicated toCoq code.

∗ generic_proof_cases.v (f) : Contains built-in stuff forCoq about built-in lists and some
tactics.

∗ lattices.fcl (f)

∗ ml_builtins.ml (f) : Basic bricks and internal-related stuff especially dedicated toOCaml code.

∗ orders.fcl (f)

∗ orders_and_lattices.fcl (f)

∗ products.fcl (f)

∗ quotients.fcl (f)

∗ sets.fcl (f)

∗ sets_externals.ml (f) : External definitions to link forOCaml related tosets.fcl .

∗ sets_orders.fcl (f)

∗ sets_orders_externals.ml (f) : External definitions to link forOCaml related tosets_orders.fcl .

∗ strict_orders.fcl (f)

∗ sums.fcl (f)

∗ wellfounded.fcl (f) : Define well foundation, termination orders for recursive function defini-
tions forCoq.

∗ wellfounded_externals.v (f) : External definitions to link forOCaml related towellfounded.fcl .

– toplevel (d 2)

∗ Makefile (f)

∗ exc_wrapper.ml (f) : Firewall designed to recover all the exceptions that can be raised during a
source compilation and issues the related error message. Roughly, this code wraps the main call to
the compilation engine.

∗ focalizec.ml (f) : The compiler entry point.

∗ focalizec.mli (f)

∗ fodump.ml (f) : For debug only, dumps (partially) the content of aFoCaLize object file (“.fo” file).

– typing (d 2) : Performs the type-checking of the language, normal form of species, checks well-
formation of species, compute def and decl-dependencies, initiate computation of dependencies on col-
lection parameters’ methods, resolves inheritance.

∗ Makefile (f)

∗ ast_equal.ml (f) : Implements equality test between logical expressions(indeed, between ex-
pressions since logical statements fully embed expressions).

∗ ast_equal.mli (f)

∗ depGraphData.mli (f) : Defines the structure of the dependencies graph used to compute well-
formation from def and decl-dependencies.

∗ dep_analysis.ml (f) : Handles the dependencies analyses on methods ofSelf , i.e. def and
decl-dependencies.

∗ dep_analysis.mli (f)

50

∗ env.ml (f) : Structure of the environments used all along the compilation. Contains a generic envi-
ronment structure, the specialised scoping environment the specialised typing environment, the spe-
cialisedOCaml code generation environment and the specialisedCoq code generation environment.
All these environments are instantiations of the generic environment structure. Also contains data-
structures used from type-checking up to code generation torecord the various information about
analysed species, collections, methods, types, . . . Some ofthese data-structures will appear in later
passes, picked-up from these environments.

∗ env.mli (f)

∗ infer.ml : Core engine performing type-checking, inheritance resolution, normal form of species,
check of well-formation, def and decl-dependencies computation and triggers the initial computation
of dependencies on collection parameters’ methods.

∗ infer.mli (f)

∗ param_dep_analysis.ml (f) : Handles the initial computation of dependencies on collection
parameters’ methods. The computed dependencies will have to be completed later in the next pass.

∗ param_dep_analysis.mli (f)

∗ scoping.ml (f) : Performs scoping analysis.

∗ scoping.mli

∗ substColl.ml (f) : Performs substitution of a collection (name/carrier)by another one orSelf
in an AST.

∗ substColl.mli (f)

∗ substExpr.ml (f) : Performs substitution of an expression (i.e.Parsetree.expr) by another
in an AST.

∗ substExpr.mli (f)

• tests (d 1) : Various little tests we wrote to shake the compiler or to ensure that some particular features/pro-
cessing required by the compiler were really working. This code is most of the time meaningless and only
design to target a particular point of the compilation process. The naming scheme is: a source file name starting
by “ko__” must lead to an error (an error message, not a failure of the compiler), a source file name starting by
“ok__” must be accepted by the compiler and lead to effectivecode.

– Makefile (f)

– ko__bad_self_use.fcl (f)

– ko__param_toy.fcl (f)

– ko__test_error.fcl (f)

– ko__test_rec.fcl (f)

– ok__baby_toy.fcl (f) : A bit of everything, without any order.

– ok__baby_toy_externals.ml : External code to link forOCaml related took__baby_toy.fcl .

– ok__caveat.fcl (f) : Illustrates the pitfall of sum type constructors that have1 argument that is a tuple
or severalarguments but are hardly different from the syntax point of view.

– ok__coll_outside.fcl (f) : Example showing how now use a collection defined outsidethe current
one (i.e. the used one not a parameter) in a collection or a species.

– ok__definition_72_rule_PRM.fcl (f) : Illustrates the need for rule PRM in definition 72 page
153 in Virgile Prevosto’s PhD.

– ok__in_example.fcl (f) : Example showing how now use thein parameter without allowing their
type to be anymore a “ml type”.

– ok__in_example2.fcl (f) : Same purpose than forok__in_example.fcl .

51

– ok__list.fcl (f) : Example showing how to make lists as species inFoCaLize. It also illustrates the
need for the extra unit argument to the collection generator“collection_create ” in case it has no
arguments, what would preventOCaml from generalising the type of this generator. This example must
pass inOCaml but is not yet accepted inCoq.

– ok__multiple_inherit.fcl (f) : Used to track the provenance of methods in case of multiple
inheritance.

– ok__need_inspect_self.fcl (f) : Example showing how now use the need to inspect the structure
of representation while computing the
“used_species_parameters_ty ” in the case where a method has a def-dependency onSelf .

– ok__need_re_ordering.fcl (f) : Example showing the need of the final re-organisation ofmethods
due to the collapsing procedure of properties andproof of s.

– ok__odd_even.fcl (f) : Example showing simple mutually recursive methods that must pass for
OCaml code generation. Note thatCoq code generation does not yet handle mutual recursion.

– ok__phd_def_deps.fcl (f) : Example of Virgile Prevosto’s Phd, section 3.9.6, page56. Illustrates
the need for the erasing procedure.

– ok__phd_meths_gen.fcl (f) : Example from Virgile Prevosto’s Phd, section 6.4.3, page 115.

– ok__phd_sample.fcl (f) : The initial example given in Virgile Prevosto’s Phd, section 2.2.2 starting
page 14.

– ok__scoping_tricky.fcl (f) : Example showing scoping occurrences of a same name in case
where this name is not recursively defined. Combines the stuff with late-binding.

– ok__term_measure.fcl (f) : Is designed to be a successful use of termination proofs. Still doesn’t
pass.

– ok__toplevel_odd_even.fcl (f) : Example showing simple mutually recursive toplevel functions
that must pass forOCaml code generation. Note thatCoq code generation does not yet handle mutual
recursion.

– ok__torture_params.fcl (f) : Example showing how to torture parametrised species. It exhibits
various non-trivial cases that must pass and lead to effective OCamlCoq code. These examples make
heavy use ofin , is parameters and inheritance to shake the compiler’s instanciation of parameters during
inheritance.

3.2 Other tools

Asidefocalizec itself and its library, 2 others tools explicitly dedicatedto theFoCaLize packages exist.

3.2.1 zenon

Maintained by Damien Doliger, he is the man in the place to describe,.

3.2.2 zvtov

Maintained by Damien Doliger, he is the man in the place to describe,.

3.3 Passes and directories

Each directory described above roughly corresponds to one pass of the compiler except the directorysrc/basement
which contains basic stuff used a bit everywhere. The order of the tasks performed at compile-time can be mapped on
the source directories as follows:

52

1. src/toplevel : Entry point of the compiler, performing I/O and administrative tasks to initiate the compila-
tion process.

2. src/parser : Lex and parse the source code

3. src/typing : Scopes the parsed source (i.e. the primary AST, hence leading to a “scoped” AST), then
type-check the scoped AST (hence leading to a “typed” AST), resolves inheritance, compute def and decl-
dependencies, ensure well-formation and performs a first partial computation of dependencies on collection
parameters’ methods.

4. src/commoncodegen : Compute final abstractions (i.e.λ-liftings) due to def and decl-dependencies and
dependencies on collection parameters’ methods. This process is in fact done once forOCaml code generation
and once forCoq code generation (obviously if code generation for each language is enabled via the command
line options of the compiler). TheOCaml code production is done first is theCoq one is also requested.

5. src/mlcodegen : Emits theOCaml code if requested.

6. src/commoncodegen : As describe above but forCoq code generation if requested.

7. src/coqcodegen : Emits theCoq code if requested.

Libraries, standard (src/stdlib) and other libraries (src/extlib) are compiled once, when the compiler
is built. Then they get installed according to the user’s configuration and not touched anymore. However, when
compiling aFoCaLize program, they will be used if references are done to entitiesthey host.

During the compilation of theFoCaLize source, only object files of the libraries are needed.OCaml andCoq
files of the libraries will be used oncefocalizec has output the generated code, in order to produce the wholeOCaml
executable orCoq model.

53

54

Chapter 4

Lexing / parsing

4.1 Lexing

The lexing process is performed as usual, by a lexer created by ocamllex. The description of the lexer is located in
src/parser/lexer.mll . The structure of this file is like any regular lexer for a realistic language.

The keywords of the language is stored in a hash-table to prevent the automaton from being too big. Each time a
stream of alpha-numeric characters that can be either an identifier or a keyword is found, we lookup in this hash-table.
If the word make of this stream of characters belongs to the hash-table, then we return the corresponding token, else
we return an identifier based on the form of the word (capitalised or not).

As any lexer, each time it is called (by the lexer), it returnsone and only one lexem.

4.2 Parsing

The lexing process is performed as usual, by a lexer created by ocamlyacc. The description of the parser is located
in src/parser/parser.mly . The structure of this file is like any regular parser for a realistic language. The
parser doesn’t try to implements recovery on error, hence, it describes the syntax of the language without any addition
(conversely toOCaml or gccś parsers).

The important rule applied in the parser is that at each AST node it creates, it record the corresponding location
(extend) in the source file and the corresponding (optional)documentation (i.e. special comments kept in the AST).
This mechanism is performed by a set of basic functions with names derivated frommk (mk_loc , mk_doc_elem ,
mk_doc , mk_local_ident , mk, . . .). This especially means that one never must create an AST node by hand.
Any created AST node must be created via these basic functions.

The parser, returns a complete AST corresponding to the parse of the whole submited source file. It currently
doesn’t have an entry rule returning only an AST for one definition. This especially means that the result of the
parsing is always an AST node of the formParsetree.file .

55

56

Chapter 5

The environments structure

All along the compilation pass, we need to keep trace of various information about compiled entities (methods, types,
identifiers, . . .). This is done by a kind of association list,mapping a name of entity onto an information.

Depending on the compilation passe, the nature of the recorded information is different. However, the basis of
name mapping is always the same. For this reason, instead of building several times the name mapping system, we
decided to create a structure of generic environments whichcan be instantiated by specific information to record for
each compilation pass.

Environments implementation is located in the filesrc/typing/env.ml .

5.1 The generic environment

5.1.1 Environment “recording” structure

As previously stated, the core of an environment is to map names onto information. InFoCaLize names can designate
several types of entities:

• Sum type value constructors (e.g.None, Some).

• Record type field labels.

• Types constructors (e.g.int , option).

• Values.

• Species.

To ensure there is no conflicts between these different typesof entities, i.e. to be allowed to give a same name to
a record types field and to a type constructor or a value identifier, en environment will keep separate name-spaces for
each type of entity.

As we stated before, an environment maps a name (thekey) onto an information (thevalue). Hence, thekey of
an environment being a name, it will be mapped onto aParsetree.vname . Since we want environments to record
different values (to be polymorphic in fact), thevaluewill be a different type variable for each name-space.

Hence, the generic environments have type:
To create a module system, we need to wrap this core structureinside a module providing access to this structure,

i.e. search thevalue bound to akey: find and add binding of akey to avalue : add . Obviously, we need these 2
functions for each name-space.

57

type (’a, ’b, ’c, ’d, ’e) generic_env = {
constructors : (Parsetree.constructor_name * ’a binding_origin) list ;
labels : (Parsetree.vname * ’b binding_origin) list ;
types : (Parsetree.vname * ’c binding_origin) list ;
values : (Parsetree.vname * ’d binding_origin) list ;
species : (Parsetree.vname * ’e binding_origin) list

}

5.1.2 Principle of making an environment

We would like to directly create a functor taking as argumenta module whose signature implements the types of bound
information in each name-space for an environment and givesback a module providing the functionsfind andadd
for each name-space, in this environment. The idea is then toapply this functor to a set of various modules to get the
scoping environment, the typing environment, theOCaml and theCoq code generation environments.

This simplistic view fails because of the notion of “modules”, i.e. in FoCaLize compilation units.
In effect, since compilation units host definitions, they can be seen as modules. Hence we need an extra function

to search inside “modules”. This will especially serve to look-up names qualified by the #-notation . For example the
identifierbasics!int is bound in the modulebasics by the nameint . This find_module function doesn’t
need to be visible in our generic environments since it only serves for internal purpose. It must conceptual take a
module name, an environment and return the “sub”-environment composed of all the definitions hosted by the module.
This find_module function is then dependant of the type of the the name-space in which to look-up in the managed
environment. On must have 1find_module for when we look-up for values, one for when we look-up for types,
one for sum type constructors, one for record field labels, etc. . . The problem is that “creating” the ”sub”-environment
from the in formations contained in a module depend on the structure of information recorded in the environment.
This means that we can’t consider these in formations as anymore polymorphic since we know to know their structure
to build the ”sub”-environment.

For this reason, we proceed in two steps, i.e. two functors. One,EMAccess), will provide the “way to access”
the information kept asvaluesin the environment. The second (Make) will take a module produced by the previous
one and glue the structure of the environment (i.e. in fact the association list) with the access primitives provided.

5.1.3 EMAccess : accessing functions for an environment

module is required to have the signature:

The fields type definitionsconstructor_bound_data , label_bound_data , type_bound_data , value_bound_data
andspecies_bound_data respectively represent the information the environment maps onto names of sum type
value constructors, record field labels, type constructors, values and species.

Next come thefind_module function that looks for a “module” name (theTypes.fname option , we will
see later the reason of theoption) in the current environment and returns the environment composed of all the
definitions present in this module (compilation unit). For technical reason, some extra arguments are passed to this
function and we will explain their presence later.

Next come thepervasives value that is the initial (may non-empty) environment containing built-in bindings
that are needed. Note that this environment may be the empty environment (i.e. containing no binding) is nothing has
to exist in a built-in way.

Next come a the functionmake_value_env_from_species_methods whose purpose can be understood
once the module system is understood. Basically, this function must create an environment, populating the values
name-space with information extracted from the methods of aspecies.

Finally, the functionpost_process_method_value_binding can also be understood via the module sys-
tem mechanism. This function takes a collection name, an information bound to a value and is applied on this infor-
mation. This function is called byfind_value to post-process the information bound to a value name if needed.

58

module type EnvModuleAccessSig =
type constructor_bound_data
type label_bound_data
type type_bound_data
type value_bound_data
type species_bound_data
val find_module :

loc : Location.t -> current_unit : Types.fname -> Types.fname option ->
(constructor_bound_data, label_bound_data, type_bound _data,

value_bound_data, species_bound_data)
generic_env ->

(constructor_bound_data, label_bound_data, type_bound _data,
value_bound_data, species_bound_data)

generic_env
val pervasives : unit ->

(constructor_bound_data, label_bound_data, type_bound _data,
value_bound_data, species_bound_data)

generic_env
val make_value_env_from_species_methods :

Parsetree.qualified_vname -> species_bound_data ->
(constructor_bound_data, label_bound_data, type_bound _data,

value_bound_data, species_bound_data)
generic_env

val post_process_method_value_binding :
Parsetree.qualified_vname -> value_bound_data -> value_bound_data

end

Table 5.1: Sample code for EMAccess signature

For sake of simplicity, we decide to group the types definitions representing information bound for each name-
space of an environment in a module. This is not mandatory butallows a better structure of the code.

5.1.4 Make-ing the environment

This functor finally create the final environment structure,linking the access functions provided by its argument (of in-
terfaceEMAccess) and the basic structure of generic environment ((’a, ’b, ’c, ’d, ’e) generic_env).

This functor must create a module whose signature contains an abstract type representing the environment, an ab-
stract value representing the empty environment (i.e. withno binding), an abstract value representing the “pervasives”
environment and finally, for each name-space a search function and an extension function (i.e. a function that adds a
binding to an environment, then returning this environmentwith the binding “in front”). This means that an environ-
ment (dedicated to a “Blabla” processing) will have a signature like (forget the noisy arguments we spoke about, like
loc , current_unit , we will check them in detail later) :

We address now some remarks about theMake functor. This functor provides the environment access functions
that do not depends on the structure of data stored in the environment. However, it uses the functions that depends on
that are provided by its argument module.

As a general scheme, for each name-spacexxx , we have 3 functions:

• add_xxx : Adds a binding to the environment (exported function).

• find_xxx : Entry point to find the information bound to an identifier (exported function).

• find_xxx_vname : Find the information bound to aParsetree.vname (not exported). This function
is just an internal used byfind_xxx_vname once it decomposed the initially looked-up identifier into a
primitive Parsetree.vname .

59

module BlablaEnv :
sig
type t
val empty : unit -> t
val pervasives : unit -> t

val add_value :
Parsetree.vname -> BlablaInformation.value_binding_info -> t -> t

val find_value :
loc : Location.t -> current_unit : Types.fname ->

current_species_name : string option -> Parsetree.expr_ident -> t ->
BlablaInformation.value_binding_info

val add_constructor : Parsetree.constructor_name -> Types.fname -> t -> t
val find_constructor :

loc : Location.t -> current_unit :Types.fname ->
Parsetree.constructor_ident -> t -> Types.fname

val add_label : Parsetree.vname -> Types.fname -> t -> t
val find_label :

loc : Location.t -> current_unit : Types.fname -> Parsetree.label_ident ->
t -> Types.fname

val add_type :
loc : Location.t -> Parsetree.vname ->

BlablaInformation.type_binding_info ->
t -> t

val find_type :
loc : Location.t -> current_unit : Types.fname -> Parsetree.ident -> t ->

BlablaInformation.type_binding_info

val add_species :
loc : Location.t -> Parsetree.vname ->

BlablaInformation.species_binding_info -> t -> t
val find_species :

loc : Location.t -> current_unit : Types.fname -> Parsetree.ident ->
t -> BlablaInformation.species_binding_info

end

Adding a binding

All the environment extension functions (add_xxx) are quite simple, they just add a binding to the associationlist
in field of the environment related to the right name-space. One may note that an added binding is always tagged
BO_absolute . This means that the binding comes in the environment from the current compilation unit, opposite
as the tagBO_opened that serves to identify bindings present in the environmentdue to anopen directive.

Looking for a binding (except for values)

Look-up functions are more complex, especially the one looking for values. We now describe the general look-up
mechanism that is exactly the one used forfind_label , find_constructor andfind_type .

The first and simplest case is when the looked-up identifier doesn’t have any qualification. In this case, it must
trivially be searched in the related association list of thecurrent environment.

