A Short Tutorial for FoCal.ize:
Implementing Sets

The FoCalize Team

July 2009

Contents

1 Forewords

1.1 Content e e
1.2 Notations and Recommandations

2 A Quick Overview of FOCALIZE
3 The Development Case: Sets and Subsets

4 Specifying Supersets

4.1 The Superset Species
4.2 A First Proof
4.3 A First Definition
4.4 Clearing of the Superset Species

5 Specifying Subsets

5.1 Generic Subsets L
5.2 Extensional Subsets
52.1 Inclusion
5.2.2 Extensional Equality
5.2.3 A Few Trivial Properties.
5.2.4 Proving Non Trivial Properties
5.3 Finite Subsets L

6 Specifying Lists

6.1 Co-Lists
6.2 Finite Lists

7 Refining Lists

7.1 Enumerable Lists
7.1.1 Recursive Membership
7.1.2 Recursive Deletion

7.2 Inductive Lists
7.2.1 Non Empty Supersets
722 A TypeforLists
7.2.3 Inductive Lists,

2 1 FOREWORDS

7.2.4 Higher-Order Proofs 26

7.2.5 Proofs on Inductive Types 27

7.2.6 Structural Recursion 28

8 A Complete Implementation 28
8.1 Imtegers 29
8.1.1 Adding Inputs and Outputs to Supersets 29

8.1.2 A Complete Integer Species 30

8.1.3 An Integer Collection 30

8.2 ListsifIntegers 30
8.3 Subsets 31
8.3.1 A Complete Subset Species 31

8.3.2 A Subset Collection 32

8.4 Using Subsets 32
841 TopLevel Use 32

8.4.2 Producing an Executable 33

9 Some Remarks 33
9.1 Over-specifications 33
9.2 Closure Reasoning’™s 34
9.3 Observability Considerations 34
9.4 Functional Representations 36

A Inheritance Graph 38
B Full Sources 39
B.1 superset.fcl o 39
B.2 subset.fcl 39
B.3 mylist.fel 40
B.4 maindfcl 44

1 Forewords

1.1 Content

This document is a short tutorial for FOCALIZE, version 0.6.0 released in De-
cember 2009 . It describes a full but simple development using the main fea-
tures of the FOCALIZE language, from the specification to the implementation,
including proofs of correction.

The reader is expected to have some basic knowledge of the OCAML lan-
guage, of object-oriented programming as well as an understanding of the stan-
dard logical operators (V, =, etc.) and notions about proofs.

This tutorial is not intended to be complete with regard to the FOCALIZE
features, nor does it recommend a specific design philosophy. In particular, It
does not make use of the FOCALIZE library (providing numerous mathematical
structures) but on the contrary builds from scratch such a structure, for the sake
of illustration.

LFOCALIZE can be downloaded from http://focalize.inria.fr.

1.2 Notations and Recommandations 3

1.2 Notations and Recommandations

In the rest of this tutorial, pieces of FOCALIZE code will be presented in frames,
as in this example:

use "basics" ;;
spectes Superset =

This type of code has to be inserted in UNiXx ASCII files with a fcl extension.
FoCALIZE keywords, types or identifiers can also be inserted directly in the
text, for example Superset.

The FOCALIZE syntax is case sensitive, uppercase and lowercase identifier
being associated to different sorts of entities. Delimiters (blank spaces, tabula-
tions, line feeds) are often required to separate syntactical constructs. Finally,
the use in FOCALIZE sources of OCAML or CoQ keywords (such as set) or of
standard library file names (such as tist.») may result in name clashes. For
these reasons, the reader is advised to respect as much as possible the form and
the names used in this tutorial.

The FOCALIZE syntax includes several forms of comments. Single line com-
ments start with a -- and go to the end of the line. Block comments are delimited
by ¢+ and %), and can be nested, that is, it is possible to comment a block of
code which includes comments. However, for the sake of readability, we will not
use comments in our examples; the reader is free to add comments were he feels
appropriate. It is advised to avoid some forms of comments, such as (**, (¥--,
or " (double quote) in block comments; please refer to the FOCALIZE reference
manual for detailed explanations.

Commands, file names as well as outputs or error messages are in bold font,
for example focalizec superset.fcl. Terms representing specific FOCALIZE
concepts are introduced using an emphasised font, for example collection. Fi-
nally, mathematical statements are presented using the standard notations, for
example V (2:T), ==z (for any x belonging to the set/type T, x is equal to z).

2 A Quick Overview of FOCALIZE

FOCALIZE is an integrated development environment (IDE) with formal fea-
tures. Beyond the compiler, that from a FOCALIZE source file produces source
code for OCAML and proof scripts to be checked by CoQ, FOCALIZE also pro-
vides an automated prover (ZENON), a test tool (FOCTEST), a documentation
tool (FOCDOC), and other utilities. We mainly focus in this tutorial on the use
of the compiler (focalizec) and of the ZENON automated prover (zvtov). Note
that FOCALIZE is the successor of the FOC and FOCAL tools, with a fully
redeveloped compiler.

FOoCALIZE being a formal method, a typical development includes not only
data structures and programs, but also logical properties. This allows for the
description of specifications and of implementations, while providing a mathe-
matical guarantee that implementations are indeed compliant with their speci-
fications. A specification consists of function signatures, but also of associated
properties that have to be satisfied, as in the following example describing a
commutative binary operation f over a set S with a left neutral element:

f:8—=8=8 Vay, f(z,y)=[(y,z) Va, f(Z,x)=x

4 2 A QUICK OVERVIEW OF FOCALIZE

The left part is frequently encountered in classical, non-formal languages, under
the names signature, interface, prototype or specification. The two properties
on the right part, on the other hand, are less usual; in a formal method, they do
not represent comments or assertions checked at runtime, but a true requirement
constraining implementations — that is the programs with concrete datatypes
and algorithms. The correctness of the implementations has to be statically
ensured at compilation time by proving that they satisfy the properties, an
activity relying on formal proofs (in the mathematical sense), whose production
is only partially automated but which are mechanically checked.

The cost of develop ping formal specifications and proofs is compensated by
the important gain w.r.t. the confidence in the development. Various studies
furthermore indicate that the total development and ownership cost is likely
to be reduced, due to disambiguation of the specifications, earlier detection of
problems, lighter test obligations and reduced maintenance activities. Note also
that it is possible to further assess the specification itself by deriving conse-
quences, to check that the specification is both correct and sufficiently detailed;
taking our previous example, it is possible to show that a valid implementa-
tion of f is such that f(x,Z)=1x — just combining required properties, without
having to know what is this implementation.

The FOCALIZE language therefore combines a pure functional programming
language inspired by OCAML and a logical language. It is also object-flavoured,
developments being organised through a hierarchy of species, build by inheri-
tance or parameterisation. In essence, a species is a kind of record combining
function signatures (that is their type), function definitions (that is their code),
logical properties and proofs.

When a species Sy inherits from a species S1, that means that Sy includes
at least all the features of S7, and can be enriched with its own functions or
properties — intuitively speaking, any correct implementation of Sy is therefore
also a correct implementation of Sj.

A species can also use the implementation of other species to build its own
definitions, properties and proofs, through a parameterisation mechanism. The
parameters are required to be effective and consistent, that is to be such that
every function declaration has an associated definition, and every property a
proof that it holds. Furthermore, the validity of the properties of these effective
parameters is likely to depend upon the implementation choices done during
their development, and it is therefore very important to preserve them. This
is addressed in FOCALIZE by the notion of collection: the implementation of
a complete species (that is a species whose all functions are defined and all
properties are proved) whose concrete data representation is hidden — a form
of abstract data type. A collection only exposes the declaration of its functions
and the statement of its properties, through a structure called the interface of
the collection; collections can therefore be used safely as effective parameters.

Practically, if a species S has a formal parameter C' of interface I, then S can
use all the functions and properties named in [in its body to build the definition
of its functions and to prove its properties, but cannot modify these functions or
even examine their definition. The compiler ensures that any collection D given
as an effective parameter for C' indeed offers all the functions and properties
stated in I. Note that species can also be parameterised by entities, that is
values of a collection. This is a powerful feature, e.g. to describe structures such
as Z/nZ where n is such a parameter, but we will not use it in this tutorial.

3 The Development Case: Sets and Subsets

We deal in this tutorial with the classical example of subsets. We want to
describe the implementation of subsets of values, ensuring that it is bug-free, at
least w.r.t. a specification that we will make as complete as possible.

It is important, in such a development, to learn to abstract the fundamental
concepts. Indeed, one can easily describe such mathematical structures having
a precise idea about their implementation in mind, and consequently describing
this implementation rather that the structure itself. For example, in the case
of subsets, a classical choice is to use sorted and injective? lists; whereas this is
a valid implementation, there are other choices, and it would be a mistake to
capture too early some of the specificities of this encoding, such as for example
the existence of a comparison between values or of an order inside the concrete
representation of a subset.

As we will see, we adopt here a progressive approach, justified by various
engineering considerations regarding FOCALIZE developments, but also by the
will to stick to the formal vision presented just before. An interesting conse-
quence of this vision is that a genuine freedom is given to the developer, that
can choose between various approaches for example to favour genericity and
reusability, or to optimize algorithms.

The rest of this paper describes the various stages of the development, dis-
tinguishing between specification activities (the “what to do”) and refinements,
that is the activities ensuring progress toward an implementation (the “how to
do”). We describe supersets, from which values are obtained, and subsets of
these supersets, before implementing these specifications. Our main objective
is to implement finite subsets as lists of values, but we will consider possible
alternatives as well.

4 Specifying Supersets

When attempting to specify what is a subset of a superset — for example subsets
of N — we need first to specify this superset. The simplest approach would be to
decide to represent subsets of a given superset, for example subsets of values from
int. Yet of course that would force us to fully redevelop such an implementation
for any relevant type, a rather inappropriate strategy.

We therefore favour the generic approach, through a form of polymorphic
specification. In FOCALIZE, this is possible by using parametrisation. Species
can indeed be parametrised by an interface, which means that implementation
of the species will have to instantiate this parameter by a collection having the
required interface. In practice, this means that before defining a species for
subset, parametrized by an interface describing what is a superset, we need
first to define the superset interface. This is done by creating first a species for
superset, whose only role is to be passed as a parameter.

4.1 The Superset Species

What do we expect from a superset? Not much, as we can consider subsets of
nearly anything. Furthermore we do not need to enforce supersets to have a rich

2That is, lists in which a given value appears at most once.

6 4 SPECIFYING SUPERSETS

structure with powerful operations. For now, only one very generic operator
appears useful, an equivalence relation — representing a form of equality, for
example to be able to test whether or not a subset contains a value. Note that
we do not require this equivalence to be a strict equality, for example if we store
strings that encodes natural values, we may decide that “1”, “01” and “+001”
are equivalent — and checking if a given subset contains for example “+1” will
return true even if the stored value is in fact “01”.

We therefore edit a FOCALIZE source file, named superset.fcl, and type
in the following code:

use "basics" ;;
species Superset =
signature equal : Self -> Self -> basics#bool ;

end ;;

The first line of our code indicates that we intend to use declarations and defini-
tions from the file basics.fcl (or more precisely its compiled version, basics.fo,
which has to be in the library path of the compiler). This standard file contains
the definition of the type voot which is needed here, as well as other utilities,
and is generally required for any FOCALIZE development.

Tip 1 [Compilation Units] Access to declarations and definitions from other files is
possible with the use or open directives; the latter allows for shorter motations (e.g.
#bool or bool instead of basics#bool which is referred to “file qualified notation”. We
will see later a similar mechanism to invoke species methods that we call “species qual-
ified notation”. In absence of ambiguity between these two qualification mechanisms,
we will generally use the shorter term of “qualified notation”). Note that the use and
open directives are not transitive, that is for example if B opens A and C opens B, C
does not have access to declaration and definitions of A.

We then define a species Superset to represent the very abstract entity that
we call a superset. This species represents in fact any collection (any imple-
mentation) whose interface contains a function egqual with the required type; as
we do not provide the definition (the code) of this function, but just its type,
we use the keyword signature. The type of the function is Self — Self — bool,
which means that it takes two parameters of the current species® and returns a
boolean value.

Tip 2 /[Syntaz] Species names have to start with an uppercase character.

Tip 3 /[Syntaz] Separators (that is blank spaces, tabulations, line feeds) are often
required between syntactical constructs.

At this stage, we are not using any formal feature; indeed, we are just
specifying here a form of object with a given method. To have a meaningful
specification, we further require the equal function to represent an equivalence
relation (that is to be reflexive, symmetric and transitive). In addition, we also
change the name of the method equai: to be easier to read, we benefit from the
FoCALIZE ability to manage symbols, and use the much more explicit symbol
= instead. We therefore modify Superset as follows:

3More precisely, equal expects two values of the concrete type used as the support for the
collection implementing the species.

4.2 A First Proof 7

species Superset =

signature (=) : Self -> Self -> basics#bool ;
property eq_refl : all = : Self, © =z ;
property eq_symm : all z y : Self, z =
property eq_tran : all =z y z : Self, =z

< -

>y =z ;
y ->y =2z ->x =2z ;

end ;;

The symbol = in FOCALIZE, is associated to infix notations (but can still be
used as a prefix operator, when put between parentheses, as in its signature).
This allows for a very user-friendly presentation of the three properties that we
expect about an equivalence relation, namely reflexivity, symmetry and tran-
sitivity. We use the keyword property, hence we do not prove anything at this
stage. We just require any collection implementing this species to provide such
a proof at some point of the development — for example as soon as = is defined.

Tip 4 [Using Symbols] Methods can be denoted by names or symbols; the choice of
an appropriate symbol may greatly improve the readability of a code.

Superset now specifies any collection offering a function named = taking two
parameters in the collection and returning a boolean, that is a relation; but it
also requires this relation to be reflexive, transitive and symmetric. This is a
pure specification: there are no definitions, no code. We explain what we expect,
but the developer is free to propose any compliant implementation. Note by the
way that our specification does not even enforce Superset to contain a value: it
can be implemented by an empty type.

At this stage, it is possible to compile our development with the command
focalizec superset.fcl — of course, there is not much to expect from this com-
pilation, except for checking the syntax. It invokes the FOCALIZE compiler, as
well as OCAML compiler, the ZENON prover — but there are no proof obliga-
tions at this stage, the species only containing properties — and the CoQ proof
checker, producing the following files:

File name Produced by | Used by | Description
superset.fcl Text editor | focalizec | FOCALIZE source file
superset.fo focalizec focalizec | FOCALIZE object file
superset.zv focalizec zvtov Proof obligations
superset.ml focalizec ocamlc | Program source file
superset.pfc zvtov zvtov ZENON proof cache
superset.v zvtov coqc Proofs

superset.vo coqc coqc CoQ object file
superset.cmi ocamlc ocamlc | OCAML interface file
superset.cmo ocamlc ocamlc | OCAML object code

4.2 A First Proof

Whereas Superset is a very short and simple specification, it can be enriched
with additional results without further requirements. For example, combining
reflexivity and transitivity, it is possible to prove the following property about
= of the Superset species as follows:

theorem eq_symmtran : all z y z : Self, ¢z =y -> ¢ =2 >y = 2
proof = by property eq_symm, eq_tran ;

8 4 SPECIFYING SUPERSETS

We use the keyword theorem instead of property to indicate that the proof follows
— it is provided after the keyword proof. Hence, a property accompanied by
its proof is equivalent to a theorem In fact, we do not detail a real proof, but
rather tips that allow ZENON to automatically derive the proof*; we claim that
eq_symmtran is a direct consequence of eq_symm and eq_tran. At this stage, we can
invoke the compiler to check that indeed ZENON succeeds.

Tip 5 [Derived properties] Once primitive properties have been introduced, other re-
sults can be proved, for example user-relevant corollaries, to check the validity and the
completeness of the specification.

Note that eq_symmand eq_tran are in fact used as hypothesis to prove eq_symmtran,
in other words we have proven eq_symm = eq_tran = eq_symmtran. That means
that the validity of the latter depends upon the consistence of the formers, and
that there is therefore no real assurance until proofs are provided for them.

In the rest of this tutorial, we will not further mention standard compilation
steps; the reader is invited to compile when he considers it is relevant.

4.3 A First Definition

To further illustrate the late binding feature of FOCALIZE, that is in essence
the ability to describe and use entities which are not yet defined, we again enrich
the species Superset, this time with the definition of a function:

let (<>) (z, y) = basics#("~)(z = y) ;

theorem diff_irrefl : all = : Self, “(z <> z)
proof = by definition of (<>) property eq_refl ;

theorem diff_symm : all = y : Self, © <>y ->y <> ¢z
proof = by definition of (<>) property eq_symm ;

In this case, we provide the code for the function <>, introduced by the keyword
tet. Without surprise, we indicate that <> is the negation of = but one should
note that =itself is not yet defined. However, this is sufficient to prove properties
of <>, such as diff_irrefi and diff_symm. The proof of these properties is again
automatically derived by ZENON, the tips in this case also ensuring that the
definition of <> is visible from the proof context.