The second case involves a qualified identifier and is more complex.The principle is to split the looked-up name
into a scope specifier (a qualification) and a simple name. Forinstance,foo has no scope specifier and a simple name
equal to “foo”. Conversely,basics#bar has the scope specifier “basics” and the simple name “bar”. Then, from the
scope specifier (i.e. in fact an “module” name), we try to loadthe (“sub”)-environment of this module. If the specifier
is None, then we will get back the current environment. It is in this environment that we will perform the search (like
in the first case described above since the obtained identifier doesn’t have anymore qualification) . Now, the point is to

60

check if we are allowed to accept to find a binding induced by anopen directive. This is usually the case except if the
identifier has an explicit qualification equal toNone or Some (file) wherefile is the current compilation unit.

The first point allows to recover an identifier defined in thecurrent compilation unit even if some opened modules
imported identifiers wearing the same name. This features strongly relies on the fact that the parsermust parse
qualified identifiers like#foo as aglobal one withNone as qualifier. In other words, such an identifier means “the
related definition being at toplevel in the current compilation unit”.

The second point simply states that if we are looking for a qualified identifier being in the current compilation unit,
then is must not be searched among identifiers imported by opened modules.

Based on this information, we simply look-up in the association list to find the related binding.

(* ** *)
(** {b Descr} : Looks-up for an [ident] inside the types environment.

{b Rem} : Exported outside this module. *)
(* ** *)
let rec find_type ~loc ~current_unit type_ident (env : t) =
match type_ident.Parsetree.ast_desc with
| Parsetree.I_local vname ->

(* No explicit scoping information was provided, hence *)
(* opened modules bindings are acceptable. *)
find_type_vname ~loc ~allow_opened : true vname env

| Parsetree.I_global qvname ->
let (opt_scope, vname) = opt_scope_vname qvname in
let env’ = EMAccess.find_module ~loc ~current_unit opt_scope env in
(* Check if the lookup can return something *)
(* coming from an opened module. *)
let allow_opened = allow_opened_p current_unit opt_scope in
find_type_vname ~loc ~allow_opened vname env’

(* ** *)
(** {b Descr} : Looks-up for a [vname] inside the types environment.

{b Rem} : Not exported outside this module. *)
(* ** *)
and find_type_vname ~loc ~allow_opened vname (env : t) =
try env_list_assoc ~allow_opened vname env.types with
| Not_found -> raise (Unbound_type (vname, loc))

Table 5.2: Sample code for simple look-up function

Looking for a binding for values

This case is more subtle since it involves more kinds of identifiers, especially because of the “!-notation”. Processing
for local and global identifiers (Parsetree.I_local andParsetree.I_global) are the same as previously
described.

We must then address the case of finding a binding for a method with the “!”-notation (i.e.Parsetree.EI_method).
There are two different cases.

1. There is no species qualification before the !, or the specified species isSelf . In this case then the searched
identifier must belong to the inheritance ofSelf . First, this means that opened stuff is forbidden. Next, because
the values bucket is so that inherited methods and our methods belong toit, we just have to search for the
vname inside the current environment.

2. There remain the case where these is an explicit species qualifier different ofSelf . We still have two cases.

61

(a) The specified species is the current species (notSelf , the real name of the current species). This may
arise because of substitution performed during typechecking in species signatures. In this case, the search
is obviously the same than the previous case since it is really like the case where the qualifier isSelf .

(b) In the other cases, we must recover the environment in where to search (i.e. the environment compound
of the definitions present in the species), according to if the species is qualified by a module name.
Note that in this environment, all the imported bindings aretaggedBO_absolute . This tag allows
to make the difference between bindings introduced by the definitions of the current compilation unit
and those brought by opened modules. So if the species is hosted in a module (i.e. compilation unit),
we first get this module’s environment otherwise we keep the current environment. Then we look for
the species/collection definition. We transform all its definitions into an environment via the function
EMAccess.make_value_env_from_species_methods . Finally in this environment, we look
for the binding of the method name.
This should be sufficient, but in case of scoping environment, we still have to modify the value bound to
our identifier. For this reason, we have an extra function provided by theEMAccess module that will be
finally applied on the obtained value. Currently, in the other environments, this function is the identity (do
nothing on the argument) since we only found a job to do in caseof the scoping environment. We will
describe what this function really does in the case of the scoping environment in its dedicated section.

5.2 Scoping environment

The scoping environment provides information required to compute the scope of an identifier. In other words, it
enables to state the extend in the program where an identifieris visible. The aim is to prevent name confusion and to
ensure that names are identified by (i.e. related to) only onedefinition.

5.2.1 TheScopeInformation module

We first look at the information bound to each name in the different name-spaces.

Sum type value constructors

Since these identifiers are always introduced by type definitions that are at toplevel, we only need to remind in which
compilation unit they were introduced, hence hosted. Then aconstructor will be bound in the environment to a
compilation unit name.

Record type field names

For the same reason than for the sum type value constructors,Record type field names are bound to a compilation unit
name.

Values

Information bound to value identifiers is more complex sinceit must depict the different cases of identifiers.

• SBI_file The identifier is at toplevel of a file (including the current file). We record the file name.

• SBI_method_of_self The identifier is a method implicitly ofSelf .

• SBI_method_of_coll The identifier is a method explicitly of a collection. We record the fully qualified
name of the collection.
Attention : while inserting a method at its definition point in the environment, it must always be tagged with
SBI_method_of_self . The tagSBI_method_of_coll can only be returned by
find_value who may perform a change on the fly if required.

• SBI_local The identifier is locally bound (let or function parameter).

62

Types

Type constructors may be separated in two categories:

• TBI_builtin_or_var The type identifier is either a type variable name (’a for instance) or a built-in type.
In these two cases, the constructor is not hosted in a type definition in a particular compilation unit. In effect,
type variables arise during the type-checking process and are not attached to a particular type definition. In
fact, a type variableis not a type constructor and only this justifies the fact is doesn’tbelong to a particular
compilation unit.
On the other side, we allow the possibility to have built-in type constructors in theFoCaLize language. This
means that we can have type constructors related to no type definition written asFoCaLize. In this case, the
compiler must deal internally with this type constructor. Currently this feature is not used since even basic types
constructors likeint , bool , char , . . . have a regularFoCaLize (external) definition.

• TBI_defined_in The identifier is a type constructor name defined at toplevel by a type definition in a file.
We record the hosting compilation unit.

Species

Data recorded for species is the most complex. It must depicts the scope of the species name itself, but also give
information about the methods and parameters available through this species. For this reason, we have a record
grouping several things.

First, (spbi_methods records the list ofall the methods names owned by the species,including those added
by inheritance. Methods however appear only once and are ordered from the most recent ancestor are in head of the
list. In case of multiple inheritance, we consider that ancestors are older from left to right.

Next, we record information about the species’s parameters(spbi_params_kind). For each parameter we
simple record if it is a collection (SPK_is) or entity (SPK_in) parameter.

Finally (spbi_scope), we record if the current species is defined at toplevel in a compilation unit (SPBI_file)
or is a collection parameter of another species (SPBI_parameter).

5.2.2 TheScopingEMAccess module

This module provides the functions we previously stated to help the generic environment module to access the infor-
mation stored in the environment. We have 2 functions to inspect.

The functionmake_value_env_from_species_methods simply takes the list of the method names of the
species and add them as methods“of the species” passed as argument (usage ofSBI_method_of_coll) in the
valuesname-space. Here the insertion explicitly shows that the methods inserted in the environment are those of a
particular species, not ofSelf . Moreover, the methods are tagged asBO_absolute to say that by default they do
not come from an “opened” module since we consider that may bethe species comes from an “opened” module, but
not its methods who are hostedin the species.

The functionpost_process_method_value_binding is important for the scoping environment (and in
fact, currently we have such a function in the interface ofEMAccess only because we need to make a special job
in the case of the scoping environment). Its job consists in changing the tag of the methods of the species from
SBI_method_of_self to SBI_method_of_coll . In effect when we create a species, its methods are tagged
as being “ofSelf ”. But when we load the methods of this species in an environment we must say that these methods
are not belonging to the currently processed species but arebelonging to the species from which we loaded the methods
in our environment.

For example, let’s examine the following source code: When weare scoping in the SpeciesS the methodmeth1
we encounter the expression (identifier)P!meth2 . To scope this identifier we need to get the list (i.e. a “sub”-
environment) containing the methods ofP in order to search for the namemeth2 among them. WhenP was “created”
(in fact when it was scoped) we inserted in its scoping description the fact that it had a methodmeth2 . . . of Self
(yep, insideP, meth2 is really a method ofSelf). So it was tagged withSBI_method_of_self . So if we insert

63

species S (P is ...) =
let meth1 (x) = ... P!meth2 ... ;

end ;;
}

straight-line this information in our environment, while scoping our speciesS we will see that there exists a method
meth2 . . . of Self , i.e. ofS which is wrong. For this reason, we must change the tag ofmeth2 before inserting the
binding in our environment.

5.3 Typing environment

The typing environment provides information required to type-check the program, i.e. to infer types where they are
not written, to check that explicitly written types are correct and to annotate the AST with the type found type of each
AST node. Moreover,FoCaLize requires more than type-checking “à la” ML. We will also record information about
dependencies.

5.3.1 TheTypeInformation module

We first look at the information bound to each name in the different name-spaces. We will speak here oftypeand
type scheme. The different between them will be exposed later while presenting the type-checking process. Let’s
intuitively say that atype schemeis a “template” from which one can extract atypeby “instanciation” of the scheme.
So inexpressions, only typesare present,type schemesare bound todefinitions.

Sum type value constructors

A sum type value constructor is considered as a function taking as many parameters as they have arguments and
returning a value whose type is the one hosting the constructor (i.e. the current type definition). For example: leads

type t =
| A
| B of (int * bool)
| C of (int, bool)

;;

to 3 value constructors of types:A: t , B : (int * bool) -> t andC: int -> bool -> t . Note the
difference betweenB andC: the first one take 1 argument that is a pair, the second take 2 arguments.

So, for each constructor of a sum type, we record its type scheme (cstr_scheme) and if it has arguments or not
(cstr_arity , that can beCA_zero or CA_some).

Later, to type-checking an expression using a constructor applied to some arguments, we will simply simulate a
regular function application and type-check this application like any other one. That the reason why we also need to
know if the constructor has argument(s) or not since if it hasnone, there is no application to simulate: the constructor
in not a function but a value with the right type directly.

Record type field names

In the same idea than for sum type value constructors, a record type field label will be considered as a function taking
1 argument whose type is the type of the field an returning a value value whose type is the one hosting the field label
(i.e. the current type definition). For example: leads to 2 value field labels of types:lbl1: int -> t andlbl2
: string -> t .

64

type t = {
lbl1 : int ;
lbl2 : string }

;;

So, for each field label, we simply record its type scheme (field_scheme) . We also record if the field is
mutable or not (field_mut) but this features is not used (for extension purpose) sinceFoCaLize doesn’t handle
mutability (i.e references).

Values

Values are simply bound to their type scheme.

Types

Type constructors must be bound to more complex informationsince they must exhibit the kind of definition they are
introduced by. We have 4 kinds of definitions:

• TK_abstract The constructor represents an abstract definition, i.e. a type whose values are not introduced
by the definition itself. For instance,int is abstract since its values do not appear in the type definition: they
are built-in in the compiler. Type abbreviations are also handled this way. This means that definingtype t =
(int * string) create a typet that is abstract. Since there is no value and no structure information in the
definition, we do not need to record anything special.

• TK_external The constructor represents a type whose representation is explicitly provided for external
languages. In other words, we import inFoCaLize types from (an)other language(s). We record on what this
constructor must be mapped in the various foreign languages, the value constructors or field labels if some exist
that can be used onFoCaLize’s side and on what to map them in the various foreign languages.

• TK_variant The constructor represents a sum type definition. Hence values are given in the definition’s
structure itself. Hence we record the list of value constructor names with for each its arity and its type scheme
(in fact these 2 things are the same than recorded for each value constructor in the related name-space).

• TK_record The constructor represents a record type definition. Hence,field labels are given in the definition’s
structure itself. Hence we record the list of these fields names with their type scheme and their mutability (like
for sum types value constructors, these 2 things are those recorded for each field label in the related name-space).

Species

The structure of information recorded about species is pretty complex since it must depict the complete species struc-
ture, most importantly the parameters and all the methods stuff, but some other additional things used during type-
checking stage.

• spe_kind Describes if the species is a toplevel collection (SCK_toplevel_collection), a toplevel
species (SCK_toplevel_species) or a collection parameter (SCK_species_parameter).

• spe_is_closed This boolean tells if the species if fully defined (even if notturned into a collection). This
information will be useful to known when collection generators must be created.

• spe_sig_params The list of descriptions of the parameters the species has, ordered the same way they
appear in the species definition (i.e. the left-most in head of the list). We will examine the structure of this
information a bit later.

65

• spe_sig_methods The list of description of all the methods of the species. We will examine the structure
of this information a bit later. One may note that like for scoping information, all the methods are present, i.e.
the inherited also, once and in the inheritance resolution order. This way, the methods represent the “normal
form” of the species as described in the theory.

• spe_dep_graph We record here the dependency graph of the species’ methods.Hence, this deals with
methods “ofSelf ” and represents def and decl-dependencies. This doesn’t include dependencies on collection
parameters !

Species parameter information SinceFoCaLize provides 2 kinds of parameters we have 2 types of informationto
record:

• For entity parameters,SPAR_in , we keep the parameter’s name, the collection representingits type and the
flag telling if this collection is a parameter, a toplevel one(like for the fieldspe_kind of a species description
seen above).

For example,species S (Nat is ..., n in Nat) will record forn that its name is “in ”, its type is
Nat and that this type is from a collection that is a collection parameter (i.e.SCK_species_parameter)
and not a toplevel one.

• For collection parameters,SPAR_is we record more information, especially things that have already be com-
puted about the species the parameter is “is ” in order to have a quick access to information instead of computing
it each time we encounter a collection parameter of a certain“type”. To base our presentation let’s take the case
of the species taken just above for the entity parameters.

– We record the name of the parameter with its compilation unitname. In fact, this will be the “type” of the
collection this parameter makes available in the hosting species. In our example,Nat is both the name
of the parameter and the type that uniquely represents the collection is bring. In effect, to use methods of
this parameter, we will useNat!xxx . By adding the compilation unit name, we exactly build a “type of
species” like we use anywhere else in the compiler.

– Like for entity parameters we record the flag telling if the species the parameter is “is ” a parameter, a
toplevel collection or a toplevel species. In our example, assuming thatNat is a species defined somewhere
else, we would haveSCK_toplevel_species .

– Next come the list of all the methods descriptions the parameter has. This list is exactly of the same type
than the list that describes a species methods (whose structure will be examined just after). It is in fact the
normalised form of the species methods the parameter has.

– Since a collection parameter “is” a species expression, notonly a simple identifier (for exampleP2 and
P3 in species S (P1 is ..., P2 is T (P1), P3 is U (P1, P2)) = ... ;; who
are built by applying arguments to parametrised species, wemust record the complete species expression
denoting what “is” the parameter. Instead of directly recording the AST part representing the expression,
we translate it into a custom type.

In effect, in the AST, expressions used to represent speciesexpressions are general expressions for sake
of parsing technical issues. But in fact, due to the structure of the syntax, only a few kinds of AST nodes
can be created. In particular, expressions coming out from the parser have restricted forms (invariants due
to the syntax). Hence, instead of always assuming these invariants hold in the expressions representing
species expressions, we prefer to convert them in a dedicated structure, more restricted than the general
expressions, to enforce these invariants to hold directly by the type of the structure. For this reason, we
record the species expression under the form of a
Parsetree_utils.simple_species_expr .

66

Method information Depending on the kind of the methods we have different strucutures to record. In any case,
we always record the history of the method, i.e. where it was defined and from where and how it was inherited until it
arrives in the current species (structurefrom_history) and its name. The kinds of method are basically sumarised
by the typespe_sig_methods and can be:

• SF_sig represents a signature. since we do not have anything more than a type for this method, we keep it as
a type scheme.

• SF_let represents alet definition, either “computational” or “logical”. We recordthe list of parameter
names of the definition (if it’s a constant, then this list is empty), the type scheme of the definition, its the body
(“computational” or “logical”), a termination proof if it has some, a structure telling if during type-checking we
detected def and decl-dependencies on the carrier (onrepresentation) and finally the flags found in the
AST telling if the definition waslogical and was recursive.

• SF_let_rec Here is a list of information identical to what we store forSF_let , one for each recursively
defined functions (i.e. only 1 element in the list if there is no mutually recursive functions).

• SF_theorem represents a theorem definition. We record the mapping of type variables found in theforall
andexists " in the property’s logical expression onto their name. Thisis a technical point. In fact, theorems
and properties do not have a type scheme. Their “type” is their logical statement. However, it is possible to
have universally quantified type variables appearing in a theorem statement. Without a type scheme we are not
able to technically instanciate these variables in a consistent way. To we patch this leak of scheme by recording
for each universally quantified type variables, what identifier in the statement has this type. Next, we record
the logical statement of the theorem, its proof, and like forSF_let , information on dependencies found on the
carrier.

• SF_property represents a property definition. We record the same information than for a theorem, except
the proof since a property doesn’t have any proof.

5.3.2 TheTypingEMAccess module

The access module for the typing environments is quite trivial. The functionmake_value_env_from_species_methods
works simply inserting the methods of a species in the value bucket like it’s done for the scoping environments. The
only point is that since theorems and properties no do have a type scheme, we insert them with a trivial type scheme
whose body (core type) is simplyprop .

The functionpost_process_method_value_binding is trivial and is the identity. In effect, we do not
need any post-processing like we needed for scoping environments.

5.4 OCaml code generation environment

TheOCaml code generation environment provides information required to generate the targetOCaml source code.

5.4.1 TheMlGenInformation module

We first look at the information bound to each name in the different name-spaces.

Sum type value constructors

In this bucket, we only record on which string a sum type valueconstructor that has been introduced by a type definition
involving an external representation must be translated into OCaml.

For instance, inOCaml, Nil will be mapped onto[] andCons to (::) . It may be clearly noticed that for
OCaml, only constructors coming fromexternal sum types are entered in the generation environment. Hence,if a
constructor is not found, then this means that it comes from aregularFoCaLize type definition, not dealing with any
external material, hence must be simply translated intoOCaml using the name given inFoCaLize side.

67

Record type field names

FoCaLize’s records are generated as real records in the target languages. Hence, we only need to remind the name on
which to map each record field name of theFoCaLize type definition. Conversely to the sum type value constructors,
all the record field labels are recorded in the environment.

Values

For OCaml code generation, we do not need any information about values. Hence, the type of the bound values is
trivially unit . But in fact, we will never enter values not look for values insuch an environment.

Types

Types also do not need any information to be generated. Hence, they are handled like values above in term of environ-
ment.

Species

For species (and collections) we must find a way to know their methods and other information coming from the
dependency computation. All this is recorded in thespecies_binding_info structure below:

• The list of parameters (collection and entity) of the species with their kind. This information is the same than
the one stored in the type-checking environment.