A definition of <> is provided in the species Superset, but it is possible to
override it later (in inheriting species or collection), for example to optimize the
implementation, once more information about the structure are provided.

It is fundamental to remember that FOCALIZE enforces encapsulation; this
means that any definition in a species, such as the one for <> here, is visible
only in this species (or the inheriting ones). As definitions are never visible
outside a species, we recommend for such early definition to associate dedicated
properties capturing the essence of the definition in a logical form, visible from
other species, such as diff_eq that we add to our species as follows:

theorem diff_eq : all z y : Self, © <>y <-> "(z = y)
proof = by definition of (<>) ;

4The success of ZENON for complex proofs depends upon the computer architecture and
the parameters used for its invocation.

4.4 Clearing of the Superset Species 9

diff_eq is here described as a theorem whose proof depends upon the definition
of <>. Any later redefinition of <> will delete this proof, and transform back
diff_eq into a proof obligation. The interest of a property like diff_eq is that it
can be used instead of the definition of <> to prove diff_irrefi and diff_symm: if
<> is indeed redefined later, only the proof of diff_eq will have to be redone.

Tip 6 [Early Definitions] Definitions can be introduced at any stage of a FOCALIZE
development; it is recommended to capture the meaning of early definitions in properties
(proved using the definition), and to use these properties in proofs, instead of the
definitions themselves, to limit the consequences of redefinitions.

4.4 Clearing of the Superset Species

We have enriched our Superset species just to illustrate some of the features of
FOCALIZE. As these artificial examples are not used later in this tutorial, we
suggest to delete them. The file superset.fcl should be modified as follows:

use "basics" ;;
species Superset =

signature (=) : Self -> Self -> bastics#bool ;
property eq_refl : all = : Self, =z = z ;

property eq_symm : all =z y : Self, z =y -> 4y
property eq_tran : all z y 2z : Self, z =y ->

<
8

end ;;

5 Specifying Subsets

It is now time to specify subsets of values from a superset in a new species. It
is possible to append the new code in the previous file, but we prefer to create
a new file named subset.fcl. As previously stated, the directives use or open
can be used to access previous definitions. Remember that with use explicit
and detailed names are required, for example superset#Superset!eq_refl, whereas
Supersetleq_refl is sufficient if we use open instead.

use "basics" ;;
open "superset" ;;

5.1 Generic Subsets

The species Subset is parametrised by a collection vat which implements the
interface defined by the species Superset. Regarding the method, we provide a
membership operation deciding whether or not a value belongs to a subset, de-
noted <<; practically, membership defines a subset, as any subset is characterised
by the values it contains®:

species Subset(Val is Superset) =

signature (<<) : Val -> Self -> bastcs#bool ;

5Note that we describe in fact subsets for which membership is decidable.

10 5 SPECIFYING SUBSETS

end; ;

Of course using only this method we cannot do much: neither do we have a
way to exhibit a subset, nor to express any property about membership. So
additional methods have to be declared, in association with properties that
sufficiently describe what we expect from these methods. However, we also have
to be cautious not to add too powerful methods, that would lead to over-specify
the species and reduce the acceptable implementations (or logical models).

It appears reasonable to add a method to build an empty subset. Indeed,
it always exists such a subset, even if for example vai is itself empty. Another
seemingly harmless feature (in the sense that it is likely to be implementable
whatever the concrete representation we choose) is the ability to derive subsets
from other subsets by adding or removing a value. Following these principles,
our species is enriched as follows:

signature empty : Self ;
property mem_empty : all v : Val, ~“(v << empty) ;

signature (+) : Self -> Val -> Self ;

property mem_insert : all vl w2 : Val, all s : Self,
vl << s + v2 <->
(Val!(=)(vl, v2) \/ vl << s) ;

signature (-) : Self -> Val -> Self ;
property mem_remove : all vl w2 : Val, all s : Self,
vl << s - w2 <->
("(Val!l(=)(v1, w2)) /\ w1l << s) ;

In this specification, each method producing a subset is associated to a property
detailing its behaviour with regard to membership. As membership indeed
characterises a specific subset, such properties are as precise as a definition. This
is typical of FOCALIZE specifications, where the concrete datatype stays hidden
from outside the species: properties are generally relations between methods,
describing the structure of a species.

We have adopted a very dense presentation of these properties: mem_insert
claims that a value is a member of s + v if and only if this is v or if it was already
a member of s. It could have been split in three different properties, but we
here trust ZENON to exploit automatically all variants of this properties, and
we favor this form to reduce the number of tips to be provided for proofs.

Note that the notation = in the context of the species Subset, would refer
either to a method defined in the current species or to a method defined at top
level (that is outside a species or a collection), possibly in one of the included
files. As we want to use the equality of the parameter va1, we need the explicit
notation val!(=), which is a prefix notation.

Are additional methods desirable at this stage of the specification? We
choose here not to go further, yet this is a matter of taste and style. For
example, it may be acceptable to specify union and intersection, as it does not
seem to restrict the possible concrete representations for subsets. On the other
hand, from a practical point of view, that means that any implementation of the
species Subset, in addition to providing the definition for <<, + - as well as the
proofs of the associated properties, would also have to provide a definition and
the proofs for union and intersection, even if these last operations are not useful

5.2 Extensional Subsets 11

for a given application. So it may be more appropriate to add such operations
in a later species and let developers to choose to use the Subset specification or
one of its extended versions.

5.2 Extensional Subsets

Whereas our main objective is to implement finite subsets as lists, we choose
here to introduce very gradually various levels of specifications. Note that noth-
ing enforces at this stage the species Subset to only describe finite subsets, and
we do not want to further constrain it by requiring other methods and proper-
ties in Subset. We prefer to adopt a smoother approach, adding another level
of specification by creating a new species to represent finite subsets, or more
precisely extensional subsets.

Indeed, it is not trivial to specify finite subsets. One of the most classical
approaches is to define a cardinal operator in Self — N, returning the number
of elements in the subset. The simple existence of this operator, total over Self,
combined with properties indicating its semantics, is indeed sufficient. Yet that
would require using natural values, that is to have a collection parameter with
a species representing N. Appropriate species exist in the FOCALIZE standard
library, but we prefer to avoid in this tutorial such dependencies for now.

We therefore adopt here a slightly different approach, by specifying exten-
sional subsets, that is subset whose content can be analysed systematically.

5.2.1 Inclusion

Extensional subsets being subsets, we use the inheritance mechanism: we cre-
ate a new species EztSubset parametrised by a collection vai, which inherits of
Subset (Val), that is of all its methods and properties. Of course, we intend to
enrich this specification with new methods and properties.

The new requirement in EztSubset is to have a method checking whether or
not a subset is included in another, denoted <: in our code. Taking benefit from
the specification of the (yet undefined) inclusion method, it is already possible
to prove that inclusion is reflexive and transitive:

species EztSubset (Val is Superset) =
inherit Subset (Val) ;

signature (<:) : Self -> Self -> basics#bool ;
property mem_incl : all s1 s2 : Self,

sl <: s2 <-> all v : Val, v << s1 -> v << s2 ;
theorem incl_refl : all s : Self, s <: s
proof = by property mem_incl ;
theorem incl_tran : all s1 s2 s3 : Self,

sl <: s2 -> s2 <: s3 -> s1 <: s3
proof = by property mem_incl ;

end; ;

Any collection implementing EztSubset will therefore have to provide code for
the method <: as well as a proof that this code indeed represents inclusion;
provided this proof reflexivity and transitivity will be ensured as well without
further work.

12 5 SPECIFYING SUBSETS

Tip 7 (Inheritance) The inkerit clause has to be the first one in a species; it
indicates that the current species includes all the signatures, definitions, prop-
erties and proofs on the inherited species.

5.2.2 Extensional Equality

An evident enrichment is to define the equality of two finite subsets as the
reciprocal inclusion. This should however ring a bell: if the species EztSubset
offers an equality, then it can probably also inherits from the species Superset.
That’s our design choice here, using the multiple inheritance feature provided by
FoCALIZE. We therefore modify and extends the species EztSubset as follows:

species ExtSubset (Val is Superset) =
inherit Superset, Subset (Val) ;
signature (<:) : Self -> Self -> basics#bool ;

property mem_incl : all s1 s2 in Self,
sl <: s2 <-> all v in Val, v << s1 -> v << s2 ;

theorem incl_refl : all s in Self, s <: s
proof = by property mem_incl ;
theorem incl_tran : all s1 s2 s3 in Self,

s1 <: s2 -> s2 <: s3 -> s1 <: s3
proof = by property mem_incl ;

let (=) (s1, s2) = 4if (s1 <: s2) then (s2 <: sl1) else false;

end;;

EztSubset is now a species combining the interface of Superset and Subset: equality
(of subsets), membership, insertion, removal, as well as the associated proper-
ties®. Equality is also defined using inclusion’. Using these properties and the
definition of =, we can discharge the proof obligations inherited from superset:

proof of eq_refl = by definition of (=) property incl_refl ;
proof of eq_symm = by definition of (=) ;
proof of eq_tran = by definition of (=) property incl_tran ;

Defining = using <: is apparently relevant, and allows us to discharge the asso-
ciated proof obligations. This is not constraining, as we know that thanks to
late binding it is possible to later change the definition of = for example for op-
timisation. But of course such a redefinition would erase the proofs depending
upon the current definition, here eq_refi, eq_symm and eq_tran.