• The list of methods the species has. This information is the same than the one stored in the type-checking
environment. Remember that is represents the methods present in the normal form of the species, i.e. with not
double, with inheritance resolved and in the right order (toprevent dependency issues).

• An optionalcollection_generator_info describing, if available, the structure of the species’ collection
generator. This generator is optional because species thatare non fully defined do not have any collection
generator although they are entered in the environment. Generator data is used to prevent computing several
times (in case where several collections are built from a same closed species) and contains:

– The list of species parameters names and kinds the species whose collection generator belongs to has. This
list is positional, i.e. that the first name of the list is the name of the first species parameter and so on. The
kind of a parameter is the same thing than the one recorded in the scoping environment.

– The list mapping for each parameter name, the set of methods the collection generator depends on, hence
must be provided an instance to be used. Note that the list is not guaranteed to be ordered according to the
order of the species parameters names (that’s why we have theinformation about this order given in the
first component of thespecies_binding_info structure we are globally describing).

• Finally, a flag telling if this information is bound to a species (COS_species or a collection (COS_collection).

5.4.2 TheMlGenEMAccess module

The access module for theOCaml code generation environments is really trivial. The functionmake_value_env_from_species_methods
has no meaning forOCaml code generation environments because we do not provide anyfind_value function and
that’s this function that requiresmake_value_env_from_species_methods .

The functionpost_process_method_value_binding is trivial and is the identity. In effect, we do not
need any post-processing like we needed for scoping environments.

68

5.5 Coq code generation environment

The Coq code generation environment provides information required to generate the targetCoq source code. Its
structure will be pretty close to theOCaml environment. Most of the differences are induced by the explicit polymor-
phism inCoq (that imposes to keep trace of polymorphic type variables) and by the presence of logical methods (i.e.
theorems, that were discarded inOCaml).

5.5.1 TheCoqGenInformation module

We first look at the information bound to each name in the different name-spaces.

Sum type value constructors

The idea behind information bound to sum type value constructors is about the same than inOCaml. We want to
know if needed on what string to map a constructor name if it comes from an external type definition. But we always
need another information to handle polymorphic constructors.

In effect, inCoq a polymorphic function (because constructors are functions in fact) must be provided one extra
argument for each polymorphic type variable appearing in the type of the function. This argument must have typeSet
and be provided at application-time, like the other remaining (regular) explicit arguments of the function definition.
In fact, Coq can infer the value of these arguments and we can simply use a_ (underscore) in place of these extra
arguments at application-time. However, we need to know howmany_s must be generated (i.e. how many extra
arguments the constructor has due to its polymorphism). Forinstance, the typet defined inCoq by: introduces 1

Inductive t (alpha : Set) : Set :=
| A : (alpha -> (t alpha)).

value constructorA with not 1 argument, but 2 ! If we want to create at value parametrised by the integer1,

Coq < Check (A 1).
Toplevel input, characters 9-10:
> Check (A 1).
> ^
Error: The term "1" has type "nat" while it is expected to have type "Set".

To have a valid application, we must add one_ before our1, like in:

Coq < Check (A _ 1).
A nat 1

: t nat

We could be more explicit by directly providing the value of the first argument that is in our casenat :

Coq < Check (A nat 1).
A nat 1

: t nat

but sinceCoq knows to infer it, we prefer letCoq doing the work (type-checking get simpler onFoCaLiześ side).
For this reason any sum type value constructor is recorded inthe environment with an optional mapping to a name

on Coq side and the number of extra arguments it must be apply to due to the type generalised variables appearing in
its type.

Record type field names

Record type field names are handled like inOCaml.

69

Values

In the same order of idea than for sum type value constructorswe need to record the number of extra arguments to
apply (when the value is functional) due to polymorphic typevariables present in the value’s type.

Moreover, for technical reasons due toZenon, we also need to remind if the value is a toplevel property (VB_toplevel_property
with its logical expression body), a toplevel let-bound value (VB_toplevel_let_bound) or something else
(VB_non_toplevel).

Types

Like in OCaml, types also do not need any information to be generated.

Species

Species are bound to exactly the same information than they are inOCaml code generation environments.

5.5.2 TheCoqGenEMAccess module

The access module for theOCaml code generation environments is pretty simple and works exactly like for type-
checking environments.

70

Chapter 6

Scoping

The scoping process aims to link each identifier occurrence to its related definition according to the rules that drive the
visibility of identifiers. It avoids name confusion and ensure that each occurrence of identifier refers to one and one
unique effective definition.

Ideally, once scoped, a program should have unique names foreach identifier (i.e. a name plus a stamp that ensure
the unicity). For example in the following piece of code:

let y = 0 ;;
let x =

let x = 1 in
let x = x + 1 in
let y = x + x in
y + x in

y + x ;;

scoping rules allow to uniquely identify identifiers by renaming them in:

let y_0 = 0 ;;
let x_0 =

let x_1 = 1 in
let x_2 = x_1 + 1 in
let y_1 = x_2 + x_2 in
y_1 + x_2 in

y_0 + x_0 ;;

This way, each occurrence has a clearly identified definitionsince if two identifiers have the same name then they
refer to the same definition. Moreover, this ensure that all the occurrences have one and one unique related definition,
hence preventing unbound identifiers.

Moreover, since compilation unit can be “open -ed”, some identifiers can be used without explicit qualification,
then looking like belonging to the current compilation unitalthough they belong to another one. Scoping also allow to
“rename” identifiers belonging to an “open -ed” unit to make their hosting unit clear by adding a qualification.

In FoCaLize, we do not rename the identifiers with indices. Instead, we make they qualification explicit. The
case where two identifiers with the same qualification are present is handled by the environment mechanism that will
hide the oldest identifier definition by the newest accordingto their order in the source code. In fact, in the case of
toplevel definitions in a same compilation unit and methods in a same species, the environment mechanism refuses to
have several times the same names. This is not a technical problem, this is only a choice to prevent the programmer
from masking these fundamental kind of definitions.

Hence the output of the scoping pass is an AST where all the identifiers occurrences received a qualification if
they are not locally bound. This means that by default, the parser must parse identifiers that are not qualified (i.e.
with no #-notation and/or no !-notation) aslocal identifiers (i.e. asParsetree.I_local). This means that during
scoping, onlyParsetree.I_local identifiers will be affected by the scoping transformation.Local identifiers
will be looked-up to determine whether they are really localor are method names or toplevel (of a file) names. The

71

transformation is not performed in place. Instead, we return a fresh AST (still possibly having sharing with the original
one) that will be suitable for the typechecking phase.

For identifiers already disambiguated by the parser, there are 2 cases: “#-ed” and “!-ed” identifiers. The scoper
will still work by ensuring that these identifiers are reallyrelated to an existing definition.

• For “#-ed” identifiers, the look-up is performed and they arealways explicitly replaced with the name of the
hosting file where they are bound. Hence in a current compilation unit “Kikoo”", then #test () will be
replaced byKikoo#test () if the functiontest was really found inside this unit. If it was not found, then
an exception is raised.

• For “!-ed” identifiers, the look-up is performed but no change is done. If it is like!test() , then it isnot
changed toSelf!test !!! Only a verification is done that the method exists inSelf . If it is like Coll!test ,
then also only a verification is done that the method exists inColl .

The scoping heavily uses the “scoping environment” structure described in 5.2. Scoping is performed on each
phrase of the source text, in the order of apparition of thesephrases. Hence we have to scope phrases among doc-
umentation title,use directive,open directive,coq_require directive, species definition, collection definition,
type definition, toplevel value definition, toplevel theorem definition and toplevel expression. For each scoped phrase,
thenew environmentmade of the initially received one extended by the new scopeddefinitions is returned. We don’t
return only a delta: we return a complete usable new environment.

Most of the scoping functions use a parameter named a “context”. This structure is intended to group into 1 unique
parameter various values (that would otherwise be as many parameters) the scoping functions will mostly always use.

type scoping_context = {
(** The name of the currently analysed compilation unit. *)
current_unit : Types.fname ;
(** The optional name of the currently analysed species. *)
current_species : string option ;
(** The list of "use"-d (or open-ed since "open" implies "use") modules.

Not file with paths and extension : just module name (ex: "basics"). *)
used_modules : Types.fname list

} ;;

6.0.3 Scoping anuse directive

Scoping ause directive returns an unchanged environment. It simply addsthe “used” module to the list modules
allowed to be used of the current context and return a new context with this extended list. The point is only to mention
for the rest of the scoping passe that qualified identifiers with this module as qualification is now allowed.

6.0.4 Scoping anopen directive

This directive has no to be really scoped. Instead, it has an impact on the scoping process and more accurately on the
scoping environment. In load in the environment the scopinginformation of the identifiers contained in the opened
compilation unit, tagging then asBO_opened like seen in 5.1.4. Hence all the imported identifiers will beknown as
possible definitions to use as “origin” of an identifier occurrence, according to the scoping rules.

6.0.5 Scoping a species definition (scope_species_def)

Before scoping a species, the first thing is to pass a modified context in which we record that we are inside this species
(field current_species on the context.

The scoping environment of a species will be gradually extended as long as we process its components: we
must first add the parameters of collection and entity in their order of apparition then import the bindings from the
inheritance tree, and finally local bindings will be added while scoping the species’ body (fields). When scoping
involves searches in the environment, searches must be donein the following order:

1. Try to find the identifier in local environment.

72

2. Check if it’s a parameter of entity (“in ”) or collection (“is ”).

3. Try to find the identifier throughout the hierarchy.

4. Try to find if the identifier is a global identifier..

5. “Else” . . . not found !

So the order in which the identifiers are inserted into the environment used to scope the species must respect extensions
in the reverse order in order to find the most recently added bindings first.

Hence we first scope the species parameters. Once they are scoped, we get an environment where they are bound
to their scoping information.

Using this new environment, we now scope theinherits clause, i.e. the inheritance. In addition to the scoped
inheritance expression, this will give us bake the names of the methods we inherits. This is especially useful because
we must add them into our environment before scoping the methods defined in this species. Indeed, the bodies of these
defined methods may make reference to identifiers corresponding to inherited methods.

Once these inherited methods are added to the current environment, we can scope the defined methods in this new
environment. Each scoped method is added to the environmentused to scope the remaining methods.

Once all is scoped, we create the scoping information for thespecies itself and add it to our initial environment
(not to the one where we gradually added parameters, methodsetc, since they do not need to be visible outside the
species). And finally, in the type bucket of this environment, we add the type corresponding the the species carrier.

We then return the scoped species definition and the new environment where the species and it carrier are bound.
This new environment is not a delta, it is a complete ”all-in-one” environment suitable to scope the remaining phrases
of the source file.

Scoping the species parameters (scope_species_params_types)

The species parameters (i.e. collection and entity parameters) are scoped in their apparition order, adding the scoping
information of each one to scope the next ones. We have two cases of parameters.

• Entity parametera in C(...) : we must scope the collection expressionC(...) the parametera is “in ”.
To do so, we use the current scoping environment. Once this collection expression is scoped, we must insert in
the environment the name of the parameter (here,A. Since it is avalue (whose type will be the carrier of the
collection expression), we add it in the values bucket of theenvironment.

• Collection parameterP is C(...) we must scope the collection expressionC(...) . This gives back
the scoping information (with methods names list) of this expression. Because collections and species are not
first-class values, the environment extension will not be done in the values bucket. Instead, we must extend the
environment with a “locally defined” collection having the same methods than those coming from the collection
expressionC(...) . So from the obtained scoping information (with methods list) of this expression, we
create a fresh species scoping information that we bind to the parameter nameP in the environment. Then,
because a species induces a type by its carrier, we insert in the type bucket of the environment a type constructor
representing the carrier of the parameter (here a typeP).

The scoping of a parameter returns the extended environmentand the scoped version of the list of parameters.

Scoping the inheritance clause (scope_inheritance)

Scoping the inheritance is done by scoping each collection expression in their order of apparition. Like we saw for
species parameters scoping, scoping a collection expression returns the scoped expression and the list of the methods
names this expression has. Hence, for each parent, we collect the obtained scoped methods. They will be later inserted
in the environment to scope the remaining of the species. Note that we don’t need to add the methods found of a parent
to scope the next parent in the inheritance list. When all these collected will have to be inserted in the environment, we
must take care to insert first those of the “left-most” parentin the inherits clause, going on from left to right. This
ensure searches in the environment will comply the inheritance resolution order ofFoCaLize. During insertion in the

73

environment, because these methods are inherited, they noware methods of ourselves, hence methods ofSelf and
they must be inserted asSBI_method_of_self ! The change needed to say that one of these methods is a method
of the “current collection”’s name, i.e. toggling the flag toSBI_method_of_coll will be done during accesses in
the environment (byfind_value).

Scoping the defined methods (scope_species_fields)

To scope all the defined methods of the species, we scope each field in its order of apparition, then add the obtained
information about it in the environment used to scope the remaining methods.

Scoping a method is done by scoping its body (aParsetree.expression) then returning this scoped method
and the scoping environment extended by a binding between this method and the computed scoping information. One
must note that depending on if the method is recursive, we pre-insert its name in the scoping environment before
scoping its body or not. If the method is recursive, we pre-insert, otherwise no.

Scoping in general, scoping other constructs

For each used “identifier” occurrences (i.e. structures that represent identifiers since we have several kinds inFoCaL-
ize), we look-up in the scoping environment for information about this identifier.

Depending on the form of the identifier, we either re-build explicitly a scoped identifier with explicit qualification
(case ofParsetree.expr_ident) or we simply check that the identifier is really bound (case of identifiers where
qualification is already built-in in its structure).

Depending on the class of the identifier (value, type, recordfield. . .) we look-up in the related bucket in the scoping
environment to get the required information.

The interesting function in scoping isscoped_expr_ident_desc_from_value_binding_info that in
fact re-build anexpr_ident_desc from the inner simple name (i.e.vname) found in anexpr_ident and the
scoping information bound to this name in the scoping environment.

74

Chapter 7

Type-checking

The type-checking pass performs in fact several important tasks. It obviously infer the type of each expression and
construct, but it also performs inheritance resolution, compute dependencies on methods ofSelf (def and decl-
dependencies), ensure that the species are well-formed andsort the methods in order they are properly ordered. Once
the type-checking pass is ended, a processed species gets innormal form, i.e. with all its methods present once,
inherited and defined ones having been consistently put together.

This especially means that at each inheritance step, any species issued by the type-checker has all its methods:
the inheritance disappears from the species structure. Obviously, the still have means to know about the inheritance
history somewhere, but all the methods, inherited, defined,declared are always all together in a species in normal
form.

In other words, considering only the bunch of methods a species has, there is no difference between a species
having them via inheritance and a species having them in its own current body with no inheritance.

This point is especially important since it allows to inductively be sure that if one inherits of a species, then in just
one shot we know which methods we have inherited: there is no need to walk again along all the inheritance steps.
Then, we can says that we inductively build the normal form ofspecies all along the inheritance tree. This point allows
faster searches and prevent from having information disseminated in several place which would be more difficult to
maintain.

In fact, the scoping pass already used a similar way to proceed, keeping for each species the list of all the methods
it had, either in its own body or by arbitrary inheritance.

The output of the typing pass is aInfer.please_compile_me structure in which we have both the AST
of the definitions and information computed during typing. This structure will then be passed to the “abstraction”
stuff (directorysrc/commoncodegen) to compute extra dependency information and group all the dependencies
together and factorise some computations required by code generation (more especially, what to lambda-lift and to
instanciate). This “abstraction” pass is called before calling the code generation by each code generator back-end (in
fact, called by each target code generator).

We will now examine various points of this typing pass.

7.1 Type inference

7.1.1 Where to record type information in the AST ?

Type inference is the process of guessing the type of each expression, each definition of the source code. In fact, in
FoCaLize, types are partly inferred, partly given by the programmer.Signatures are a way to make types explicit
by giving annotations. However, at each node of the AST, types must be infer-ed to finally label the node. In effect,
the first output of the type-checking pass it a “typed AST”, i.e. the initial AST with each node now having its type
recorded in the node itself.

75

As defined in the source filebasement/parsetree.mli , an AST node is a generic data-structure containing
a specific description:

Generic AST node
type ’a ast = {

(** The location in the source of the AST node. *)
ast_loc : Location.t ;
(** The description of the node. *)
ast_desc : ’a ;
(** The support for documentation. *)
ast_doc : documentation ;
(** The type of the node. *)
mutable ast_type : ast_node_type_information ;

}

Hence, a node containing an expression (hence of typeParsetree.expr) will be built by something like:

An “expression” AST node
type expr_desc =

| E_self
| E_const of constant
| E_fun of vname list * expr
| ...

type expr = expr_desc ast

In the generic data-structure of the node, the fieldast_type is used to record the type inferred for this node.
Since we want to keep the same AST structure all along the compilation process, we use a mutable field for the type
because initially, after lexing/parsing and scoping, the type is not yet known. So, the type-checking pass will modify
the value contained in this field for each node of the AST.

According to the source filebasement/parsetree.mli , values for this field can be:

An “expression” AST node
type ast_node_type_information =

| ANTI_non_relevant (** The node has no meaningful type information.
However, it was processed by the type-checker. *)

| ANTI_none (** The node was not yet processed by the type-checker.
Clearly, after the type-checking pass, no AST node

should remain with this tag in the [ast_type] field of
the node ! *)

| ANTI_type of Types.type_simple (** The type information is a type. Mostly
used to label expressions. *)

| ANTI_scheme of Types.type_scheme (** The type information is a type scheme.
Mostly used to label definitions. *)

Before type-checking is done, all the node of the AST have their ast_type field worthingANTI_none . Once
the type-checking pass is done, no AST node should remain with this tag. If some do, then is must be considered as a
bug (node forgotten during processing) of the compiler. At least, when a node does not require a type information (for
instance, the AST node of aopen directive), it must however be traversed by the type-checker and must be updated
with theANTI_non_relevant value.

7.1.2 Types and type schemes

Like in regular ML-like type-checkers, expressions are assigned “types” although definitions are assigned “type
schemes”. The difference is due to the ability for definitions to be polymorphic and to be instantiated differently
at each usage occurrence. In effect, an expression exists inonly one point. So it has onetype, that’s all. A definition
leads to a “template” of types, where polymorphic type variables car be instantiated as wished each time the identifier
bound by the definition is used. For this reason, a definition is bound to a “model” of types, a “family” of type, that is
usually called atype scheme.

76

Then a type scheme is in fact a list of polymorphic type variables and a body that is a type expression. For instance,
the ML-like type scheme (possibly bound to aList.map function)(’a -> ’b) -> ’a list -> ’b list
will be represented by the list of it’s 2 type variables’a and ’b and its body that is the expression(’a -> ’b)
-> ’a list -> ’b list . In fact, in a type scheme all the polymorphic type variablesareimplicitly quantified
universally. The “implicitly” is the reason why it is so difficult for the programmer to really see the difference between
a type and a type scheme. For the above type scheme, we should be more explicit and better write:

∀ ’a, ’b . (’a -> ’b) -> ’a list -> ’b list
If we now have a look at the following expression:List.map (fun x -> x + 1) , then the expression

(i.e. the identifier node)List.map will have thetype (’t -> ’u) -> ’t list -> ’u list (in which
we intentionally changed the names of the types variables toshow that they arenot the samethat those of the type
scheme). This type expression contains 2 variables’t and ’u that will be unified during the type-checking of the
whole application expression (unified withint in the current example).

In FoCaLize, type schemes are compound of the list of the polymorphic type variables that are its parameters and
the type expression that is its body:

An “expression” AST node
type type_scheme = {

ts_vars : type_variable list ; (** Parameters in the scheme. *)
ts_body : type_simple (** Body of the scheme where generalized types

have a level equal to [generic_level]. *)
}

7.1.3 Working “in place” with substitutions

The type-checking algorithm of ML-like languages is often stated using the notion of MGU and using substitutions.
In FoCaLize, the effective inference algorithm uses techniques more efficient in practice than regular substitutions to
manually apply and combine on the type terms. Instead, we work “in place”, by taking benefits of sharing between
type sub-terms to simulate the substitutions by direct physical modifications inside the terms.

The full description of this technique is outside the scope of the present document, but a clear and efficient expla-
nation can be found in “Le langage Caml” written by Pierre Weis and Xavier Leroy.

The idea is to represent the types by terms that can be physically shared, with type variables that can be directly
assign a value. Hence, as described in the source filebasement/type.ml , our type algebra is:

An “expression” AST node
type type_simple =

| ST_var of type_variable (** Type variable. *)
| ST_arrow of (type_simple * type_simple) (** Functional type. *)
| ST_tuple of type_simple list (** Tuple type. *)
| ST_sum_arguments of type_simple list (** Type of sum type value

constructor’s arguments. To
prevent them from being
confused with tuples. *)

| ST_construct of
(** Type constructor, possibly with arguments. Encompass the types

related to records and sums. Any value of these types are typed as
a [ST_construct] whose name is the name of the record (or sum)
type. *)

(type_name * type_simple list)
| ST_self_rep (** Carrier type of the currently analysed species. *)
| ST_species_rep of

(** Carrier type of a collection hosted in the specified module. *)
(fname * collection_name)

and type_variable = {
(** Binding level of the type. *)

77

mutable tv_level : int ;
(** Value of the type variable. *)
mutable tv_value : type_variable_value

}

and type_variable_value =
| TVV_unknown
| TVV_known of type_simple

The algebra describes the built-in type constructors and more interestingly for our explanation, thetype variables.
We can see that in the type algebra, all the variables look pretty structurally the same: the constructorST_var and a
type_variable containing a few information. Hence, for instance 2 variables whose value are unknown will look
exactly the same. To make the difference, we must consider physical equality. Hence, if 2 variables are physically
equal, “they arethe same” variable(s?), otherwise they are really different. The aim of this mechanism is to share the
same physical data to represent all the occurrences of a variable in a term, so that when we want to assign it a value,
we just need to modify it in place and all the shared occurrences will be updated for free.

A type variable is initially an unknown of the unification equation induced by the type-checking process. Hence it
starts with its fieldtv_value worthingTVV_unknown . If during unification, a variable needs to be assigned a value
(i.e. a constraint was found on this variable), then itstv_value that is mutable will be assignedTVV_known “of
something”. This “something” is itself a type and this allows indeed to instantiate a type variable by a type expression.

Obviously, this mechanism to represent instantiations will create “strings” of links between variables and their
effective value. To be sure that the value of a variable is know “equal to something” or really unknown, we must
use a mechanism that returns the canonical representation of a type. For instance, let’s imagine that in our inference
problem, we arrived to have 4 variablesα, β, γ andδ, with α = β, β = int, δ = γ andγ = β. Hence, we have the
following picture:
α → β → int

↑
δ → γ

representing the system: where’a = ST_var (TVV_known (...)) where ... represents’b and has the structure
ST_var (TVV_known (ST_construct (‘‘int’’, []))) . We have the same kind of thing forδ andγ, with γ worthing
TVV_known (...) with ... representing the structure ofβ. In fact, despite all the variables we see above, all are equal
and are instantiated byint . This means than must not trust the first value constructor seen for a type to know what it
is equal to. One must “follow” the links.

Moreover, to avoid the loss of efficiency induced by walking each time along these “strings” of links, the opera-
tion of getting the canonical representation of a type will use the “path compression” operation in order to suppress
indirections a soon as they are encountered a first time.

The operation returning the canonical representation is the guardian of the correct structure of the types.Any
operation working / relying / walking on the type structure must call this operation to be sure that the structural
view of the type is has is really the canonical view of the type. This operation calledrepr is located in the
basement/types.ml source file of the compiler. The presence of such a strong invariant is the reason why the
types are exported asabstract. This ensures that outside the module manipulating the typealgebra, nobody will forget
to get the canonical representation of a type.

Basically, this function receives a type. If this type is nota variable, then it returns it directly. This means that
the type constructor is already known to be something else than a variable for which we should investigate further.
On the other side, if the received type is a variable whose “value” (i.e. field tv_value is “known to be equal to
something” (i.e. isTVV_known (...) , then we will ask to get the canonical representation of this“something”.
This is typically a recursive call on this “something”. Thisway, if this “something” is itself a variable “known to
be equal to something else”, then we will inductively know each step of indirection. So, once we get our canonical
representation of our “something”,this is in fact the canonical representation of our type, since it was a variable
“known to be equal tothis something”. By the way, before returning, since now we know that the variable is in fact
“pointing” onto a type (i.e. is not anymore a variable, was instantiated), we take benefit to cut the string of indirections
by directly establishing a link between the variable and thecanonical representation we obtained. Hence, next time we
will access this variable via a type sub-term shared somewhere else, we won’t have anymore to walk along the whole

78

“string” of links to know the variable’s value. Then, therepr function simply looks like:

Getting the canonical representation of a type

let rec repr = function
| ST_var ({ tv_value = TVV_known ty1 } as var) ->

let val_of_ty1 = repr ty1 in
var.tv_value <- TVV_known val_of_ty1 ;
val_of_ty1

| ty -> ty

7.1.4 Unification

The computation of the most general type of an expression, called type inference, strongly rely on unification of type
terms. We will say that 2 termsτ1 andτ2 can beunified if there exists a substitutionφ so thatφ(τ1) = φ(τ2). The
substitutionφ is then calledunifier. of the termsτ1 and τ2. Hence, two terms can be unified if it is possible to
instantiate all or part of their variables by a same substitution, so that they become structurally equal.

Based on the representation of our types, since the unification tends to return a substitution to apply on the 2 unified
types in order to make them equal, instead of getting this substitution to later apply it to each type (and combine this
substitution with the other substitutions the types may be subject to), we will directly make the type terms equal by
instantiating their type variables. The “instanciation” is then made in place, by changing in place the mutable field
tv_value of the unknown variables fromTVV_unknown to TVV_known “of” the type required to have equality.

This is especially fast since all the occurrences of a variable share the same physical location. Hence, changing
the value of the fieldtv_value at this location is equivalent to simultaneously instantiate all the occurrences of this
variable (past and future) in type terms.

Hence, ideally unification doesn’t return any result and makes the 2 unified type equal by side effect or fails
because there exist no unifier for the 2 types. And then, in thetype-checking algorithm, instead of using one of the
type on which we apply its related substitution, we can directly use any one of the 2 types once unified since they are
now equal.

In fact, in our case this is not completely the case since we have an additional problem that forces us to return a
type. This is due to the fact that when unifying a type andSelf , FoCaLize’s rules require to haveSelf as unification
result rather than any of one the two types. This is a problem when the unification used the known representation of
Self to achieve finding the mgu. In effect, in this case, one of the 2type isSelf and this other is a type expression
that is compatible withSelf ’s representation. And in this fact, choosing any of the 2 types as result is wrong: the
result must always chose (prefer)Self . Hence our unification routine returns the preferred unifierin addition to make
the physical modifications in place when required. We then have a unification function described in the compiler’s
source filebasement/types.ml looking like (explanations follow):

The unification algorithm

0 let unify ~loc ~self_manifest type1 type2 =
1 let rec rec_unify ty1 ty2 =
2 let ty1 = repr ty1 in
3 let ty2 = repr ty2 in
4 if ty1 == ty2 then ty1 else
5 match (ty1, ty2) with
6 | (ST_var var, _) ->
7 (* BE CAREFUL: [occur_check] performs the setting of decl-dependencies
8 on the carrier ! In effect, if [ty2] involved Self then we have a
9 dependency on the carrier and that must be taken into account !

10 The interest to make [occur_check] doing this work is that it
11 walk all along the type so it’s a good idea to take benefit of this
12 walk to avoid one more walk. *)
13 occur_check ~loc var ty2 ;
14 lowerize_levels var.tv_level ty2 ;
15 var.tv_value <- TVV_known ty2 ;
16 ty2
17 | (_, ST_var var) ->

79

18 (* BE CAREFUL: Same remark than above for [occur_check]. *)
19 occur_check ~loc var ty1 ;
20 lowerize_levels var.tv_level ty1 ;
21 var.tv_value <- TVV_known ty1 ;
22 ty1
23 | ((ST_arrow (arg1, res1)), (ST_arrow (arg2, res2))) ->
24 let arg3 = rec_unify arg1 arg2 in
25 let res3 = rec_unify res1 res2 in
26 ST_arrow (arg3, res3)
27 | ((ST_sum_arguments tys1), (ST_sum_arguments tys2)) ->
28 let tys3 =
29 (try List.map2 rec_unify tys1 tys2 with
30 | Invalid_argument "List.map2" ->
31 (* In fact, that’s an arity mismatch on the types. There is a
32 strange case appearing when using a sum type constructor that
33 requires arguments without arguments. The type of the
34 constructor’s arguments is an ampty list. Then the conflict is
35 reported as "Types and ... are not compatible". Hence one of
36 the type is printed as nothing (c.f. bub report #180).
37 In this case, we generate a special error message. *)
38 if (List.length tys1) = 0 || (List.length tys2) = 0 then
39 raise (Arity_mismatch_unexpected_args (loc))
40 else raise (Conflict (ty1, ty2, loc))) in
41 ST_sum_arguments tys3
42 | ((ST_sum_arguments _), (ST_tuple _))
43 | ((ST_tuple _), (ST_sum_arguments _)) ->
44 (* Special cases to handle confusion between sum type value
45 constructor’s that take SEVERAL arguments and not 1 argument that
46 is a tuple. *)
47 raise (Arity_mismatch_unexpected_args (loc))
48 | ((ST_tuple tys1), (ST_tuple tys2)) ->
49 let tys3 =
50 (try List.map2 rec_unify tys1 tys2 with
51 | Invalid_argument "List.map2" ->
52 (* In fact, that’s an arity mismatch on the tuple. *)
53 raise (Conflict (ty1, ty2, loc))) in
54 ST_tuple tys3
55 | (ST_construct (name, args), ST_construct (name’, args’)) ->
56 (if name <> name’ then raise (Conflict (ty1, ty2, loc))) ;
57 let args’’ =
58 (try List.map2 rec_unify args args’ with
59 | Invalid_argument "List.map2" ->
60 (* In fact, that’s an arity mismatch. *)
61 raise
62 (Arity_mismatch
63 (name, (List.length args), (List.length args’), loc))) in
64 ST_construct (name, args’’)
65 | (ST_self_rep, ST_self_rep) ->
66 (begin
67 (* Trivial, but anyway, proceed as everywhere else. *)
68 set_decl_dep_on_rep () ;
69 ST_self_rep
70 end)
71 | (ST_self_rep, _) ->
72 (begin
73 match self_manifest with
74 | None -> raise (Conflict (ty1, ty2, loc))
75 | Some self_is_that ->
76 ignore (rec_unify self_is_that ty2) ;
77 set_def_dep_on_rep () ;
78 (* Always prefer Self ! *)
79 ST_self_rep
80 end)
81 | (_, ST_self_rep) ->
82 (begin

80

83 match self_manifest with
84 | None -> raise (Conflict (ty1, ty2, loc))
85 | Some self_is_that ->
86 ignore (rec_unify self_is_that ty1) ;
87 set_def_dep_on_rep () ;
88 (* Always prefer Self ! *)
89 ST_self_rep
90 end)
91 | ((ST_species_rep c1), (ST_species_rep c2)) ->
92 if c1 = c2 then ty1 else raise (Conflict (ty1, ty2, loc))
93 | (_, _) -> raise (Conflict (ty1, ty2, loc)) in
94 (* ****************** *)
95 (* Now, let’s work... *)
96 rec_unify type1 type2
97 ;;

First of all, we see that as previously said, since we intend to work on the structure of the types, we start by
computing their canonical representation by callingrepr (lines 2 and 3).

If the 2 types are already the same (physically, note the usage of == and not=), then there is nothing more to to
and we can return any one of the 2 types as unifier. We can reallyreturn any one since they are really equal and the
problem of preferringSelf doesn’t apply here: either the 2 types are bothSelf or they are both something else.

Then the algorithm considers all the cases of two types. When one is a variable (lines 6 and 17), we assign to the
variable the other type hence telling that the variable is not anymore unknown (lines 15 and 21).

Before assigning the variable, we perform an “occur check” (lines 13 and 19). This ensures that the variable we
assign doesn’t appear in the type is it assigned. This is to prevent types from being cyclic. In effect, if we try to unify
α with α → α, we get in the following situation:
α → α
↑ ↓

←
with the arrow on the same line than theαs represent the functional type constructor and the arrows below the link
the unification creates between variables and types. Hence,if the unification falls in this case, an error is raised telling
that the type of the expression leads to cyclic types and thatthis expression is rejected. Below is the code of the occur
check in which the line 12 and 13 can be skipped (they will be examined in 7.3.7).

Occur check routine

0 let occur_check ~loc var ty =
1 let rec test t =
2 let t = repr t in
3 match t with
4 | ST_var var’ ->
5 if var == var’ then raise (Circularity (t, ty, loc))
6 | ST_arrow (ty1, ty2) -> test ty1 ; test ty2
7 | ST_sum_arguments tys -> List.iter test tys
8 | ST_tuple tys -> List.iter test tys
9 | ST_construct (_, args) -> List.iter test args

10 | ST_species_rep _ -> ()
11 | ST_self_rep ->
12 (* There is a dependency on the carrier. Note it ! *)
13 set_decl_dep_on_rep () in
14 test ty

Let’s go back to our unification routine. For the moment, the lines 14 and 20 (and the comment lines 7-12) can be
forgotten since they will be explained when we will be dealing with polymorphism.

When unifying with one type being a variable, the returned type is always the type assigned to the variable (lines
16 and 22). We could also choose to return the variable but this would be less efficient since norepr is yet applied
since we assigned it a value, then to use this variable as type, onerepr will immediately be required. Choosing to
return the other type that has been “repr -ed” we can save one call. This may seems a tiny advantage, butunification
in place is efficient for several tiny advantages put together ! An this one is part of them.

81

In term of difficulty, we now have the unification ofSelf and a type. The simplest case (line 65) is the unification
of Self and itself. Trivially, the unification succeed. Forget the line 66 for the moment. There remain 2 symmetric
cases: unifyingSelf and another type that is notSelf and not a variable (lines 71 and 81). In these cases, we are
in the rules [Self1] and [Self2] of Virgile Prevosto’s PhD, page 27, definition 9. These are the cases where, if the
structure of the carrier (i.e. of therepresentation method) is visible then an occurrence ofSelf is allowed to
be unified with a type having a structure compatible with the one given by therepresentation method.

To be able to make so, in the typing context, we record if the structure of the carrier is known of not. This
information if passed to the unification function via the parameter∼self_manifest . This parameter has type
simple_type option . If the value isNone, this means that the structure of the carrier is not visible (hence
Self can only be unified withSelf). If the value isSome ... , then this means that we know that the carrier was
defined as the type “...” (hence unifyingSelf with a type expression compatible with “...” must be successful).

So, when unifyingSelf with a type, if∼self_manifest is None we raise an error because the carrier is
abstract. If∼self_manifest is Some (τ) , then we must ensure thatτ can be unified (and if so, the possible side
effects induced by this unification must be done) with the other type (lines 76 and 96): it is then simply a recursive
call. Since if the unification succeed we want to returnSelf as unifier, we throw the result an returnST_self_rep ,
meaning the type “Self ”.

Attention : With this mechanism, we directly unify the type that represents the structure of the carrier. This means
that we directly apply modification in place on it. This especially means that, because this is not a type scheme but a
type, there is a cumulative effect of all the unifications that are made betweenSelf and other types. Hopefully, this
is not a problem since methods are not allowed to be polymorphic. And representation , defining the structure
of Self is a method. So it can’t be polymorphic. This especially means that the structure ofSelf will never have
remaining variables that could be instantiated by a unification. Hence, there is no risk that a unification pollutes the
type used as reference for the structure ofSelf by instantiating a type variable by a type that would be incompatible
for a later unification of this variable by another type. Sooooo, this means that∼self_manifest is a type and not
a type scheme because we don’t have polymorphism on methods.If we had some, we would need another mechanism
to “preferSelf ” during unification (problem of specialisation, generalisation, putting the right binding level, and so
on. . .).

The other cases of unification are simpler and structural. The unification can now only be successful if the 2 types
have the same constructor. So we check the types 2 by 2 with each time the same constructor and if the matching is
right, we recurse structurally on the types structures.

Finally remains the all cases where the 2 types do not have thesame constructor (line 93). This leads to a type-
checking error by raising an exception.

7.1.5 Polymorphism

Like introduced in 7.1.2, type schemes are used to implementthe polymorphism in type inference. They act as
“models” of types. But the question is how to make such “models” and how extract types from such “models”. The
first point is handled by thegeneralize function and the second by thespecialize function of the source file
basement/types.ml .

We must start our explanation by introducing the notion ofbinding level. The aim is to keep trace of type
variables introduced in let-definitions that are deeper than our level. The binding level counts the number of nested
let-definitions. Hence, the current level must be incremented eachbefore every potentially generalisable definition.
This increase will enable the generalisation once we will goback to a lower level. And it must be decreased at the end
of this definition. To increase the current binding level, the functionbegin_definition must be used; to decrease
it the functionend_definition must be used.

We said “potentially generalisable” definition since all let-definitions can’t be generalised (non-expansivity prob-
lem).

There remains a little problem with the level of variables. The higher the level, the closest is the definition that
introduced this type variable. When a variable is put in contact (i.e. unified) with a type containing variables with a
lower level (i.e. created in outer let-definitions), hence that may not be generalisable when we will leave the current
definition, we must reflect this onto our variable ! In effect,unification means equality. So if our variable is “equal”

82

to a variable than can be generalised, so it must be for our variable. Hence, when unifying a variable with a type, we
must hunt in this type for variables that have a lower level and if we find some, we must lower the level of our variable
to this found level. That’s what the functionlowerize_levels does. And in effect, this function is called when
unifying a type variable with something (lines 14 and 20 in theunify function listed above).