Now, we can already consider that such a redefinition is more than likely to
happen. For example, if we implement subsets as lists, checking equality will
require checking twice inclusion between lists, while comparing directly the two
lists is more efficient. So it is indeed pleasant to be able to discharge so soon the
proof obligations, but it is probably useless — at least in the current form of the
species. Therefore, exactly as we have done when dealing with the definition of
<> of the species Superset in Sub. 4.3, instead of defining = using <:, we capture
the meaning of the definition in a property, which is used to discharge the proof
obligations:

6 As ExtSubset inherits from Superset, it can parametrise Subset, that is it is possible to
consider subsets of a superset, but also subsets of subsets of a superset, and so on.

7= is defined with an if, which is primitive in FOCALIZE; it is also possible to use the
boolean and, denoted & and provided in basics.fcl.

5.2 Extensional Subsets 13

property eq_incl : all s1 s2 : Self,
s1 = s2 <-> s1 <: s2 /\ s2 <: s1 ;

proof of eq_refl = by property eq_incl, incl_refl ;
proof of eq_symm = by property eq_incl ;
proof of eq_tran = by property eq_incl, <ncl_tran ;
theorem mem_eq : all s1 s2 : Self, sl = s2 <->

(all v : Val, v << s1 <-> v << s2)
proof = by property eq_incl, mem_incl ;

Note that here we can delete the definition of = It is trivial to show that
s1<:s2 &9 s2<:s1 indeed satisfies eq_incl, if we decide to use such a definition; on
the other hand, if we provide a more efficient algorithm for = we have just to
check its validity by proving eq_inci, never having to prove again eq_refi, eq_symn
and eq_tran.

5.2.3 A Few Trivial Properties

Having proposed a definition of extensional subsets by enforcing a signature
containing inclusion with some standard properties, we now complete our species
with additional facts that we consider relevant and useful for later uses. We add
the following properties and proofs in the species EztSubset:

theorem incl_empty : all s : Self, empty <: s

proof = by property mem_incl, mem_empty ;

theorem incl_insert : all s : Self, all v : Val, s <: s + v
proof = by property mem_insert, mem_incl ;

theorem incl_remove : all s : Self, all v : Val, s - v <! s
proof = by property mem_remove, mem_incl ;

theorem incl_insert_mem : all s : Self, all v : Val,

v << s -> s + v <: s
proof = by property mem_insert, mem_incl ;

Compiling this new version, ZENON is able to derive a proof for inci_empty,
incl_insert and incl_remove, but not for inci_insert_mem. Before blaming ZENON,
let’s produce by hand a derivation tree of the property inci_insert_mem, giving
a hierarchical vision of the deductive proof. In such a tree the goal is at the
bottom, and using deduction rules we progress toward trivial subgoals at the
top of the tree, possibly branching (for example, to prove AAB one may provide
a proof of A and a proof of B). We got something like:

? Trivial, by assumption
s:Self,vw: Val,ves,v=wkweEs s:Self,vw: Val,veEs,west wes
s:Self,vw: Val,ves,w=vVweskwes
s:Self,vw: Val,ves,weEs+vkFwes
s:Self,v:Val,vesFVYw: Val, wEs+v = weEs
FVs:Self, v:Val, ves = s+vCs

This identifies the difficulty preventing the derivation of the proof by ZENON, as
something is missing in the left branch, the subgoal denoted by the interrogation
mark. Indeed, this subgoal has no reason to be valid: =is an equivalence relation,
but nothing enforces it to be a congruence w.r.t. membership, that is we have
never required ve s, v=w F we€s. To understand why this may not be the case
even in perfectly legitimate cases, remember the comment in Sub. 4.1, about
the encoding of natural values as strings.

14 5 SPECIFYING SUBSETS

Of course, using the symbol = it is clear that our intention was to capture a
form of equality; so we can emphasise this interpretation by adding the congru-
ence property at the beginning of the species EztSubset:

property mem_congr : all vl w2 4n Val, Val!(=)(v1, vw2) ->
(all s in Self, (vl << s) <-> (v2 << s)) ;

Given this property as an additional tip, ZENON indeed succeeds:

theorem incl_insert_mem : all s : Self, all v : Val,
v << § -> s + v <: s
proof = by property mem_congr, mem_insert, mem_tincl ;

5.2.4 Proving Non Trivial Properties
We can also try to prove the following property:

theorem incl_remove_mem : all s : Self, all v : Val,
“(v << s) -> s <: s - W
proof = by property mem_congr, mem_remove, mem_tincl ;

ZENON does not succeeds®, but in this case it is apparently not because of
missing information as a proof by hand appears possible:

Assuming w=w is absurd Trivial, by assumption
s:Self,vw: Val,v€s,wEst w#v s:Self,vw: Val,vgs,wesk wes
s:Self,vw: Val,vgs,weEst w#vANweEs
s:Self,vw: Val,v¢s,west-wes—v
s:Self,v: Val,vgstEYVw: Val, wEs = wes—v
FVs:Self, viVal, vg€s = sCs—wv

It is likely to be a problem of complexity, and human guidance is required.
Two main approaches are possible in FOCALIZE to prove non-trivial prop-
erties using ZENON. The first one consists into introducing progressively lem-
mas, easier to prove, then to use these lemmas to derive the complex results.
Unfortunately, this makes the signature of the species more complex with nu-
merous uninteresting results; in other word, the documentation of the species
can quickly becomes clumsy. The second approach requires user-guided proof
using the FOCALIZE Proof Language (FPL). We adopt the latter, detailing the
important steps of the proof and expecting ZENON to complete it, as follows:

theorem incl_remove_mem : all s : Self, all v : Val,
“(v << s) -> s <: s - W
proof = <1>1 assume s : Self, v : Val, hypothesis Hv : “(v << s),
prove s <: s - w
<2>1 assume w : Val, hypothesis Hw : w << s,
prove w << s - v

<3>1 prove “(Val!(=)(w, v)) /\ w << s
<4>1 prove “(Val!(=)(w, v))
by property mem_congr hypothestis Hv, Huw
<4>2 prove w << s
by hypothesis Hw
<4>f conclude
<3>f ged by property mem_remove step <3>1
<2>f ged by property mem_incl step <2>1
<1>f conclude ;

8Remember that actual results depend upon the computer and the parameters of ZENON.

5.2 Extensional Subsets 15

This script details the proof structure to be followed by ZENON. The label <z>y
indicates the level z and the step y in this level; levels have to be managed con-
sistently, while steps are just names. In essence, to prove a result labelled <z>y,
one can introduce a few lemmas labelled <z+1>y1, ..., <z+1>yn and conclude with
a command <z+1>f ged by step <z+1>yi, ..., <z+1>yn (and additional hypotheses
and properties if required). Note that the step s here is the user notation for
the final step for a given level, but that the compiler does not care about the
value specifying the step as long as it is a unique identifier for the current level.
Similarly, the label <i>f does not mark the proof of the statement <z>z but use
this statement to prove the theorem inci_remove_mem. Take care to use different
step identifiers for a given level, as repeating an identifier will not cause an error
but will mask the associated results and prevent ZENON to conclude.

A goal step is associated with assumptions (keyword assume or hypothesis),
a goal (keyword prove), and possibly the tips to solve the goal (keyword by
completed with definition of, property, hypothesis, step and type). If the goal <z>y
is not provided with tips, then the next steps (at level z+1) provide a strategy
to solve it, the last step of the level z+1 being expected to be a ged with tips (or
a conclude, which is equivalent to a ged by step <z+1>x).

Writing such a script is better done incrementally and interactively. The first
attempt is generally a fully automated proof by ZENON, levels being introduced
gradually to give additional tips and guidances for tricky parts. Let’s develop
such a proof for a new theorem in our species EztSubset that describes a way to
split a subset, first attempting an automated proof:

theorem remove_insert : all s : Self, all v : Val,
v << s -> s = (s -w) +w
proof = by property eq_incl, mem_incl, mem_insert, mem_remove,

mem_congr, Vall!diff_eq ;

ZENON is however unlikely to derive the proof, so we have to give more details:

theorem remove_insert : all s 2n Self, all v in Val,
v << s ->s5 = (s -w) +v
proof = <1>1 assume s : Self, v : Val, hypothesis Hv : v << s,
prove s = (s - w) + v
<2>1 assume w : Val, hypothesis Hw : w << s,
prove w << (s - w) + w
by property mem_insert, mem_remove
<2>2 assume w : Val, hypothesis Hw : w << (s - v) + w,

prove w << s
by property mem_insert, mem_remove, mem_congr,
Valldiff_eq
<2>f ged by property eq_incl, mem_incl step <2>1, <2>2
<1>f ged by step <1>1 ;

The level <1> is associated to the theorem we want to prove, and the level
<2> indicates that to prove the equality, we have to prove the mutual inclusion.
Invoking the compiler, we got a message indicating that no proof has been found
for <2>1 and <2>2; on the other hand the absence of error messages for <1>5 also
indicates that provided a proof for <2>1 and <2>2 ZENON will indeed conclude.
So we provide more details, but only for the failing steps, first <2>1:

<2>1 assume w : Val, hypothesis Hw : w << s,
prove w << (s - w) + w
<3>1 prove “(Val!(=)(w, v)) -> w << s - v
by property mem_remove hypothesis Hw

16 5 SPECIFYING SUBSETS

<3>f ged by property mem_insert step <3>1

The important indication given in step <3>1 is to consider the case w#v; ZENON
is then able to conclude (by also considering the case w = v, for which the
property mem_insert apply) and prove the subgoal <2>1.

Given the same amount of details for <2>2, the proof is finally derived:

<2>2 assume w : Val, hypothesis Hw : w << (s - v) + v,
prove w << s

<3>1 prove Val!(=)(w, v) -> w << s

by property mem_congr hypothestis Hv
<3>2 prove w << s - v -> w << s

by property mem_remove
<3>f ged by property mem_insert hypothesis Hw

step <3>1, <3>2

ZENON provides various indications when failing or succeeding, for example:

e When succeeding, the message unused hypothesis (alternatively un-
used variable) indicates that some of the tips or variables are useless;
note however that useless tips are not always be detected as there is no
guarantee that ZENON will find the most “efficient” proof”.

e When failing, the message exhausted search space without finding a
proof indicates that it is impossible to prove the goal, at least with just
the provided tips. The goal is not derivable from the provided assump-
tions, or may be false.

e When failing, the message could not find a proof within the time
limit (alternatively within the memory size limit or within the in-
ference steps limit) indicates that ZENON has reached the fixed limits
passed as parameters; there may be a proof or not. It is then possible
either to modify the parameters used when invoking ZENON, or to reduce
the number of tips, or to use the FPL to split the proof in subproofs.

To avoid error messages, an alternative solution is to incrementally develop
the proof using the keyword assumed. For example, to prove a goal, you may
consider 3 subgoals and start your proof as follows:

proof = <1>1 assume
prove subgoall
assumed (* TODO *)
<1>2 assume
prove subgoal2
assumed (* TODO *)
<1>3 assume
prove subgoall
assumed (* TODO *)
<1>f comnclude ;

The compiler can be invoked to check that indeed the goal can be proved using
the three subgoals. It is then possible to focus for example on the proof of step
<1>2, etc.

9In exceptional cases, it may also happen that ZENON indicates that a tip is useless, yet is
not able to find a proof without it.

5.3 Finite Subsets 17

Tip 8 (Proofs) Complex proofs are better developed incrementally, from the
general levels to the more detailed ones, and invoking regularly ZENON to check
the validity of the currently developed steps.

5.3 Finite Subsets

We have used inheritance and parametrisation as composition operators be-
tween specifications, describing a species Superset, a species Subset and a species
ExztSubset.

Our aim is to define additional species inheriting from EztSubset, to provide
more and more details, for example indicating that the representation (the con-
crete datatype of the elements of the species) is based on lists and providing the
associated algorithms for the methods. In such a case the inheritance acts as a
refinement operator — that is progress toward an implementation, with concrete
datatypes and algorithms.

The most straightforward approach would be to embed the definition of the
type and operations for lists in the species inheriting from EztSubset. Yet we
choose here to first specify and implement lists in an independent hierarchy of
species, and then to use this hierarchy to refine EztSubset. Beyond the illus-
tration provided in this tutorial, this approach is also fully justifiable, ensuring
reusability of lists in other contexts.

6 Specifying Lists

We edit a new file, named mylist.fcl'®, to describe lists, with two directives:

use
open

"basics" ;;
"superset" ;;

6.1 Co-Lists

We start with a species coList that represents a very abstract form of lists,
possibly infinite. As for Subset, CoList needs to be parametrised by a Superset,
representing the values that are put in a list. We also specify various methods,
as follows:

species CoList(Val is Superset) =

signature nil : Self ;

signature cons Val -> Self -> Self ;
signature isnil : Self -> basics#bool ;
stgnature head : Self -> Val ;
signature tail : Self -> Self ;
property isnil_nil all 1 : Self,

property isnil_cons
property head_cons

property tatil_cons

isnil (1) <-> basics#(=) (1,
all v : Val, all 1 : Self,
~ dsnil (cons (v, 1)) ;

all v : Val, all 1 : Self,

basics#(=) (head (cons (v,

all v : Val, all 1 : Self,

basics#(=) (tail (cons (v,

nil)

1)), w)

), 1)

10The file name list.fcl cannot be used because of name clashes with Coq library.

’

’

’

18 6 SPECIFYING LISTS

property list_dec : all 1 : Self,
isnil (1) ->
bastcs#(=)(l, cons(head(l), tail(l))) ;

end ;;

The ni1 and cons methods are used to build corists, while the isniil, head and tail
methods are used to analyse and destruct them. In the properties, basics#(=)
represents the structural equality, that is the standard equality in both CoQ
and OCAML. The combination of the properties isnil_nil and tist_dec is very
strong, indicating that the concrete implementation of any coList is either nit
or cons, a form of surjectivity of these methods w.r.t. the species.

Note that whereas subsets are things with a decidable membership, coLists
are things defining a succession of values: membership is not specified'! but we
have a function returning the head element of a corist . Another characteristic of
CoLists is that values may appear several time — that is it is possible for example
to have head(l) = head(tail(l)). This illustrates the difference of point of view:
(finite) subsets and (finite) lists can appear pretty similar once implemented,
but the intentions are different (with the only difference being the number of
occurrences of a same element).

The properties listed in corList are sufficient to prove other expected results,
such as for example the injectivity of cons:

theorem cons_left : all 11 12 : Self, all vl w2 : Val,
basics#(=)(cons(vl, 11), cons (w2, 12)) ->
basics#(=)(vl, v2)
proof = <1>1 assume t1 t2 : Self, hl1 h2 : Val,
hypothesis Heq : basics#(=)(cons(hl, t1),
cons (h2, t2)),
prove basics#(=)(hl, h2)
<2>1 prove basics#(=)(head(cons(hl, t1)),
head (cons (h2, t2)))
by hypothesis Hegq
<2>2 prove basics#(=)(hl, head(cons (h2, t2)))
by step <2>1 property head_cons
<2>f ged by step <2>2 property head_cons
<1>f ged by step <1>1 ;

theorem cons_right : all 11 12 : Self, all vl w2 : Val,
basics#(=)(cons(vl, 11), cons(v2, 12)) ->
basics#(=)(11, 12)
proof = <1>1 assume 11 12 : Self, vl v2 : Val,
hypothesis Heq : basics#(=)(cons(v1l, 11),
cons (v2, 12)),
prove basics#(=) (11, 12)
<2>1 prove bastics#(=)(tail(cons(vi, 11)),
tail (cons (v2, 12)))
by hypothesis Hegq
<2>2 prove basics#(=)(11, tail(cons(v2, 12)))
by step <2>1 property tail_cons
<2>f qed by step <2>2 property tatl_cons
<1>f ged by step <1>1 ;

As a final point, one can remark that the read function is specified only for
non-empty list. For an empty list, it has to return a value from vai'2, but

111t may not be possible to browse all elements in a CoList to find a specific value.
12Unless an exception is raised.

6.2 Finite Lists 19

which one? Remember that vai, which represents a collection implementing the
interface of superset, can be empty; in such a case, the list species still contains
the empty list (and only the empty list), and implementing the head function
can be “difficult”.