So, the generalisation process consists in considering as generalisable, all the variables having a level strictly
greater than the current binding level. We then search for all the generalisable variables, and remind them in a list. By
the way, we change in place the leveltv_level field) of the found variables by setting a level meaning “generalised”
(technically, we choose a value to big, that there is no chance that anybody nests so many let-definitions to reach this
level). Finally, to build the type scheme, we simply create atype_scheme structure with the list of found variables
and the type itself as body.

Now, taking an instance of a type scheme is done by the function specialize that simply create a fresh type
variable for each generalised variable of the type scheme, then copies the body of the type scheme, replacing each
generalised variable by the corresponding fresh one.

7.1.6 Type inference among other typing things to do

The type inference we spoke about deals with expressions anddefinitions. Hence it is only one part of the analyses
performed during the “typing pass”. More accurately, it is the first analysis carried out after the scoping. Each
expression of a program must be type-checked anyway where itappears, in entity parameters, in methods, in toplevel
definitions. Some other constructs of theFoCaLize language require some other kinds of type-checking: that isthe
case of species, collections, collection parameters, inheritance species expressions. However, during these other kinds
of type-checking, we use the type-checking of expressions to make the “glue” ensuring consistency. Rules given in
Virgile’ PhD in figure 3.2, page 43, section 3.8 are example ofthis idea (these rules deal with with species parameters).

Aside this notion of type-checking, we also have other analyses to ensure a program is sound and also to extract
the basic shape of a species by resolving inheritance and late binding. All these things are performed during the typing
pass, the type-checking being the first step.

The typing pass is driven by the source filetyping/infer.ml and more especially by the entry point function
typecheck_file . This function triggers the type-checking of each phrase ofthe compilation unit. Be aware that in
the source of the compiler, “type-check” is widely overloaded and denotes the process of inferring type for entities and
then ensuring they are well-formed and building the first pieces of information that will ease the code generation. In
particular, the fact that each species is given a normal formcontaining all its methods is handy to recover the methods
of parameters or inheritance species expressions since there is no need to walk along all the inheritance level (point
already mentioned in the introduction of this chapter, at 7).

7.2 Environment and structures for the typing pass

The structure of the environment used during the typing passhas been presented in 5.3 and is coded in typing/env.ml.
The only other structure used during this pass is the typing context that group various information to pass to the

functions instead of having to pass them individually hencepreventing from having tons of arguments for each call.
This structure, shown below is local to thetyping/infer.ml and passed to each function under the parameter
namectx .

Typing context

type typing_context = {
(** The name of the currently analysed compilation unit (i.e. the name

of the file without extension and not capitalized). *)
current_unit : Types.fname ;
(** The name of the current species if relevant. *)
current_species : Parsetree.qualified_species option ;
(** Optional type Self is known to be equal to. *)
self_manifest : Types.type_simple option ;

83

(** Mapping between ’variables [vname]s and the [simple_type] they are
bound to. Used when creating a polymorphic type definition. *)

tyvars_mapping : (Parsetree.vname * Types.type_simple) list
}

7.3 Typing a species definition

The process of typing a species will be now examined step by step by step. This is done by typing its parameters,
resolving inheritance, type-checking the methods, merging properties and proofs, normalising the species, computing
its dependencies graph and then inserting it in the environment. A few other administrative tasks are performed and
will be detailed below.

7.3.1 Dealing with the species parameters

For each parameter, this process builds the species type of the parameter and get the list of methods it has. Each
parameter will be inserted in the environment as species andtype (the type representing the carrier of this parameter).

There are 2 cases: entity and collection parameters. Both ofthem lead to a “parameter description” that will be
recorded in theEnv.TypeInformation.species_param that will appear in the hosting speciesspe_sig_params
field.

7.3.2 Typing a species expression

A species expression is either a simple species/collectionidentifier likeSetoid or an application of a species/collec-
tion identifier to one or morespecies/collection identifiers. This means that we have no expressions likeA(B(C)) .

The first thing is to find in the environment the name of the “main” species (i.e. the unique only if there is
no application, or the name in “applicative” position if there is an application). From this search, we get a species
description of a previously existing species.

The aim is to finally get (among other things, but this is the most obvious result we want) the list of methods this
species expression has. If there is no parameter, then the list of methods is trivially the one obtained in the structure
found in the environment. The most interesting point is whenthe expression is an application. We then must apply the
species to its effective argument(s) before being able to know the methods it has. In effect, let’s imagine we have:

species A (B is Setoid) =
let eq (x in B, y in B) = B!bla (x, y) && B!bli (y, x) ... ;;

species C inherits A (D) ... ;

C inherits eq but not with the bodylet eq (x in B, y in B)= B!bla (x, y) &&B!bli (y, x)... but with the
body let eq (x in D, y in D)= D!bla (x, y) &&D!bli (y, x)... whereB was replaced byD. This is done by
apply_species_arguments that returns the correct (substituted) list of methods but also the list of these sub-
stitutions and the list of species typesSelf must be compatible with. This is used in case of a species expression
parametrised used applied toSelf (this point is a bit more detailed in the following section 7.3.3).

The most tricky point is to build and use this list of substitutions during typing. In effect, we obviously build it
while applying the arguments,but we also use it(in fact, the substitutions already existing in the list accumulator at
the point we process an effective argument). In effect, thislist contains the substitutions to apply to each effective
parameter before processing it. This is the way to representthe fact that in rule [COLL-INST , page 43, figure 3.2,
section 3.8 in Virgile Prevosto’s Phd, the substitution[C1 ← C2] is performed onts, i.e. in it’s methods typesbut
also in the remaining effective species parameters(yep, indeed, thets signature of a species contains both the
methods and the parameters). Because these parameters willbe “evaluated” after the current one, we need to delay
the substitution until they are really processed. Be careful that by construction, this list contains the substitutions in
reverseorder of the application order. This means that the first required substitution is in tail !

84

Hence, for each species parameter, when we encounter a collection parameter, we type the expression it is “is ” and
we then must apply the already seen substitutions to this type to ensure that it is transformed if required to collections
of possible previous “is ” parameters. For instance, let’s take the following code:

species Me (Naturals is Intmodel, n in Naturals) = ...
collection ConcreteInt implements Intmodel ;;
collection Foo implements Me (ConcreteInt, ConcreteInt!un) ;;

while typechecking theConcreteInt!un , we get a typeNaturals . But since in theFoo collection,Naturals
is instantiated by the effectiveConcreteInt , Naturals appears to be incompatible withConcreteInt . How-
ever, in Foo, with the first instanciation, we said thatNaturals is a ConcreteInt , and we substituted ev-
erywhereNaturals by ConcreteInt . So idem must we do in the type inferred for the effective argument
ConcreteInt!un .

7.3.3 Inheritance resolution

The expected result of inheritance resolution is to load theinherited methods in the environment and get their signatures
and methods information. Hence, combined with the defined methods, we will be able to know all the methods of the
species. We also want to get a possibly new context where the fact thatSelf is now manifest is updated, in case we
inherited arepresentation method.

By the way, since in the inheritance clause, we can have parametrised collection applied toSelf as effective
argument, we remind all the species type thatSelf must be compatible with (calledself_must_be in the source
code). In effect, since we are building the current species,the species type ofSelf (i.e. the currently built species) is
not yet known. Then to ensure consistency we must check afterwards, i.e. once we got all the methods of the species
if it compliant with all the species types expected as effective argument of the used collections on which we applied
Self . Note that currently the test is not performed and to remind wehave to do this, the
compiler emits a warning.

When processing each inherited species expression, we type it like we did for the collection parameters. This gives
us the list of methods the species has (hence the list of methods the current species inherits via the processed species
expression), the list of species types thatSelf must be compatible with, and finally the substitutions applied on
the formal parameters of parametrised species used in theinherits clause. Such substitutions are those replacing
formal parameters by effective collection expressions when the species expression used in theinherits clause uses
application. This information will be recorded in the history information of the inherited methods for later use.

For instance, considering theFoCaLize sample code:

species Foo0 (A0 is Sp0) inherits ... = let v = 1 end ;;
species Foo1 (A1 is Sp1) inherits Foo0 (A1) = let v = 2 end ;;
species Foo2 (A2 is Sp1) inherits Foo1 (A2) = end ;;
species Foo3 (A3 is Sp1, A4 is A3) inherits Foo2 (A4) = end ;;

we will remind that inFoo3 , we inherited fromFoo2 applied toA4 and that inFoo2 , we inherited fromFoo1
applied toA2.

As described above in 7.3.2, these substitutions will be used to represent the fact that in rule [COLL-INST], page
43, figure 3.2, section 3.8 in Virgile Prevosto’s PhD, the substitution[C1 ← C2] is performed onts.

7.3.4 Type-checking methods

This is done bytypecheck_species_fields . This function infers the types of the species fields contained in
the list of methods definitions. The typing environment is incrementally extended with the found methods and used to
type-check the next methods.

The function returns a 5-uplet whose 3 first components are suitable to be inserted in the structure of a species’s
type, and the last ones are theproof of and termination proof of fields that have been found among
the fields. Theseproof of ’s must be collapsed with their related propertybut at the inheritance level where the
proof is found (not at the one where the property was stated),to lead to a theorem before the formalisation process

85

starts. Thetermination proof of ’s must be collapsed with their relatedlet rec definitions also before the
normalisation process starts.

Type-checking of methods need some comments in some field types cases.
The first one is for the signaturerepresentation . Oncerepresentation is found, the typing context

will be modified by setting the fieldself_manifest to Someof the type expression. Then we first type-check the
provided type expression for the carrier. But we can’t directly set the inferred type intoself_manifest . We must
make a copy of the inferred type in order to keep the originally inferred type aside any further modifications that could
arise while unifying anywhereSelf with “its known representation”. In effect, unification in place would establish
a link by side effect from the representation to the typeTypes.ST_self_rep , hence fooling the explicit structure
of what is initially representation . This first would prevent us from being able to generate code finally relying
on the representation ofrepresentation . Furthermore, because of howTypes.unify handles unification with
Types.ST_self_rep to prevent cycles, unification of thismangledrepresentation would succeed with any types,
even those incompatible with the originalcorrect representation ofrepresentation ’s type.

Next, we need to add a bit of explanation about type-checkingproperties and theorems. For the same reason that
in external definition, type variables present in a type expression in a property or a theorem are implicitly considered
as universally quantified. In effect, there no syntax to makeexplicit the quantification. Then we first create a variable
mapping from the type expression to prevent variables from being “unbound”. We must increase the binding level
because when processingPr_forall andPr_exists , the functiontypecheck_logical_expr needs to store
the type scheme of the identifiers introduced. And since generalisation if done intypecheck_logical_expr
with a binding level of + 1 compared to our current one, generalisation could not be done otherwise.

Dependencies on the carrier

We have a special case for computing dependencies on the carrier Self introduced by using the type introduced by
representation .

In effect, we have a decl-dependency on the carrier if the type of a method contains a reference toSelf (i.e. if a
type sub-term isSelf). One could only perform this check for each field as soon as weinferred its type. However,
without any type annotation, the type of a method could hide the fact that it refers toSelf . For instance, let’s have
the case:

species A =
representation = int ;
sig m : Self ;

end ;;

species B inherits A =
let m = 5 ;

end ;;

inferring the type ofm in B would simply lead toint , hence telling that there is no decl-dependency noSelf . In
fact, after the species is put in normal form, it appears thatindeed there was since the type ofmis not int but rather
Self . For this reason, the detection of this dependency is also performed at “fields fusion” stage, when building the
normal form of the species. More accurately, the take benefits that at fusion stage, we will make a unification. Hence,
during unification, we take care of the 3 cases where such a dependency can appear: unifyingSelf andSelf (line
68) and the cases where we unify a type variable with something (lines 6 and 17) : in these 2 last cases, we know that
wee need to make an occur check that will walk all along the type structure. So to avoid one more complete descent
on this structure and because the occur check is called in this case, we made so it set itself a global hidden flag telling
if there is or not a decl-dependency onSelf by calling if needed the functionset_decl_dep_on_rep in case it
encounters the type constructorST_self_rep (see line 12-13 in occur check routine in 7.1.4).

On the other side, we have a def-dependency on the carrier if the rules [SELF1] or [SELF2] of the section 3.3, def-
inition 9, page 27 in Virgile Prevosto’s PdD are used. To detect this, in the functionunify we examined before (7.1.4)
in lines 77 and 87, since we detect we are using the known structure of the carrier, we callset_def_dep_on_rep
that is a function recording in a global hidden flag that a def-dependency was found. In fact for similar reason that
for decl-dependency, the effective recording of presence of this dependency is also done at “fields fusion” stage. And

86

hopefully, at this stage, we make a unification between all the types of the found occurrences of a same-name method
!

As previously stated, in fact, the recording of these dependencies is also done as soon as we typed a field since
doing it only at the fusion stage can be non sufficient in some case since at fusion we do not descent on the whole
expressions of methods.

Hence, these global flags reminding the presence of decl/def-dependencies must obviously be reset before address-
ing a new method. That’s done by callingreset_deps_on_rep .

7.3.5 Proof collapsing

Since it is possible to provide the proof of an existing property after this property, we must transform properties having
a proof collapsing the two into one theorem. In effect, aproof field alone is not a correct field in the normal form of
a species: it must be related to a property. This process is carried out by the functioncollapse_proofs_of This
function tries to find among the list of methods it receives asargument, property fields whose proofs are separately
given in the list of proofs also passed as argument.

Each time the search succeeds, the property and the related proof are merged in a new theorem field, hence
discarding the property fields. Because this process is performed before the normalisation pass, we still require to
have 2 separate lists of methods:

• the inherited ones,

• those defined at the current inheritance level.

For this reason, the search will be done first on the methods defined at the current inheritance level (in order to find
the “most recent”) and only if the search failed, we will try it again on the inherited methods.

Attention : Such a merge now requires a re-ordering of the final list of fields. In effect, by moving theproof of
field when merging it as aSF_theorem located where the initialSF_property field was, if the proof (that was
originally “later”) uses stuff defined between theSF_property and the original location of the proof, then this stuff
will now appear “after” the proof itself. And this is not well-formed. The example file found in
focalizec/tests/ok__need_re_ordering.fcl illustrates this need. This re-ordering will be done after
the normal form of the species is computed.

A question on the fly: While writing the document, I wonder if this collapsing process wouldn’t be carried out in
the fusion algorithm used to create the normal form, exactlylike when we pair signatures andlet -definitions. . .

7.3.6 Normal form

The normalisation is done innormalize_species , applying the algorithm described in Virgile Prevosto’s PhD in
Section 3.7.1, page 36 plus its extension to properties and theorems in Section 3.9.7, page 57. Type “equality” test is
performed as usual using the unification, with no unificationerror meaning “true” and error meaning “false”.

The only thing is that we make clearly explicit the “silentlydescribed” notion of conflict detection mentioned in
Virgile Prevosto’s PhD page 57 line 6.

In effect, if a field is inherited several times via thesameparent, erasing must not be performed ! That’s like if we
did as if there was no erasing to do ! Such a situation can ariseif 2 speciesB andC inherit from a speciesA (with a
methodm) and another speciesD inherits from fromB andC. The methodmthen appears twice inD, once fromA via
B, once fromA via C. And this is not a conflict that requires erasement: in effect, there is no “redefinition”. For this
reason, before erasing a field, we check with the functionnon_conflicting_fields_p .

During normalisation, an operation of “fusion” is used. This is mostly the once described in Virgile Prevosto’s
PhD in section 3.6, page 35 and completed in Section 3.9.7, page 56, definition 35. The only difference is that we
made explicit the notion of “to be equal”, “to have the same types” for 2 properties or 2 theorems. In effect, the type
of a logical method is its logical statement. Hence, it is an expression of theFoCaLize language. This means that we
must compare 2 AST structures. A simple structural equalitydoesn’t have any sense since at least the 2 structures will

87

differ by their source location, hence always returning “different”. So, the comparison we adopt here is performed
thank to thetyping/ast_equal.ml module. Hence we implement a custom structural equality to determine if
2 expressions have the same form moduloα-conversion of the bound identifiers. In particular, we are only interested
in comparing only theParsetree.ast_desc field. We also try to consider that parentheses are non significant is
case anE_paren is found not equal to another expression. Currently, the comparison is done on the skeleton of the
expression without tricky heuristic like considering thatA ⇒ B ⇒ C is equivalent to(A ∧ B) ⇒ C and so on. . .

During this fusion operation, when we “fusion” a signature and alet -definition, if the unification succeeds, then
we keep the type given by the signatureto assign it to the method. We don’t keep the type infered for the method.
In effect, the inference algorithm may find a type that is moregeneral than the signature, or may leave some type
occurrences expanded althgough they are in fact occurrences of Self (obviously because there was previously de
definition ofrepresentation equal to type. For instance, if we have:

species A0 =
sig f : Self ->Self ;

end ;;
species A1 inherits A0 =

let f (x) = x ;
end ;;

, the inference algorithm will find inA1 that f has type∀α.α → α since this is the most general unifier. And because
polymorphic methods are not allowed, if we do not perform signature matching forf , then first, we won’t see that
it must be considered to beSelf → Self, then second we will reject the method. Hence this point shows that
verification that methods are not polymorphic must be doneafter the definitions are assigned the type of their possible
signatures.

Another example, that doesn’t involve polymorphism would be:

species B0 =
representation = int
sig f : int -> Self ;

end ;;
species B1 inherits B0 =

let f (x) = x + 1 ;
end ;;

Since nowhere in the definition off in B1 Self appears, the type inference algorithm will see that1 has type
int , that+ as typeint → int → int and then will deduce thatf has typeint → int. Unfortunately, the developer
wanted to seef has a function injecting an integer into the species data-type, hence wanted to consider it with type
int → Self. So if we don’t keep the type of the signature to assign it to the definition, we forget this constraint
information.

7.3.7 Computing def/decl-dependencies

As previously stated, def and decl-dependencies reflect dependencies of methods of the species on methods of this
species. In other words, they are related to dependencies ofmethods ofSelf on methods ofSelf . We already
examined how to compute theses dependencies for the particular case of the carrier (the methodrepresentation)
in . We now address this problem for all the other methods. In fact, dependencies computation is done in two passes.
The first one is to create a simple dependency graph and is performed at typing stage. The second will be to exploit
this graph to compute for each method ofSelf , the set of methods ofSelf that must be abstracted because of
dependencies. This will be done via the “minimal coq typingCoq environment” in a next stage.

So, for the moment, we concentrate on building the dependency graph of each field. In effect, eachfield will have
its own dependency graph (note, a field can contain several functions like in the case of mutually recursive methods).
The graph of each method is built sharing node information between methods. In other words, like any graph, we have
nodes, if a same node is required to build the graph ofm1andm2, then these 2 graphs will physically share the node.
Again, in other words, the dependency graph of each species is a sub-graph of a global graph.

The data-structure for such graphs can be found in the sourcefile typing/depGraphData.mli .