6.2 Finite Lists

An abstract entity such as coList is not very interesting. We aim at representing
standard lists, as they are defined in OCAML and CoqQ for example, which are
in particular finite (well-founded), even if the species of all lists is infinite.

Finiteness is a tricky concept to capture. Similarly to what is mentioned in
Sub. 5.2, a possible approach is for example to specify a function in Self — N
computing the length of the list provided as a parameter. The existence of such
a function, that has to be total, indeed ensures finiteness of any value of the
species. But how do we specify that natural values are themselves finite? We
are just pushing back the problem to another species.

Another possible approach is to provide a concrete representation which is
itself finite and encodes only finite values. This would correspond, in our case,
into using the inductive definition of lists of CoOQ or OCAML, knowing that such
a definition only describes finite constructions.

But it is also possible indeed to specify finiteness, as illustrated here by
introducing a new species FiniteList:

species FiniteList (Val is Superset) =
inherit CoList (Val) ;

property finite :

all f : (Self -> basics#bool),

f(nil) ->

(all 1 : Self, f(1) -> all v : Val, f(cons(v, 1))) ->
all 1 : Self, f(l1) ;

end ;;

The property induction requires the standard induction principle for lists to be
valid: to prove that a boolean function f is true for any list, it is sufficient to
prove that it is true for the empty list and that if it is true for a list ¢ then it is
also true for the list cons(h,t).

It indeed provides a strategy to prove e.g. f(cons(a, cons(b, cons(c, nil)))):
from f(nil) and f(t)= f(cons(h,t)), one can prove f(cons(c,nil)), using again
f(t)= f(cons(h,t)) he derives f(cons(b, cons(c,nil))), ete.

The property induction is higher-order: it quantifies over all possible decid-
able predicates that can be applied to Seif — that is in fact over all the methods
of the species acting over Seif, as encapsulation prevents manipulations from
outside the species. Note that higher-order properties can be expressed in Fo-
CALIZE, but are not manageable by ZENON; in such a case, a proof in CoQ is
required, as illustrated later.

Why does the property induction prove that lists are finite? Let’s first define
the finiteness predicate finite by two axioms:

finite(nal) Vt, finite(t) = VY h, finite(cons(h,t))

20 7 REFINING LISTS

The first claims that the empty list is finite, and the second that if a list is
finite, then it is still finite after having added an element to it. It is then possible
to prove the theorem VI, finite(l) by applying induction.

Having ensured that FiniteList only describes finite lists, we may also add
the specification of two methods, membership mem and deletion det, whose im-
plementation is likely to have to browse all the elements of a list:

signature mem : Val -> Self -> basics#bool ;
property mem_nil : all v : Val, ~ mem(v, nil) ;
property mem_cons : all v h : Val, all t : Self,
mem (v, cons(h, t)) <->
Vat!(=)(v, h) \/ mem(v, t) ;

signature del : Self -> Val -> Self ;
property mem_del : all v w : Val, all 1 : Self,
mem (v, del(l, w)) <->
T Val!(=)(v, w) /\ mem(v, 1) ;

Note that the property mem_del states that the method det has to remove all
occurrences of values which are equal to its second parameter.

7 Refining Lists

Intuitively, we have specified in the previous section what we need: FiniteList
describes structures to collect finitely many values, with methods to build and
analyse such structures.

In this section, we continue the development by inheritance, but having in
mind a refinement approach: we do not specify anymore the structure itself,
but instead we provide an implementation. Still favouring a very progressive
approach in this tutorial, we refine the species FiniteList by a species EnumList,
with a few algorithms, before providing a complete species InductiveList in which
the representation, that is the concrete datatype used to encode the specified
structures, is defined.

7.1 Enumerable Lists

We create first a new species EnumList describing intuitively lists whose elements
can be enumerated. Editing the file mylist.fcl, we start EnumList as follows:

species EnumList (Val is Superset) =
inherit FiniteList(Val) ;

end ;;

7.1.1 Recursive Membership

The first definition that we provide in EnumList is the membership. Knowing that
any list in Self is finite, we browse the structure using the dedicated methods
to look for a specific value:

let rec mem(v : Val, 1 : Self) =
if dsnil(l)
then false

7.1 Enumerable Lists 21

else (if Val!(=)(v, head(l)) then true else mem(v, tail(l))) ;
(¥ TODO : Termimation Proof *)

The definition for the method mem is recursive, as computing mem(v,1) requires
in some cases to compute mem(v, tail(1)). In a formal development, one has to
prove that recursive functions always terminate to avoid logical inconsistency*®.
In its current version, FOCALIZE offers two ways to deal with such a function:

e The keyword recstruct indicates that the function is recursive, and that
any recursive call is done on a parameter which is structurally “smaller”
than the initial one. It is illustrated later in this tutorial.

e The keyword rec indicates that the function is recursive. In this case a
termination proof is normally added after the definition, for example:

let rec f(...)=... termination proof = by order

With regard to the second case, the full support in FOCALIZE of recursive
functions, with proofs of termination based on measures, orders and so on is still
in development and is not further detailed here. For this reason, the termination
proof is for now admitted and is not required in the code. The FOCALIZE
compiler however warns that the species is potentially unsafe and will generate
a pseudo-termination proof instead, in order to have the whole program however
accepted by CoQ. In some sense, we afford lying to COQ, being optimistic about
the part of the consistency of our program involved by the termination of this
function.

We adopt here the second version, noting that if the property finite is valid,
the function mem terminates. Indeed, a possible interpretation of finite is that
it enforces any list to be build-able (accessible) starting from the list ni1 and
using only the function cons; reciprocally, because of the properties stated in
CoList we know that read and tail act as decomposition operators and allow for
a systematic enumeration of the values of the list.

Having defined mem (and admitted termination), we can prove that this func-
tion has the expected properties as follows:

proof of mem_nil = by definition of mem property isnil_nil ;

proof of mem_cons =
<1>1 assume v h : Val, t : Self, hypothesis H : Val!(=)(v, h),
prove mem(v, cons(h, t))
<2>1 prove Val!(=)(v, head(cons(h, t)))
by property head_cons hypothesis H
<2>f qged by definition of mem property isnil_cons step <2>1
<1>2 assume v h : Val, t : Self, hypothesis H : mem(v, t),
prove mem(v, cons(h, t))
<2>1 prove mem(v, tail(cons(h, t)))
by property tail_cons hypothesis H
<2>f qed by step <2>1 definition of mem property isnil_cons
<1>3 assume v h : Val, t : Self, hypothests H : mem(v, cons(h, t)),
prove Val!(=)(v, h) \/ mem(v, t)
<2>1 hypothesis H2 : ~ Val!(=) (v, h),
prove mem(v, tail(cons(h, t)))
by hypothesis H, H2 definition of mem

3 Consider for example the function let rec f(n in Nat) = f(n): should it be a valid
definition, it could have any return type — and in particular it could be used as a trick to build
a value from an empty type.

22 7 REFINING LISTS

property <snil_cons, head_cons
<2>f qed by step <2>1 property tail_cons
<1>f conclude ;

7.1.2 Recursive Deletion

We can add a second definition in our species, for the deletion method:

let rec del(l : Self, v : Val) =
if isnil (1)
then n<l
else if Val!(=)(v, head(l))
then del (tail(l), w)
else cons(head(l) , del(tail(l), w)) ;
(¥ TODO : Termination Proof *)

Again, termination is admitted in this case.

This second method is very illustrative. Indeed, provided this recursive
definition, it is possible to prove the property mem_del, yet we need to use the
induction principle. That is, as indicated by the property induction’* to prove
V1, P(l) (any list satisfies a property P), it is sufficient to prove P(nil) (the
property is true for the empty list) and that for any list ¢, assuming P(t) (the
property is true for ¢), then for any h, P(cons(h,t)) is provable as well (the
property is still true when adding an element to t).

We can foresee a rather complex proof, as mem_del is a composite statement
and because we have to use induction. To avoid a very long proof we suggest here
a decomposition of mem_del into three subgoals, and further to use the togical et
feature to improve the readability of the proof. Let’s start with a first subgoal:

logical let mdm_(v : Val, w : Val, 1 : Self) =
mem (v, del(l, w)) -> mem(v, 1) ;

theorem mem_del_mem : all v w : Val, all 1 : Self, mdm_ (v, w, 1)

We first define a statement mdm_, using the keyword togical let to introduce
a parametrised statement. Note that we do not claim that such a statement
is valid: we just introduce a name for a complex logical expression. The
theorem mem_dei_mem, on the contrary, claims that mdm_ is always valid.