88

In this graph, a node is a method an edge between 2 nodesn1 andn2 is a direct dependency relation telling thatn1

depends onn2. Hence,methfoo → methbar means thatmethfoo depends onmethbar. Each edge is tagged with in-
formation telling if the dependency is a decl (DK_decl) or a def (DK_def) dependency. In case of decl-dependency,
we have a tag telling if this dependency comes from the type (DcDK_from_type , the body (DcDK_from_body) or
the termination proof (DcDK_from_term_proof) of the field. In case of def-dependency, we have a tag indicating
if this dependency comes from a termination proof (DfDK_from_term_proof) or not (DfDK_not_from_term_proof).

The methodrepresentation on which we can have dependencies via dependencies onSelf as previously
see, is handled like the other methods by the graph building algorithm. The only difference is that because we recording
at type-checking stage directly if a method has dependencies onSelf and recorded this information in flags of the
methods, we will have hard-wired cases to check for a dependency on the carrier since this information is obtained
just consulting the flags in opposition with others methods where we need now to inspect their code.

A few things to remark:

• Signatures can’t introduce decl or def-dependencies.

• let methods can only introduce decl-dependencies via their computational body.

• Properties can only introduce decl-dependencies via theirlogical statement (i.e. their type in fact).

• Theorems can introduce both kinds of dependencies: decl by their statement (i.e. type in fact) and decl/def by
their proof (i.e. body in fact).

The basic process to build the graph is to process each field inturn. Each name defined in the field will lead to a
node in the graph (i.e. “somebody” that may depend on “somebody else” or “somebody” on which “somebody else”
may depend on). Hence, each time we need to create a node, we use a special function that first look among the
already created nodes, if it find a node having a right name, itreturns this node, otherwise it really creates the node.
This ensure that node will be create once and will be shared between every occurrence of apparition.

The starting point of graph construction is the functionbuild_dependencies_graph_for_fields hosted
in the source filetyping/dep_analysis.ml . This function contains 2 local function that deal respectively with
let -definitions and theorems/properties. They basically behave the same way:

1. Check in the field’s tag if there is a a decl-dependency onrepresentation . If so, manually add an edge from
the current name’s node to the node ofrepresentation . Note that this edge is always tagged as “coming
from type” (DcDK_from_type) since even in a theorem, a decl-dependency on the carrier can only come from
the type because one can’t say in the body, i.e. in the proof,by definition of Self or by property Self.

2. Find the names of decl and defs dependencies for the current name (trivially, for let-definitions def-
dependencies are trivially always empty). This gives us thenames of methods we decl-depend from our type,
those we decl-depend from our body and those we def-depend. This computation is a simple descent over the
AST of the method, hunting for calls to methods identified to belong to use. Once we got these 3 sets of names,
for each of them, we create a node (create or get if it already exists). Finally, for all these nodes (“dependencies
nodes”), we add an edge properly tagged from the current name’s node to each of the dependencies names’
nodes.

3. Only for let -definitions: we process the optional termination proof. By making a descent on the AST of the
proof, we get the names of methods we decl-depend and those wedef-depend. Exactly like in the above point,
we create nodes for these names and add edges properly tagged(refining the decl or def tag by the tags telling
“coming from a termination proof”, i.e.DcDK_from_term_proof or DfDK_from_term_proof).

4. Check in the field’s tag if there is a a def-dependency onrepresentation . If so, manually add an edge from
the current name’s node to the node ofrepresentation . Note that this edge is always tagged as “coming
not from a termination proof” (DfDK_not_from_term_proof) since properties and theorem do not have
such proof and in the case of recursivelet -definitions, anyway if the termination proof refers toSelf , then
the parts outside the proof obviously also. Hence, the carrier will always need to be lambda-lifted.

89

At the end of this process, we have a dependency graph tellingfor each method of the species, which method is
depends on. Such a graph can be exported indotty using the option-dot-non-rec-dependencies of focalizec.

Attention : However, this does not give us yet what we need toλ-lift in term of methods ofSelf ! We still need
to perform some analyses, especially to compute the “visible universe of each method to finally get the “minimalCoq
typing environment” to have this information. But this is done in another pass.

7.3.8 Miscellaneous
When finally the species is built, after having checked that itis well-formed, it has no doubles, it is fully defined or not
and so on, we finally add the species description in the environment. We also must add in the environment a type that
represents the species’ carrier. However, this must be doneonly the species is really fully defined. In effect, in this
case, it will really have a carrier for the species. This especially avoid such things:

species A =
signature f : int

end ;;
species B =

signature b : A -> A
end ;;

for which, if we generate the code for this, inOCaml we won’t have any type definition forme_as_carrier in
A. And in B, g will have the typeA.me_as_carrier ->A.me_as_carrier whereA.me_as_carrier unbound. This is
moral sinceA doesn’t have a carrier.

Attention : While writing this note, I wonder if the point that the species must have a method "representation"
would be in fact sufficient. . .

7.4 Typing a collection definition

Typing a collection definition is pretty close to typing a species. The main difference is that we don’t have inheritance,
hence the normal form of the collection is directly the normal form of the species it “implements”.

We have to ensure that the species expression we “implements” is fully defined before being able to accept the
collection.

Type-checking the collection’s fields is in fact just performing the abstraction, replacingSelf by the collection
name in the fields (i.e. in the bodies and in the types). Then wedo this substitution by applyingSubstColl.subst_species_field
on each fields. This gives us the list of fields of the collection. This list will be later saved as part of the information
bound to a collection in the type-checking environment.

Note that we do not use the dependency graph of the implemented species: we compute it in a regular way. This
prevent us from having to manage ourselves substitutions due to abstractions all over the graph. Using the regular
process, we get a graph with the right types and so on directly.

In effect, creating a collection implies abstractingSelf , i.e. replace it in types and bodies by the carrier of the
collection. If we reused the dependency graph of the speciesthe collection implements, we would have to perform
ourselves the substitutions all over the information contained in the graph. Since this information represents a lot of
stuff and involved sharing and cycles, doing this manually would be very hard and error prone. So we prefer to let the
regular mechanism working for us.

90

7.5 Typing a type definition

Type-checking a type definition serves to introduce in the typing environment a type constructor and possibly elements
induced by the type, like value constructors in case of sum type definition or field labels in case of record type
definition. We basically have 2 kinds of type definitions: “regular” and “external”. Both of them can introduce 3 kinds
of types: aliases, sum types and record types. The main difference between “regular” and “external” definition is in the
way the type and its components are mapped onto the target languages. In a “regular” definition, mapping is handled
by the compiler model scheme. In an “external” one, the mapping is guided by the user’s annotations. Anyway, both
kinds of definitions can introduce the same kinds of elementsin the typing environment.

Because type definitions are implicitly recursive, before type-checking a type definition, we always pre-insert in
the typing environment the currently typed type constructor. At this point, anyway its real definition, it is considered
a abstract (i.e. we don’t know its body). In particular, if itis a sum or a record we don’t insert (know) anything about
its possible value constructors or field labels. In fact, that’s not a problem since these 2 kinds of information can never
arise inside a definition body. After the type definition is fully type-checked, we will forget this primary insertion and
prefer the new one coming from the type-checking.

In type definitions, type variables are implicitly universally quantified and are bound before the definition’s body.
In a definition liketype t (’a)= alias (’a ’a)* , we see that the’a appears just after the namet and before the
body of the definition. Hence, before type-checking the definition, we previously insert in the environment the bound
variables to that they be known while analysing the body. Themapping between type variable names and their related
type (in term of type in our algebra) is recorded in the type-checking context in the fieldtyvars_mapping .

7.5.1 Regular type definitions

Type alias

A type alias simply introduces an equivalence between a name(the type constructor) and a type expression. For
instance, intype t = alias (int int)* , the namet becomes compatible with(int * int) . This means that we
do not create a type having new values: the values are only made of gluing existing values. Moreover, this typet is
not really new in the sense it is not only compatible with itself but with any type compatible with(int * int) .

To type-check such a definition, we simply type-check the aliased type expression. This gives us a type (Types.type_simple)
that is the canonical representation of the type expression. Then we simply bind the new constructor to this type. In
other word, in the environment we bind the new type constructor to its identity in our algebra.

Since types can be polymorphic (i.e. parametrised by type variables), like for values, we do not really bind the
name to a type but to a type scheme where polymorphic type variables are generalised. Hence, a type constructor can
be seen like a function taking types as arguments and returning a type. For instance, considering the type of pairs
type t (’a)= alias (’a ’a)* , the constructort is considered internally by the compiler like a “function oftypes”.
For this polymorphic stuff, we find as for values, the usual story of binding level and generalisation.

Then, once the body of the definition is type-checked, we generalise it and add the new type constructor bound
to this type scheme in the environment. Hence, each the typet will appear in a type expression, we will know its
effective structure via the environment. For instance, using the above typet , if we encounter a type expressiont
(int) , we will ask for the scheme oft , get∀α.α → t(α), we take an instance of this scheme and getα′ → t(α′)
and unify the leftmostα′ with int to simulate an application, and finally we get the typeint * int for the initial
expression.

Type sum (A.K.A variant)

In addition to insert in the environment a type constructor,it also introduces value constructors. In this sense, such a
definition creates a new type, with new values. This values may be parametrised by values of existing types, but they
are anywaynewvalues. InFoCaLize, a sum type is only compatible with itself. This means that anywhere a value of
this type is expected, the provided expression will have to reduce on one of the values introduced by this type.

The difference with aliases previously examined is that we now must type-check, not a type expression, but an
enumeration of constructors expressions as body of the definition. For each constructor of a sum type definitiont , we

91

have 2 cases: either it has no argument and is considered to have the typet , or it has arguments and is considered as a
function taking values whose types are those of the enumerated arguments and returning a value of typet . Be aware
that a value constructor parametrised by several argumentsis a function taking s

¯
everal arguments, not a tuple of all the

arguments ! Hence, on the following type definition:

type t =
| A of int
| B of (int, int)
| C of (int * int)
;;

we will get: A: int -> t , B : int -> int -> t and C : (int * int) -> t. One may notice the difference
betweenB that is parametrised by 2 arguments andCthat is parametrised by 1 argument that is a tuple of 2 components.
As usual, in the environment we bind each constructor not to atype but to a type scheme to be able to use polymorphic
constructors with various instantiations.

Hence, to synthesise the type of an expression involving a sum value constructor oft , we will get in the environ-
ment its type scheme. If the constructor is used alone (i.e. with no expression as argument), then the type of the whole
expression will be by constructiont . Note that if the constructor is used alone although it shouldn’t, we wont return a
functional type but an error because the compiler always checks that value constructors are used with the correct arity.

There remains the problem of what to bind the type constructor to ? In effect, by opposition to alias types, here
we don’t have any type expression giving the “identity” of the type. In fact, a sum type is a new type only compatible
with itself. Hence, we will bind it to a new type whose name is the name of the constructor. And to make values of
this type, the only way will be to manipulate its value constructors.

Once the type scheme of each value constructor is inferred, we just have to add them into the environment, as well
as the type constructor.

Type record

The principle of type-checking of records is very similar tothe one of sum types. The only difference is that instead
of value constructors, we deal with field label. In the same spirit that value constructors were considered like function,
so are field labels. At programming level, a field label has onetype. So, internally a field label of a record typet is
considered to be a function taking an argument whose type is the type of the label and returning a value of typet .
Note that to have an effective complete value of typet , of course we need all the fields to be assigned a value, but at
typing stage, this is not our concern.

Hence, we infer the type of each field of the record and finally insert them in the environment as well as the type
constructor itself.

7.5.2 External type definitions

Like seen in 2.6.1, external type definitions have two sides:the “internal” and “external”. In fact, the “internal” part
describes exactly the same thing than a regular type definition: “how the type is seen inside the compiler”. For this
reason, is it type-checked exactly the same way.

The “internal” part, since it contains some external code out of reach ofFoCaLize, doesn’t need any type-checking
analysis: we simply record the various mappings it containsinto the type definition for further usages.

7.6 All other toplevel constructs

For the remaining constructs, i.e. toplevel expression, toplevel theorems and toplevellet -definitions, the same prin-
ciples than previously presented apply. The only difference is that in the typing context it will be recorded that we
are not inside a species. For toplevel definitions, the test of non-polymorphism will not be performed since toplevel
definitions can be polymorphic.

Directives don’t need any type-checking. Theopen directive will act exactly like during the scoping pass, dealing
this time with the typing environment instead of the scopingone (c.f. 6.0.4).

92

Chapter 8

Intermediate form

Once type-checking pass is ended, we saw that in addition to have the type of each expression computed and screwed in
each AST node, we put the species and collections in normal form, having resolved inheritance and ordering problems
between the methods. More over we computed the dependency graph of each method, hence indicated for each method
which other method ofSelf is directly depends on (decl or def, via type, via body or via termination proof).

However this is not sufficient yet to known exactly what to abstract (i.e. λ-lift) in our method generators, then
collection generators. We still need to find the complete setof methods ofSelf a method depends on and the set of
collection parameters’ methods a method depends on.

The first point will be carried out by computing the “visible universe” of a method. The second will be by com-
puting the “minimalCoq typing environment”. Once these sets are known, the currentpass will create a compact
form of several data useful for code generation, hence preventing from having to compute several time the same things
and to ensure that the same structure (in fact, most often, the order dependencies are abstracted) will be used every
time needed. For instance, if in a methodmwe λ-lifted m2, thenm1, extra arguments of this method will appear
and will need to be always used consistently with this order (i.e. one must sure that we instantiatem2by a a method
implementing the signature ofm2and idem form1. Moreover, since thisλ-lifts information will be used at various
points of the code generation, it is better to record it once for all instead of compute it again and again.

All this work is performed by stuff located in the source directly src/commoncodegen whose “entry” point is
mostly the functioncompute_abstractions_for_fields of the source filesrc/commoncodegen/abstraction.ml
(note that we have a dedicated function to process toplevel theorems because they are not hosted in species although
they may require abstractions).

As explained in 7 The call to this pass is triggered by each target code generator (i.e. once by theOCaml code
generation back-end, and once by theCoq one, obviously only if the code generation is requested for these target
languages via the command line options). Conversely to previous passes, this one does not enrich any environment.
However it takes a code generation environment. Since we have 2 target languages, we have 2 code generation
environments (c.f. 5.4 and 5.5). Hence, the entry point of abstractions computation must be able to work with the 2
kinds of environments. That the reason why the environment is passed as a sum type

type environment_kind =
| EK_ml of Env.MlGenEnv.t
| EK_coq of Env.CoqGenEnv.t

to allow to have only one set of functions to do this pass instead of duplicating the code and adapting it’s behaviour
in the few cases where one are interested in accessing the environment. The output of this pass is directly used by the
code generation that called it to produce its final output (i.e. target language source code).

8.1 “Computing abstractions”

As stated in introduction the aim is to fully build the set of methods ofSelf and the set of collection parameters’
methods a method depends on. At the end of this process, we want to get for each definition a structure grouping both

93

the information present in the typing environment and the one synthesised about abstractions. Such a structure will
then be suitable to be sent to a code generation back-end and looks like:

type field_abstraction_info =
| FAI_sig of

(Env.TypeInformation.sig_field_info * abstraction_info)
| FAI_let of

(Env.TypeInformation.let_field_info * abstraction_info)
| FAI_let_rec of

(Env.TypeInformation.let_field_info * abstraction_info) list
| FAI_theorem of

(Env.TypeInformation.theorem_field_info * abstraction_info)
| FAI_property of

(Env.TypeInformation.property_field_info * abstraction_info)

As we said, the second component of each parameters of the constructors is aabstraction_info that sum-
marises all the things we will compute. Nothing very specialabout the constructors of this type: it is clear that we
have one for each kind of method (just note that, as we presented before in the type-checking section, there is no more
methodsproof of since they have been collapsed with their respective property into theorems). This structure
groups the results of various abstractions computation passes:

type abstraction_info = {
ai_used_species_parameter_tys : Parsetree.vname list ;
(** Dependencies on species parameters’ methods. They are the union of:

- dependencies found via [BODY] of definition 72 page 153 of Virgile
Prevosto’s Phd,

- dependencies found via [TYPE] of definition 72 page 153 of Virgile
Prevosto’s Phd,

- other dependencies found via [DEF-DEP], [UNIVERSE] and [PRM] of
definition 72 page 153 of Virgile Prevosto’s Phd + those found
by the missing rule in Virgile Prevosto’s Phd that temporarily
named [DIDOU]. *)

ai_dependencies_from_params :
((** The species parameter’s name and kind. *)

Env.TypeInformation.species_param *
Env.ordered_methods_from_params) (** The set of methods we depend on. *)

list ;
(* Dependencies used to generate the record type’s parameters. It only

contains dependencies obtained by [TYPE] and [DIDOU]. *)
ai_dependencies_from_params_for_record_type :

((** The species parameter’s name and kind. *)
Env.TypeInformation.species_param *
Env.ordered_methods_from_params) (** The set of methods we depend on

only through types and completion. *)
list ;

ai_min_coq_env : MinEnv.min_coq_env_element list
}

In effect, knowledge of what toλ-lift is acquired along different steps (corresponding to rules of definition 72 page
153 in Virgile Prevosto’s PhD + one new rule that didn’t existand appeared to be mandatory). Hence this structure
reminds the state of computed dependencies at some key steps. In fact, before being able to create so a summarising
(!!,) view of the information, we need to internally remind more key steps and use a more detailed structure where
the results of the consecutive steps are not yet collapsed:

type internal_abstraction_info = {
iai_used_species_parameter_tys : Parsetree.vname list ;
(** Dependencies found via [BODY] of definition 72 page 153 of Virgile

Prevosto’s Phd. *)
iai_dependencies_from_params_via_body :

((** The species parameter’s name and kind. *)
Env.TypeInformation.species_param *
Parsetree_utils.ParamDepSet.t) (** The set of methods we depend on. *)

list ;
(** Dependencies found via [TYPE] of definition 72 page 153 of Virgile

94

Prevosto’s Phd. *)
iai_dependencies_from_params_via_type :

((** The species parameter’s name and kind. *)
Env.TypeInformation.species_param *
Parsetree_utils.ParamDepSet.t) (** The set of methods we depend on. *)

list ;
(** Dependencies found via only [PRM]. Obviously they are all present in

the set below ([iai_dependencies_from_params_via_completions]). *)
iai_dependencies_from_params_via_PRM :

((** The species parameter’s name and kind. *)
Env.TypeInformation.species_param *

Parsetree_utils.ParamDepSet.t)
list ;

(** Other dependencies found via [DEF-DEP], [UNIVERSE] and [PRM] of definition
72 page 153 of Virgile Prevosto’s Phd + [DIDOU] applied on the rules
[DEF-DEP], [UNIVERSE] and [PRM]. *)

iai_dependencies_from_params_via_completions :
((** The species parameter’s name and kind. *)

Env.TypeInformation.species_param *
Parsetree_utils.ParamDepSet.t) (** The set of methods we depend on. *)

list ;
iai_min_coq_env : MinEnv.min_coq_env_element list

}

As already said, the steps correspond to rules and we will a bit later explain how they are implemented. The
rules deal with dependencies on species parameters’ methods. The only point dealing with dependencies on meth-
ods of Self is the “minimal Coq typing environment stored in the fieldiai_min_coq_env (respectively in
ai_min_coq_env).

At the end of each rule, the compiler will record the state of dependencies on the species parameters for further
usage. Finally, once all the key steps are no more needed, we merge all the computed dependencies, keeping only the
3 different sets:

• used_species_parameter_tys that records the list of collection parameters’ names that are used by the
species and hence that must be abstracted.

• ai_dependencies_from_params that records the dependencies on species parameters’ methods that
need to be abstracted to “write” (emit the code so that it is well-typed in the target language) the definition
of the method.

• ai_dependencies_from_params_for_record_type that records the dependencies on species pa-
rameters that impose abstractions when “writing” the record type representing the species. In effect, the record
type doesn’t mandatorily requires all the dependencies required by the definition of a method. Note that in
OCaml, since the record type only makes visible types, there is never dependencies on species parameters’
methods).

• ai_min_coq_env the minimalCoq typing environment that describes the set of methods ofSelf that must
be abstracted because of dependencies in the method.

Hence, the abstractions computation is done in 2 shots. The inner one that processes fields and create the internal
abstraction structure (function__compute_abstractions_for_fields returning a list ofinternal_field_abstraction_info
We may note that this function is a “fold” since at some point,to recover the already computed dependencies from
parameters on previous fields since this info will possibly used to apply rules [DEF-DEP], [UNIVERSE] and [PRM]
of definition 72 page 153 from Virgile Prevosto’s Phd. next, the outer one (the only exported outside) that is in fact
a wrapper around the inner one, and that only merge the abstraction informationand sort it (that was missing in
Virgile Prevosto’s PhD) to get the “compact” representation of the abstraction for each method (i.e. it then returns a
field_abstraction_info list).

Since the core of the computation is hosted in the inner function, we will investigate its work in detail. The outer
function doesn’t present any special difficulty and will be explained in a shorter way.

95

8.1.1 The inner computation

The basic process to apply to a method is always the same. Onlysignature s are a bit simpler because some
rules do not apply (i.e. trivially lead to empty sets of dependencies). Hence, we will expose the general case, more
specifically presenting the case of theorems when we need an example (since for them, no rule lead to trivially empty
dependencies sets since theorems can induce both def and decl-dependencies). The function taking care of this job is
Abstractions.__compute_abstractions_for_fields .

compute_lambda_liftings_for_field

The first step is to compute the dependencies on species parameters appearing in the body of the method. This
is basically the rule [BODY]. This process is done by a structural descent on the body of the method, looking for
identifiers of the formC!meth .

By the way, we recover the decl and def-children of the current method. The idea is simply to split the list of chil-
dren of the node representing the current method in 2 parts, the ones whose edge is taggedDepGraphData.DK_decl
and the ones whose edge is taggedDepGraphData.DK_def . We do this at this stage because these 2 lists will be
useful later and this allows to directly compute the speciesparameters’ carriers appearing in the type of the method.
This could be done in a separate part, but that’s simply our historic choice. May be the reason of this history is that
before, dependency computation forOCaml and forCoq each used a pretty different algorithm. And in theOCaml
code generation, since there was less things to compute, we did all in the same pass. Later, when the compilation
process was better understood, we identified the common algorithm and rules and made to that now abstractions com-
putation is exactly the same for both target languages. And then, the part dealing with def and decl-dependencies
splitting remained here.

Then we really walk along the AST to find species parameters’ methods called in the body of the method. This
is done parameter per parameter, we don’t look for methods ofall the parameters in one shot. In fact, we pro-
cess one parameter at time, in the order of apparition of the parameters. This is very important because this gives
a particular structure (we rely on it everywhere) to our dependency on parameters information. This information
is a list of parameters and for each of them the set of methods we depend on. This set structure is described in
basement/parsetree_utils.ml . The parameters appear in the list in the same order they appear in the species
definition. Hence if a method has no dependency on the speciesparameters, the dependency informationwon’t be an
empty list, but a list with all the parameters and for each an empty set. Not comply this invariant will straight lead to
break the compiler (assert failure will occur in various places). Since we added termination proof, we must also walk
along these proofs to find the dependencies.

During this process, we also hunt types representing species parameterscarriers appearing in the type method.
Note on the fly: I see that for computational methods, I inspect the ML-liketype and for logical ones, I inspect the
logical statement (which is really the “type” of the method.But what is a bit strange is that I do this intypeswhile
dealing with species parameters’ methods inbodies. The point is not so the fact that I mix “body” and “type”, but
more the fact that I wonder if I also hunt later in the bodies. ..).

Once we are done with parameters’ carriers appearing in the type of the method, we do the same thing on the
methods ofSelf we decl-depend on. Note that if we have a decl-dependency onrepresentation , then we do
not need to inspect its structure to know if it contains references to some species parameter types since this means that
therepresentation is still kept abstract.

We then do the same process for the methods ofSelf we def-depend on. Attention, if we have a def-dependency
on representation , we must inspect its structure to know if it contains references to some species parameter
sincerepresentation ’s structure will appear in clear, possibly using these species parameters carrier types. So,
conversely to just above, we don’t make any difference betweenrepresentation and other methods of ourselves.

In fact, technically, to get the set of species parameters’ carriers, we get the set of carriers, and afterward, we filter
those that are among our parameters. This is more efficient that testign each time before inserting or not a carrier in
the set.

96

Finally, we return the species parameters’ carriers used inthe method, the dependencies from parameters found in
the body of the method, the decl-children of the method in thedependency graph and the def-children of it.

VisUniverse.visible_universe

The next step is to compute the “visible universe” of the method. This is done by calling the function of
commoncodegen/visUniverse.ml . This universe describes which methods ofSelf must beλ-lifted for the
current method, according to the definition 57 page 116 section 6.4.4 in Virgile Prevosto’s PhD. The algorithm mostly
implement the rules of the definition, without any special extra comment.

The structure of the universe is simply a map of method names.If a name belongs to the keys of the map, then it
is in the visible universe. The bound key is then the way method arrived into the visible universe (needed later to be
able toλ-lift). A method can arrive in th iniverse either by a decl-dependency andno transitive def-dependency (tag
IU_only_decl), or by at least a transitive def-dependency (tagIU_trans_def) and in this case, no matter if it
also arrives thanks to a decl-dependency.

Completion of the dependency on parameter’s methods

It is now time to apply the rules [TYPE], [DEF-DEP], [UNIVERSE] and [PRM] of the definition 72 page 153 of Virgile
Prevosto’s Phd. They contribute to extend the visibility a method must have on those of its parameters. Note that in
term of implementation, wedon’t return the initial set of dependencies extended by the freshly found one ! We always
return separate sets of dependencies related to each rule (or set of rules in the case of [DEF-DEP], [UNIVERSE]
and [PRM] that are returned together in one set because we never need to differentiate their provenance). The rules
are computed in the following order: [TYPE], [DEF-DEP], [UNIVERS] and then [PRM]. This work is done by the
functionAbstractions.complete_dependencies_from_params .

1. Rule [TYPE]. This rule says that we must search for dependencies on species parameters’ methods among
the “type” of the currently examined method ofSelf . This rule is possible only if a logical expression is
provided. In effect, in a type scheme, species parameters’ methods can never appear since it is a ML-like type.
Furthermore, even in case of termination proof, we have nothing to do since expressions appearing have ML-like
types and proofs are not considered as “type”. This rule simply walk along the “type” of the currently examined
method ofSelf , searching occurrences of identifiers having the formparam!meth .

2. Rule [DEF-DEP]. This rule is implemented by first recovering all the abstraction infos of the methods ofSelf
we def-depend. Because species are well-formed, there is nocycle in its dependencies, and because it is in
normal form, the methods we depend on have already be processed and their abstraction infos are known.
This rule tells if the method def-depends on a methodz and in the body oft we find a dependency on a
parameter’s method, then this parameter’s method must be added to the dependencies of the current method.
Instead of implementing this rule this way, we read it like “add to the dependencies of the current method all the
dependencies on parameters computed on methods we def-depend”. Then, instead of looking for each method
if there is individually a dependency on each species parameter’s method to add, we make a big union in one
shot.

By the way we recover all the abstraction infos of the methodsof Self we directly start reminding the species
parameters’ carriers appearing in the type of the methods wedef-depend. In effect, by definition, the methods we
def-depend belong to our visible universe. And because the rule [UNIVERS] just below will deal with methods
of species parameters appearing in “types” of methods ofSelf belonging to the visible universe, recording
these carriers soon will serve for the next rule.

3. Rule [UNIVERS]. This rule says that if a methodz belongs to the visible universe of the method, ifm has a
dependency on a species parameter methody via the type ofz, then we must add this dependency to the current
method. To make thing faster and simpler, instead of checking if there exists ay, we directly do so that for
eachz in the visible universe, we must add itsiai_dependencies_from_params_via_type (i.e. the
dependencies on species parameters we already computed forthe methodz. Since the methods are well-ordered,
we are sure that we will find this information forz since it was mandatorily processed before.

97

By the way, we go on reminding the species parameters’ carriers appearing in the type of the methods added in
the dependencies.

4. Rule [PRM]. This one is really trickier and suffered of small typos andimplicit stuff in the original PhD. The
correction is presented in 1.0.10. It deals with the fact that a parameterCp′ using a previous parameterCp may
induce dependencies on methods ofCp via its own dependencies on its own parameters (those instantiated by
Cp). Hence, we are interested in computing dependencies on species parameters of a species having the shape:

species S(Cp is . . . , Cp′ is S′(Cp))

First, we look foris parameters themselves parametrised. We hunt in thespecies_parameters , to get
someEnv.TypeInformation.SPAR_is whosesimple_species_expr has a non empty list
sse_effective_args .

Then, we get for each parametrised parameter of the species,which other parameters it uses as effective argu-
ment in which species and at which position. This is the typical shape already given:
species S(Cp is . . . , Cp′ is S′(Cp)) We want to know thatCp′ usesCp as first argument for the species S’.
So we want to get the pair(Cp′ , (S′, [(Cp, 1)])). If Cp′ used anotherCq as third argument, we would get the
pair: (Cp′ , (S′, [(Cp, 1); (Cq, 3)])).

Now, we know thatCp′ is a species parameter built fromS′ applyingCp at position 0. We must find the name
of the formal parameter inS′ corresponding to the position whereCp is applied. Let’s call itK. We have now
to find all the dependencies (methodsy) of K in S′ and we must add them to the dependencies ofCp. This
is done by checking for each affective argument and positionif it is an entity or a collection parameter. in the
first case, since an entity doesn’t have “call-able” method we do not have any dependency to add, then we have
nothing to do. In the second case, we have in our hand the effective argument used. We then get the name
of the formal parameter (Cp) of S′ at the position where the effective argument was used. Now, get all thez
in Deps (S,Cp′) (that can be found in thestarting_dependencies_from_params). Now, for all z,
we must search the set of methods,y, on whichz depends on inS′ via the formal parameter’s name. So, first
we getz’s dependencies informationy. In these dependencies, we try to find the one corresponding to formal
name . If none is found in the assoc list that because there no method in the dependencies on this parameter
and then we “add” and empty set of dependencies. If we found some, before adding the dependencies, we must
instantiate the formal parameter ofS′ by the effective argument provided. In the code, this means that we must
replaceformal_name by eff_arg_qual_vname in the dependenciesy. In effect, in the bodies/types of
the methods ofS′, parameters are those ofS′, not our current ones we use to instantiate the formal ones ofS′ !
To prevent those of S’ to remain in the expressions and be unbound, we do the instanciation here. And finally,
we add the substituted dependencies in the current dependencies accumulator.

Extra completion of the dependency on parameter’s methods

Here is a point I identified as missing in Virgile’s PhD. The related rule is called [DIDOU] because I didn’t have any
better idea while I was working on this, and it remained untilsomebody finds a better name,

This rule performs a transitive closure on the species parameters’ methods appearing in types of methods already
found by the previous completion rules. An open question is does this rule must also compute the fix point taking into
account the methodsit adds ? In practice I never saw such a need, but. . . a bit of theory wouldn’t hurt,The important
point here is to understand that for each method of species parameters, we will look for it’s own dependencies on
methods of “itsSelf ”. Since in the parameter, these methods are “fromSelf ”, in effect, in the species declaring the
parameter, they will look as methods of the species parameter.

This processing is performed by the function
Abstractions.complete_dependencies_from_params_rule _didou . It starts by making the union
of all the dependencies found by the previous rules. Then it creates a fresh empty set of dependencies that will serve as
dependencies accumulator all along the fix point iterations. Then, for each species parameter, for each method already
found of this parameter, we compute the dependencies the decl-dependencies coming fromthe type of the method of
this species parameter, we must add it as a dependency on thisspecies parameter method. In fact, we only add it if it

98

was not already present, which allows to detect the fix point reached. But, since we computed the decl-dependencies
of the method (i.e. dependencies related to other methods ofthis species parameter which are methods ofSelf in
this parameter), we must replace the occurrences ofSelf in this method by the species parameter from where this
method comes.

The process iterates until no more method have been added forany of the species parameters.

Completion of the dependency on parameter’s carriers

This work is done by the functionAbstractions.complete_used_species_parameters_ty . Now, we
complete the species parameters carriers seen by taking into account types of methods obtained by the completion
of the dependencies on parameters achieved by the previous rules. This is simply a scan of the previously built
dependencies. The only hack is that we scan the types and remind all the species carriers appearing inside. Then
we finally filter to only keep the carriers that are really coming from parameters, forgetting those coming from other
toplevel species or collection.

End of the inner computation

Once all the dependencies from the rules, the visible universe, the carriers we depend on are computed, we simply
store them in aAbstractions.internal_abstraction_info structure to further create the more compact
form of the dependencies. This compact form is computed as described in “The outer computation (wrapper)” (C.f.
8.1.2.

8.1.2 The outer computation (wrapper)

The wrapper is the functioncompute_abstractions_for_fields . Basically it’s bigList.map on the tem-
porary abstractions info we computed above. Its aim is to process this temporary information to make it more compact
and adjust some things due to inheritance and order of dependencies between them and to apply the rule [DIDOU] on
dependencies that will appear in therecord type of the species.

The first thing to do is to merge all the dependencies found by the rules [TYPE] and all the completion rules.
Next, we compute the dependencies used to generate the record type parameters, i.e. [TYPE]+[PRM]+([DIDOU]

on [TYPE] +[PRM]). This is simply done like previously, using the function
complete_dependencies_from_params_rule_didou but providing it an empty dependency set for the
parameter∼via_body , hence, the completion will not take any body dependency into account.

Once we get the dependencies needed for the method definitionand for the record type field definition, we must
order them. In effect, nothing guaranties that the order thedependencies are stored in our data-structures are consistent
with the dependencies of the methods in their own species (that are, remind, our species parameters). Then we sort the
methods like we did when we computed dependencies on methodsof Self .

The final process deals with inheritance and instantiationsof species parameters. If the method is inherited, it con-
sists in mapping the computed dependencies on parameters inthe current species on the dependencies on parameters
previously computed in the species we inherited the method.Note that if the method is not inherited, we do nothing,
returning directly the dependencies on parameters we computed until now.

We need this process to correctly compile code like:

species Couple (S is Simple, T is Simple) =
signature morph: S -> T ;
let equiv (e1, e2) =
let _to_force_usage = S!equal in
T!equal (!morph (e1), !morph (e2)) ;

end ;;
species Bug (G is Simple) inherits Couple (G, G) = ... end ;;

The formal parametersS andT are instantiated by inheritance both byG. In Couple , equiv depends on the
typesS andT and on the methodsS!equal andT!equal . So, the application of the method generator ofequiv

99

in Bug must have twice__p_G_T and__p_G_equal provided: once for theλ-lift of S and once for the one ofT
in Couple (yep, remember that inCouple , the methodequiv depends on 2 species parameter types,S andT and
the methodsS!equal andT!equal). Unfortunately, when we compute directly the dependencies in the species
Bug, since we work with sets, the 2 occurrences of__p_G_T are reduced into 1, and same thing for__p_G_equal .
Hence the dependencies information we have for the methodequiv inherited fromCouple in the speciesBug gives
us a wrong number of dependencies (hence ofλ-lifts) compared to those required to use the method generator which
lies inCouple .

One solution would have to take the dependencies information directly in the species we inherit (i.e.Couple here)
and to perform the substitution replacing the formal parameters by the effective arguments provided in theinherits
clause. Technically, because the data-structure representing dependency information is very complex, involves sharing,
I didn’t dare to do this to avoid errors, forgetting parts of the data-structure and so on, and also to preserve the sharing.
In effect, the substitution returns a copy of the term. Hence, all the shared parts in the data-structure would be freshly
copied, then separated of their other occurrences somewhere else in the data-structure.

So, if we have a deeper look at our problem, by re-using directly the dependency information in the species we
inherits, we have the right number of abstractions (the right abstractions scheme), but without the substitutions induced
by theinherits clause. On the other side, by computing directly the dependency information in the current species,
we have the right substitutions, but without the correct number of abstractions (i.e. without the right abstractions
scheme). One may note however that in the second point, only the number of abstractions (and their positions) are
incorrect. However, nothing completely disappear: if in the inherited species we had a dependency on a parameter
method, so we have in the current species. The only thing thatcould happen is that several methods initially identified
as differentiate got merged into one same method after instantiation.

The solution is then simply to trust the abstractions schemeof the inherited species. Next, we compute the depen-
dency information in the current species. This will give us the “dependency bricks” with the right substitution applied.
And then we will just map our bricks onto the scheme accordingto the formal by effective parameter instantiations.

For instance, on our previous example, the dependencies (and hence theλ-lifts) computed inCouple are: S, T,
S!equal , T!equal , so the method generator ofequal has 4 extra parameters (and in this order).

Now, computing the dependencies inBug gives usG, G!equal .
We see thatS was instantiated byG, so in the inherited scheme we replace the dependencies information related to

S by those computed inBug, i.e. by those related toG. We see thatT was instantiated byG, so we do the same thing in
the inherited scheme for the dependencies information related toT. Hence, the final dependencies information we get
for the methodequal in Bug is G, G, G!equal , G!equal which is right according to what the method generator
expects.

Note this impacts only collection parameters since entity parameters do not provide methods during the inheritance.

Once all this job ends, we have all our dependencies computedand we store all the information in aabstraction_info
structure that will be exported toward the code generation back-ends.

100

Chapter 9

OCaml code generation

The code generation starts from theInfer.please_compile_me structure returned by the type-checking pass.
It will examine each phrase of the program, call the abstractions computation previously described (c.f. 8) if needed,
before starting generating some target code.

The most interesting parts of the code generator are those dealing with species and collection. Toplevel functions
do not pose particular problems, as well as type definitions sinceOCaml has similar type definitions. One may note
that becauseOCaml doesn’t have logical features, toplevel theorems trivially lead to no produced code. Generation
for use andopen directives doesn’t produce any code, onlyopen has a significant effect, loading the definitions of
the related module in the environment (exactly like for the other passes).