The first level of the proof of mem_dei_mem is as follows:

proof = <1>1 assume v w : Val,
prove mdm_ (v, w, nil)
assumed (* TODO *)
<1>2 assume v w : Val, t : Self,
hypothesis Hind : mdm_ (v, w, t), assume h : Val,
prove mdm_ (v, w, cons(h, t))
assumed (* TODO *)
<1>3 assume v w : Val,
prove mdm_ (v, w, nil)->
(all t : Self, mdm_ (v, w, t) ->
all h : Val, mdm_ (v, w, cons(h, t))) ->
all 1 : Self, mdm_ (v, w, 1)
assumed (* Standard induction principle *)
<1>f conclude ;

141n fact, we need a slightly more generic form as we need to quantify over all predicates.

7.1 Enumerable Lists 23

Thanks to the use of the mdm_ name, we can see clearly that the step <1z>1 is of
the form P(nil), and the step <1>2 of the the form P(t) = P(cons(h,t)). They
have to be proved but for the current stage we just assume these results.

The label <1>3 states very clearly the induction principle, instantiated for
the property we are trying to prove, that is mam_. We also assume this result,
but in this case because the current version of ZENON is not able to manage
higher-order declarations such as induction — a COQ proof is still possible, but
here we decide to just accept this result as a fact to prevent running in too
complex notions out of the scope of this tutorial . The step <z>f concludes.

We can check that this proof structure is valid by invoking the compiler,
before pursuing the development. For the step <i1>1, it is straightforward:

proof = <1>1 assume v w : Val,
prove mdm_ (v, w, nil)
by definition of mdm_, del property isnil_nil

Note that we need to make visible the definition of the statement mdm_.

For the step <1>2, it is a little longer. The idea is that the definition of the
del function is visible, and can be analysed by case reasoning — for example, an
if construct is dealt with by assuming that the condition is true in a first case,
and false in a second case. The resulting proof is as follows:

<1>2 assume v w : Val, t : Self,
hypothesis Hind : mdm_ (v, w, t), assume h : Val,
prove mdm_ (v, w, cons(h, t))
<2>1 hypothesis H1 : mem(v, del (cons(h, t), w)),
prove mem(v, cons(h, t))
<3>1 hypothesis H2 : Val!(=)(v, h),
prove mem(v, cons(h, t))
by property mem_cons hypothesis H2
<3>2 hypothesis H2 : ~ Val!(=)(v, h),
H3 : Val!(=)(w, h),
prove mem(v, cons(h, t))
<4>1 prove ~ isnil(cons(h, t))
by property isnil_cons
<4>2 prove Val!(=)(w, head(cons(h, t)))
by property head_cons hypothesis H3
<4>3 prove mem(v, del(tail(cons(h, t)), w))
by definition of del step <4>1, <4>2 hypothesis HI
<4>4 prove mem(v, del(t, w))
by step <4>3 property tail_cons
<4>f qed by step <4>4 hypothesis Hind definition of mdm_
property mem_cons
<3>3 hypothesis H2 : ~ Val!(=)(v, h),
H3 : ~ Val!(=)(w, h),
prove mem(v, cons(h, t))
<4>1 prove ~ isnil(cons(h, t))
by property isntil_cons
<4>2 prove ~ Val!(=)(w, head(cons(h, t)))
by property head_cons hypothesis H3
<4>3 prove mem(v, cons(head(cons(h, t)),
del (tail (cons(h, t)), w)))
by definition of del step <4>1, <4>2 hypothesis HI
<4>4 prove mem(v, cons(h, del(t, w)))
by step <4>3 property head_cons, tail_cons
<4>5 prove mem(v, del(t, w))
by step <4>4 property mem_cons hypothesis H2
<4>f qed by step <4>5 hypothesis Hind definition of mdm_
property mem_cons

24 7 REFINING LISTS

<3>f conclude
<2>f qged by step <2>1 definition of mdm_

This proof is simple but rather long, essentially because we have to explicit a lot
of transformations such as cons(head(cons(h,t)), tail(cons(h,t))) = cons(h,t).
Remember indeed that cons, head and tail are not yet defined, but are just
described by properties. Once these functions implemented, those simplifica-
tions can be the result of computations, with shorter proofs; yet having only
an axiomatised form of these functions for now, we have to provide some guid-
ance. In this case, a more straightforward approach (jumping directly to an
implementation by inductive lists) is likely to be simpler.
A similar approach is chosen for the second subgoal:

logical let mde_(v : Val, w : Val, 1 : Self) =
mem (v, del(l, w)) -> ~ Val!(=)(v, w) ;

theorem mem_del_eq : all v w : Val, all 1 : Self, mde_ (v, w, 1)
proof = <1>1 assume v w : Val,
prove mde_ (v, w, nil)
by definition of mde_, del property isnil_nil, mem_nil
<1>2 assume v w : Val, t : Self,
hypothesis Hind : mde_ (v, w, t), assume h : Val,
prove mde_ (v, w, cons(h, t))
<2>1 hypothesis H1 : mem(v, del(cons(h, t), w)),
prove ~ Val!(=)(v, w)
<3>1 hypothesis H2 : Val!(=)(w, h),
prove ~ Val!(=)(v, w)
<4>1 prove mem(v, del(t, w))
<6>1 prove ~ isnil(cons(h, t))
by property isnil_cons
<6>2 prove Val!(=)(w, head(cons(h, t)))
by property head_cons hypothesis H2
<5>3 prove mem(v, del(tail(cons(h, t)), w))
by hypothesis H1 definition of del step <5>1, <5>2
<6>f qed by step <5>3 property tail_cons
<4>f qed by step <4>1 hypothesis Hind definition of mde_
<3>2 hypothesis H2 : ~ Val!(=)(w, h),
prove ~ Val!(=)(v, w)
<4>1 hypothesis H3 : Val!(=)(v, h),
prove ~ Val!(=) (v, w)
by hypothesis H2, H3
property Vall!eq_symm, Vall!eq_tran

<4>2 hypothesis H3 : ~ Val!(=)(v, h),
prove ~ Val!(=) (v, w)
<5>1 prove ~ isnil(cons(h, t))

by property isnil_cons
<6>2 prove ~ Val!(=)(w, head(cons(h, t)))
by property head_cons hypothesis H2
<5>3 prove mem(v, cons(head(cons(h, t)),
del (tail (cons(h, t)), w)))
by hypothesis H1 definition of del step <5>1, <5>2
<6>4 prove mem(v, cons(h, del(t, w)))
by step <5>3 property head_cons, tail_cons
<5>5 prove mem(v, del(t, w))
by step <5>4 property mem_cons hypothesis H3
<6>f ged by step <5>5 hypothesis Hind definition of mde_
<4>f conclude
<3>f conclude
<2>f ged by definition of mde_ step <2>1
<1>3 assume v w : Val,
prove mde_ (v, w, nil) ->

7.2 Inductive Lists 25

(all t : Self, mde_ (v, w, t) ->
all h : Val, mde_ (v, w, cons(h, t))) ->
all 1 : Self, mde_ (v, w, 1)
assumed (* Standard induction principle *)
<1>f conclude ;

The third subgoal is left as an exercise to the reader; note that we have
slightly adapted the statement of mem_del_inv to ease the proof by induction:

theorem mem_del_inv : all v w : Val, ~ Val!(=)(v, w) ->
all 1 : Self, mem(v, 1) -> mem(v, del(l, w))
proof = assumed (* TODO *) ;

Finally we prove the global result

proof of mem_del = by property mem_del_mem, mem_del_eq, mem_del_inv
definition of mdm_, mde_ ;

7.2 Inductive Lists

It is now time to define the species InductiveList which refines, or more precisely
implements, the species EnumList and therefore the species FiniteList and CoList.

7.2.1 Non Empty Supersets

First, taking into account the comment at the end of Sub. 6.1, we append to
the file superset.fcl the definition of a new species Supersetiitness as follows:

species SupersetWitness =
inherit Superset ;
signature witness : Self ;

end ;;

The witness constant ensures that a Supersetiitness is never empty. More specif-
ically, it is used in our case as the default value returned e.g. when the head
function is applied to the empty list. Do not forget to recompile superset.fcl
once edited.

7.2.2 A Type for Lists

Back to the file mylist.fcl, we now define the representation of the species
as being a list ; yet rather than using the predefined iist type provided in
basics.fcl, we introduce our own definition for the sake of illustration. Type
definitions are allowed in FOCALIZE, but only at top level, that is outside a
species:

type mylist(’a) = | FNitl | FCons (’a, mylist(’a)) ;; ‘

Such an inductive definition , called a “sum type”, claims that the type only
contains values build from the constructors (surjectivity), and that two values
of this type are equal if and only if they are structurally equal (injectivity);
well-foundation (finiteness of the constructs) is also ensured.