9.1 Species generation

9.1.1 The collection carrier mapping

To be able to properly map the species parameters’ carriers to type variables in the generated code, we start by
creating a “collection carrier mapping”. This mapping is the correspondance between the collection type of the species
definition parameters and the type variables names to be usedlater during the OCaml translation. For a species
parameterA is/in ... , the type variable that will be used is “”’ + the lowercased name of the species parameter
+ an integer unique in this type + “_as_carrier ”.

We need to add an extra integer (in fact, a stamp) to prevent a same type variable from appearing several time in
the tricky case where ain and ais parameters wear the same lowercased name. For instance inspecies A (F is B

, f in F) whereF andf will lead to a same name ofOCaml type variable: “’f_as_carrier ”.
Hence, each time we will need to generate a type expression involving a species parameter carrier, by a simple

look-up in the mapping we will get the type variable’s name toemit. This mapping primarily serves to the type
pretty-print function. It also have few minor usages that will be explained when we will encounter the case.

The mapping gets stored in a compilation context (a bit like the context we already saw for type-checking) with
various other structures that will be always passed to the compilation functions. This way, grouping all in one unique
argument makes the code clearer.

9.1.2 The record type

As described in , a species starts by a record type definition.This record contains one field per method. This type
is named “me_as_species ” to reflect the point that it represents theOCaml structure representing theFoCaL
species. Depending on whether the species has parameters, this record type also has parameters. In any case, it at least
has a parameter representing “self as it will be once instanciated” once “we” (i.e. the species) will be really living as
a collection.

101

If the carrier is defined, then before the record definition, we generate the type definition “me_as_carrier ”
that shown the constraints due to therepresentation definition (c.f. 2.1.2). This is done by the function
generate_rep_constraint_in_record_type .

Next, we must start the generation of the record type itself.Be careful that it will have at least one type parameter
(the one representing our carrier and named’me_as_carrier). It can have several parameters if the species has
species parameters. So, we start generating the’me_as_carrier , and we use the collection carriers mapping to
generate the other type parameters corresponding to the carriers of the species parameters.

Now comes the point where we must generate the record fields. The first weird thing is that we must extend
the collections carrier mapping with ourselve known. This is required whenrepresentation is defined. Hence,
if we refer to ourrepresentation (i.e. me_as_carrier), not to Self , I mean to a type-collection that is
“(our compilation unit, our species name)” (that is the casewhen creating a collection whereSelf gets especially
abstracted to “(our compilation unit, our species name)”, we will be known and we wont get the fully qualified type
name, otherwise this would lead to a dependency with ourselve in term ofOCaml module.

Indeed, we now may refer to our carrier explicitely here in the scope of a collection (not species, really collection)
because there is no more late binding: here when one say “me”,it’s not anymore “what I will be finally” because we are
already “finally”. Before, as long a species is not a collection, it always refers to itself’s type as “’me_as_carrier ”
because late binding prevents known until the last moment who “we will be”. But because now it’s the end of the
species specification, we know really “who we are” and “’me_as_carrier ” is definitely replaced by “who we
really are” : “me_as_carrier ”.

We can now iterate through the list of fields of the species, tocreate the record’s fields. We take care to not generate
let fields whose type involvesprop since they can only be created bylogical let that are discarded inOCaml.
We also skip theorem and property fields.

Once done, we close the record definition.

9.1.3 Abstraction computation

As previously explained, each back-end triggers the computation of abstractions (i.e. things – carriers, methods –
to abstract due to dependencies). From this computation we get the list of fields of the species with the information
explaining what toλ-lift.

9.1.4 Definitions’ code generation

We then iterate code generation on each field, depending on its kind. Signatures, properties and theorem are purely
discarded inOCaml since they have no mapping and no use.

It then remains thelet -definitions. The generation consists in 2 parts: the generation of the extra parameters due
to λ-lifts and the translation of the function’s body intoOCaml. This last part is quite straightforward, so we will take
more time on the first one.

The first thing is that only methods defined in the current species must be generated. Inherited methodsare not
generated again. So we start generating the thelet and name of the function.

Next come theλ-lifts that abstract according to the species’s parametersthe current method depends on. We
process each species parameter. For each of them, aach abstracted method will be named like “_p_ ”, followed by
the species parameter name, followed by “_”, followed by the method’s name. We don’t care here about whether the
species parameters isin or IS .

Next come the extra arguments due to methods of ourselves we depend on. They are always present in the species
under the name “abst_... ”. Theseλ-lifts are only done for methods that are in the minimal coq environment
because they computational and only declared.

Next come the parameters of thelet -binding with their type. We ignore the result type of thelet if it’s a
function because we never print the type constraint on the result of thelet . We only print them in the arguments of
thelet -bound identifier. We also ignore the variables used to instanciate the polymorphic ones of the scheme because

102

in OCaml polymorphism is not explicit. Note by the way thet we do not have anymore information aboutSelf ’s
structure...

Becareful that while printing the type of the function’s arguments, since they belong to a same type scheme they
may share variables together. For this reason, we first purgethe printing variable mapping and after, activate its
persistence between each parameter printing. This allows the type pretty-print function to “remember” the variables
already seen and print the same name if it see one of them again. And this, until we release the persistence.

Finally, we can dump the code corresponding to the translation of the function’s body. The only tricky part is to
generate code for identifiers because we must take care of wether the identifier represents a local variable, an entity
parameter, a method ofSelf , a toplevel identifier or a collection parameter’s method. We must also be able to detect
occurrences of recursive calls to be sure that at application time, we will really provide the arguments for theλ-lifts.

9.1.5 If the species is complete

. . . then we must manage the fact that a collection generator must be created. The generator is created from the list
of compiled fields. The idea is to make a function that will be parametrised by all the dependencies from species
parameters and returning a value of the species record type.

The generic name of the collection generator: “collection_create ”. Be careful, if the collection generator
has no extra parameter then the “‘collection_create ” will not be a function but directly the record representing
the species. In this case, if some fields of this record are polymorphic,OCaml won’t generalize because it is unsound
to generalise a value that is expansive (and record values are expansives). So, to ensure this won’t arise, we always
add oneunit argument to the generator. We could add it only if there is no argument to the generator, but it is pretty
boring and we prefer just toKeepI t Simple andStupid,.

After the name of the generator, we must generate the parameters the collection generator needs to build the each
of the current species’s local function (functions corresponding to the actual method stored in the collection record).
These parameters of the generator come from the abstractionof methods coming from our species parameters we
depend on. By the way, we want to recover the list of species parameters linked together with their methods we need
to instanciate in order to apply the collection generator. To do so, we first build by side effect the list for each species
parameter of the methods we depend on (using the dependency information previously computed). Then we simply
dump this list, using the naming scheme “_p_” + the species parameter name + “_” + the called method name. Since
that also this way species parameters methods are called in the bodies of the local functions ofSelf (see below), this
will really lead to bind this abstracted identifiers in thesebodies.

At this point comes the moment to generate the local functions that will be used to fill the record value. We then
iterate on the list of compiled fields of the species, skipping thelogical let s, to find the method generator of the
field and apply it to all it needs. “All it needs” means stuff abstracted because of dependencies on species parameters
and things abstracted because of dependencies on other methods of ourselves.

To get the method generator, we must check at which inheritance level it is, in other words in which species its
code was defined. To do so, since we know that the species is complete, we just need to look in thefrom_history
of the field and the generator is defined in thefh_initial_apparition (since by construction, we record the
first declaration is no definition or the definition of a methodhere, and subsequent apparition due to inheritance are
recorded somewhere else).

We first start by abstractions for species parameters. Depending on if the method generator is inherited or directly
defined in the current species, we have 2 behaviours.

In the simples case, it is defined in the current species and wejust need to apply the method generator to each of
the extra arguments induced by the various lambda-lifting we previously performed for species parameters: here we
will not use them toλ-lift them this time, but to apply them ! The name used for application is formed according to
the same scheme we used atλ-lifting time: “_p_ ” + the species parameter name + “_” + the called method name.

However, if the method is inherited, the things are more complex. We must apply the method generator to each
of the extra arguments induced by the various lambda-lifting we previously in the species from which we inherit,
i.e. where the method was defined. During the inheritance, parameters have been instanciated. We must track these
instanciations to know to what apply the method generator.

103

Following parameters instantiations

This work is performed byspecies_ml_generation.instanciate_parameter_through _inheritance .
We search to instanciate the parameters (is andin) of the method generator of onefield_memory (i.e. the data-
structure that represents what we know about a method that was previously generated). The parameters we deal with
are those coming from theλ-lifts we did to abstract dependencies of the method described by thefield_memory]
on species parameters of the species where this method is defined. Hence we deal
with the species parameters of the species where the method w as defined ! It must
be clear that we do not matter of the parameters of the species who inherited !!!
We want to trace by what the parameters of the original hostin g species were instanciated
along the inheritance.

So we want to generate the OCaml code that enumerates the arguments to apply
to the method generator. These arguments are the methods com ing from species parameters
on which the current method has dependencies on. The locatio ns from where these
methods come depend on the instanciations that have be done d uring inheritance.

This function trace these instanciations to figure out exac tly from where these
methods come. Process sketch follows:

1. Find at the point (i.e. the species) where the method gener ator of the field_memory
was defined, the species parameters that were existing at th is point.

2. Find the dependencies the original method had on these (it s) species parameters.

3. For each of these parameters, we must trace by what it was in stanciated along
the inheritance history, (starting from oldest species whe re the method appeared
to most recent) and then generate the corresponding OCaml code.

(a) Find the index of the parameter in the species’s signatur e from where the
method was really defined (not the one where it is inherited).

(b) Follow instanciations that have been done on the paramet er from past to
now along the inheritance history.

(c) If it is a in parameter then we must generate the code corre sponding to
the FoCaL expression that instanciated the parameter. This expressi on is
built by applying effective-to-formal arguments substitu tions.

(d) If it is a IS parameter, then we must generate for each meth od we have dependencies
on, the OCaml code accessing the OCaml code of the method inside its module
structure (if instanciation is done by a toplevel species/c ollection) or
directly use an existing collection generator parameter (i f instanciation
is done by a parameter of the species where the method is found inherited,
i.e. the species we are currently compiling).

Ending the collection henerator

Finally, we must apply the method generator to each of the ext ra arguments induced
by the methods of our inheritance tree we depend on and that we re only declared
when the method generator was created. These methods leaded to “local” functions
defined above (by the same process we describe here). Hence, for each method only
declared of ourselves we depend on, its name is “local_” + the method’s name. Since
we are in OCaml, we obviously skip the logical methods.

We were at the point of generating the “local” functions corr esponding to our
methods. This is now done, and we only have to create now the re cord value representing
the collection returned by the collection generator. To do t his, we only assign
each record fields corresponding to the current species’s m ethod the corresponding

104

“local” function we defined just above. Remind that the reco rd field’s is simply
the method’s name. The local function corresponding to the m ethod is “local_” +
the method’s name.

9.1.6 Ending the code of a species

We ar enow done with the process handling the case a species is fully defined, hence
has a collection generator. We just now need to create the dat a that will be recorded
in the OCaml code generation environment. Remember that while creating the collection
generator, we returned the list of arguments it need. This in fo will be part of
what is stored in the environment. We also build the list of th e compiled_field_memory’s
of the methods and the information about the species paramet ers.

9.2 Collection generation

105

106

Chapter 10

Coq code generation

10.0.1 Theorems and proofs

10.0.2 Recursive functions

107

108

Chapter 11

Doc generation

109

110

Chapter 12

focalizedep

111

112

Chapter 13

Cadavers in the cupboard

Here is the holly section of things that are not yet done and fo r which we know
there is still something to do. Currently, most of them are no t very intricate
and do not impact the general sanity of the compiler. However , it is possible to
create some cases of programs falling in these open points. H ere are the cadavers
we hide under the carpet... ,

• The verification that Self is really compatible with the lis t of species types
encountered during species expression typing is not curren tly done. This deals
with inheritance from parametrised species applied to Self as described in 7.3.3.
Most of the points in the code are tagged by a comment [Unsure] and involve
an identifier named self_must_be to represent the unused li st of these species
types Self must be compatible with. In fact, the function per forming compatibility
test already exists and is called is_sub_species_of in the s ource file typing/infer.ml
but we do not use it for this task.

• Recursive functions with termination proofs using Coq’s Function construct are
to be finished. I have some notes about this and must scan them instead of
rewriting all. Apriori, there is not tons of work to do for this and major identified
points are:

– Adding α conversion in some parts of the generated code to prevent nam e
conflicts in Coq.

– Rewrite the LTac of William that should provide a mean to prov e well foundation
of orders from simple basic orders.

– Instead of using magic_order at the end of the proof, use the d efined order
(can be done only when the above LTac will work since it will pr ovide the
well foundation of the order.

– Verify the measure kind of proof and implement the structura l kind based
on the primary brick order.

– Provide a way for the user to see the proof he has to do for termi nation
by showing him the theorems generated by the compiler for thi s termination
proof.

• Check record label exhaustivity when dealing with expressi ons of type record.
Currently the compiler only issues a warning to say that it is not done.

• Have an automated and transparent renaming mechanism to pre vent identifiers
used in FoCaLize to make syntax errors in the target languages if they are toke n

113

of these languages. For instance, defining an identifier “m odule” will make
a syntax error in the generated OCaml code since “module” is a keyword in OCaml.

• Local collections are not yet re-implemented. One must unde rstand the semantics
of the structure we want before.

• Implement an effective API to allow passes to be added by user s after scoping
and typechecking and re-analyse the possibliy (by these use r-passes) modified
code. To prevent a useless re-analyse if no pass was inserted , the API could
provide a function toggling an internal boolean telling if t he code must be
analysed again for example.

• And most generally, the few points in the code tagged by a comm ent [Unsure].
These are the points where I strongly wondered without havin g yet found a solution
in which I have a strong, indubitable confidence.

• The notion of “local” let is not implemented. Some questions about its semantics...Should
it be inherited, i.e. visible in the children ? but not when th e species is
used as parameter ? as collection ? Does it appear in the signa ture ? What
are the usage restrictions (ok or not in proofs) ? Does it lead to code ? Depending
on these points, one must be careful to prevent dependencies on a local that
would not visible. What does it means to have a “local” signat ure, theorem,
property ?

• Change the patterns so that they are as simple as those that Coq can handle.
We don’t want to keep our OCaml-like patterns and decompose them into simpler
patterns to prevent the user from trying to make proofs on a co de that is not
really the one he wrote.

• Records expressions are not generated in Coq.

• Unification currently implements the “Self preference” ru le (rules [Self1] and
[Self2] in Virgile’s Phd section 3.3, definition 9 page 27. I t seems to be
a hack to tend to introduce the maximum of Self but doesn’t see m to lead to
a general type. In fact, this problem is circumvented by the n otion of signature
matching that allows to verify that the infered type of a meth od is compatible
with the given signature of the method and keep as result the g iven signature.
It may be possible to do so that the unification doens’t retur n any type, hence
leading to a regular ML-like unification, the signature mat ching process acting
alone to abstract types (that are compatible with the known d efinition of the
carrier) into Self.

• We should generate “.mli” interface files to prevent visibi lity of internal
structure of species if manually hacking (interfacing) OCaml code with source
generated by focalizec.

• Question: proof by type Self. What does it do ? What does it mea n ?

• Feature allowing to use a fully defined species instead of a c ollection ? Wanted
or not ? What’s about the abstraction ? Remove ?!

• Error: Unexpected error: "Failure("Instantiation of coll ection parameter by
Self - Configuration currently not available.")" (from com moncode_gen/misc_common.ml).

open "basics" ;;

species B =

114

let x = 1 ;
end ;;

species S (A is B) =
representation = A ;
let x = 6 ;

end ;;

species C inherits S (Self) = end ;;

or

species Basic_object =
let print = "" ;

end ;;

species One (A is Basic_object) =
representation = A;
let b = 1 ;

end;;

species Two =
inherit One (Self) ;

end;;

• Species parametrised by Self are currently handled by delay ing the verification
that Self is really compatible with all the interfaces encou ntered in the inherits
clause involving Self as effective argument of a collection . May be this verification
shoud be done on the fly, considering only the interface of Se lf we can build
with the methods we currently know for Self. Question: Ok, rrrrrright, but
is it possible to check interface compliance although we do n ot have yet a normal
form of ourselves ?

• The focalizec command should be enhanced upon producing an executable ins tead
of stopping only on object files (.cmo).

• On Eric’s request: what to do of such a program (that compiles in FoCaL, OCaml
and Coq) but is a bit weird.

species Subset(Val is Superset) =
signature empty : Self ;

end ;;

species Subset (Val is Superset) =
inherit Subset_Comp (Val) ;
representation = Val -> bool ;
let empty(v in Val) = false ;

end ;;

In effect, empty is first declared as a constant, then it is im plemented as
a function, just thanks to the fact that Self is known to be equ al to a functional
type.

115

Index

λ-lift, 94
methods of Self, 17

%type, 31

abstraction, 93
alias, 32
AST

node structure, 55, 75

binding level, 82

carrier
representation, 11

collapsing proof, 87
collection, 26

typing, 90
compiler entry point, 50

dependency, 88
on carrier, 3, 86
on parameter’s method, 93

entry point, 50
environment

coq code gen, 69
generic, 57
ocaml code gen, 67
scoping, 62
typing, 64

external
clause, 38
definition, 36
type definition, 36
value definition, 42

extra
() parameter, 23

extra library, 48

fusion, 87

inheritance
resolution, 85
scoping, 73

instanciation, 4
internal clause, 37

lexer, 49
lexing, 55
library

extra, 48
standard, 50

method, 15
generator, 16
scoping, 74
typing, 85

module, 58

normal form, 3, 87

occur check, 81

parser, 49
parsing, 55
polymorphism, 82

record
type, 12

Coq gen env info, 69
OCaml gen env info, 68
scoping env info, 62
typing env info, 64

remapping dependencies, 99
rule

[COL-PRM], 3
[PRM], 5
[SELF1/2], 3
DEF-DEP, 97
DIDOU, 98
PRM, 98
TYPE, 97
UNIVERS, 97

scoping, 71
signature matching, 88
species, 11

116

Coq gen env info, 70
OCaml gen env info, 68
complete, 21
parameter

scoping, 73
typing, 84

scoping env info, 63
typing, 84
typing env info, 65

standard library, 50
stdlib, 50
substitution, 77

theorem
toplevel, 31

tuple, 31
type, 76

Coq gen env info, 70
OCaml gen env info, 68
algebra, 77
alias, 32, 91
builtin, 41
definition, 32

external, 36, 92
typing, 91

record, 35, 92
scheme, 76
scoping env info, 63
sum, 33, 91
tuple, 31
typing env info, 65
union, 33

type-checking, 50

unification, 3, 79
unifier, 79

value
Coq gen env info, 70
OCaml gen env info, 68
constructor

Coq gen env info, 69
OCaml gen env info, 67
scoping env info, 62
typing env info, 64

scoping env info, 62
typing env info, 65

visible universe, 97

117