26 7 REFINING LISTS

Tip 9 [Syntaz] Type definitions are only authorised at top-level.

This is also a polymorphic type: ‘a represents a type variable parametrisa-
tion our definition, mytist (int) or mylist(char) being examples of types obtained
by instantiating this variable. Note that the FOCALIZE syntax requires sum
type constructor identifiers to start by an uppercase character.

Tip 10 /[Syntaz] Sum type constructor identifiers have to start with an uppercase
character.

7.2.3 Inductive Lists

Provided this type, it is possible to introduce associated top level definitions
and theorems (but not declarations and properties, in the absence of inheri-
tance mechanism). In this tutorial, however, we stick to the species vision and
include all the definitions and theorems in a new species. Starting with trivial
definitions, the mdList species, to be inserted in the file mylist.fcl, is as follows:

species IndList(Val is SupersetWitness) =
inherit FiniteList(Val) ;
representation = mylist(Val) ;

let nil = #FN<il ;
let cons(h : Val, t : Self) = #FCons(h, t) ;

let isnil(l : Self) = match 1 with | #FNil -> true | _ -> false ;

let head(l : Self) =

match 1 with | #FCons(h, _) -> h | _ -> Vall!witness ;

let tail(l : Self) = match 1 with | #FComs(_, t) -> t | _ -> #FNil ;
end ;;

The keyword representation is used to associate a concrete datatype to the
species; once the representation is defined it cannot be changed at inheritance.
Note that we parametrise mylist with val (that is its representation).

For the functions isnil, head and tasl we use pattern matching (as in OCAML
and CoQ). In FOCALIZE pattern matching has to be complete and without
redundancy; in other words, all cases should be addressed, and patterns included
in previous patterns are not allowed.

7.2.4 Higher-Order Proofs

We have now a definition for all the declared methods, but we are still lacking the
proofs of the properties. Let’s first address the higher-order induction property;
as mentioned, ZENON is not able to tackle it. The most simple approach is to
admit this property as an axiom:

proof of finite = assumed (¥ Requires a Coq proof *) ;

The keyword assumed is the logical backdoor in FOCALIZE: the proof is not
provided, but the property is accepted as true. It is recommended to associate,
in such a case, a comment justifying why no proof is given. That is, it is possible
to introduce axioms in a FOCALIZE development, but those axioms are traced
and documented.

7.2 Inductive Lists 27

The alternative approach is to provide the CoqQ proof. It is beyond the scope
of this tutorial to describe how to build such a proof; ideally the use of CoQ
scripts should be limited to the standard library of FOCALIZE, and only expert
users should try to use CoQ. We just provide in the rest of this paragraph a
sketch of the process, that can be skipped by most readers.

The first step is to identify the relevant properties and definitions to derive
the proof — exactly as when ZENON is used. This is required to make these
definitions and properties visible from the proof context. It is then possible to
build a template for the CoQ proof, as follows:

proof of finite = coq proof definition of nil, cons

{% *} ;

The keywords cog proof indicates that the proof is attached and has to be checked
directly by Coq, without assistance of ZENON. It is followed by the tips, in this
case we need to make sure that the definition of the methods nit and cons are
visible, as we will in fact reason on the inductive definition of mytist and on
the constructors ¥i1 and cons. These tips will not be used by CoQ but serves
FOCALIZE to be aware that the following proof (that it cannot analyse) will
depend on the listed functions, properties and theorems. During dependencies
computation, this allows to invalidate the proof in children species who will
have redefined some of these listed dependencies (or inductively, dependencies
on these dependencies). The CoQ script is then expected to follow, between {x
and #} here it is empty, just marking a hole that we will fill later using C0Q.

It is then possible to compile the file with the command focalizec mylist.fcl;
the compilation of course fails when CoOQ checks the proof file mylist.v. Using
CoQ (and providing the path to the FOCALIZE and ZENON libraries, that are
prompted at compilation time) the proof can then be completed by hand, and
copied into the FOCALIZE source file:

proof of finite = coq proof definition of nil, cons
{* Proof.
intros.

unfold abst_cons, abst_nil, cons, nil in *.
induction 1.
trivial.
apply HO; apply IHL.
Qed. *} ;

A new compilation of mylist.fcl now succeeds.

7.2.5 Proofs on Inductive Types

Other properties related to inductive definitions can be done in COQ, or can be
assumed. We choose for this tutorial the second option:

proof of isnil_nil = assumed (* TODO *) ;
proof of isnil_cons = assumed (* TODO *) ;
proof of head_cons = assumed (* TODO *) ;
proof of tatl_coms = assumed (¥ TODO *) ;

proof of list_dec = assumed (* TODO *) ;

28 8 A COMPLETE IMPLEMENTATION

Note however that ZENON is currently evolving to provide some support for
such results, by allowing for a new form of tip, type, when the very definition of
a type provides the required information. The expected use is as follows:

proof of disnil_mnil = by type mylist definition of nil, isnil ;

It can be experimentally tested, but only at top level for now.

7.2.6 Structural Recursion

In the species 1mdrist, we redefine the methods mem and det as follows:

let mem(v : Val, 1 : Self) =

let recstruct mem_(l : Self) =

match 1 with

| #FNil -> false

| #FCons (h, t) -> <f Val!(=)(v, h) then true else mem_ (t)
in mem_ (1) ;

proof of mem_nil = assumed (* TODO *) ;
proof of mem_cons = assumed (* TODO *) ;

let recstruct del(l : Self, v : Val) =
match 1 with
| #FNil -> #FNil
| #FCons(h, t) -> if Val!(=)(v, h)
then del(t, w)
else #FCons(h, del(t, w)) ;

proof of mem_del = assumed (* TODO *) ;

In this case, we are using the keyword recstruct to indicate a structurally recur-
sive function, that is recursive calls on subterms of the parameter — termination
then being trivially true. For such functions, however, the decreasing parame-
ter has to be the first one; that’s why we are using a tet in construct, as the
declaration of mem puts the list as the second parameter.

Such redefinitions, of course, cause the deletion of the associated proofs for
mem_nil, mem_cons, mem_del. Yet the use of pattern matching on an inductive type
leads to simpler proofs of these properties. For this tutorial, we just admit these
properties.

Note that the keyword recstruct may become deprecated in future versions of
FoCALIZE, as it is an ad hoc adaptation to deal with a simple form of recursion.

8 A Complete Implementation

We are now at the final stage of the development, in which we will define col-
lections. A collection is a frozen implementation obtained by abstracting the
concrete representation of a complete species, that is a species which has a con-
crete datatype representation, a definition for every signature and a proof for
every property.

Provided what has been developed up to now, there are still two approaches
to implement subsets as lists. In both case, we need a collection implementing
a complete species, but this species can either:

e inherits from both EztSubset and IndList.

8.1 Integers 29

e inherits from EztSubset and be parametrised by IndList.

These two approaches have similarities — for example, in both cases the mem-
bership method << of subsets is implemented as the membership method mem of
lists — but they represent very different intentions.

In the first case, using multiple inheritance, we claim that any subset is also
a list. So the methods of both interfaces can be used to manipulate these values;
a set can be created with two elements, then it can be considered as a list in
which we exchange the position of these elements.

In the second case, using parametrisation, we use lists to represent subsets,
but emphasising that lists and subsets are different in nature: manipulating a
subset can only be done using the methods of the subset interface — and it is
possible to ensure that some “dangerous” methods defined for lists are not used
when dealing with subsets.

We discuss in the rest of this section of the strategy to build an executable
program using the implementation of subsets with the second approach, parametri-
sation by lists. As a collection is never parametrised, and always implement one
and only one complete species whose parameters are instantiated by collections,
we have to follow a strict discipline: to create a collection from a given species,
we have to create a collection for its parameters. That is creating a subset col-
lection requires creating a list collection, which itself requires creating a superset
collection.

We edit a new file, named main.fcl, and include the required information
with the use and open directives:

use "basics" ;;
open "superset" ;;
open "subset" ;;
open "mylist" ;;

The rest of the section deals with a superset collection, a list collection and a
subset collection, that are implementing complete species.

8.1 Integers
8.1.1 Adding Inputs and Outputs to Supersets

We can implement collections with the currently defined interfaces, unfortu-
nately this would not be very demonstrative in the absence of HMI. As a first
mandatory step toward a program we therefore create a new species with meth-
ods to import or export values:

species PrintParseSuperset =

tnherit SupersetWitness ;

signature print : Self -> basics#unit ;
stgnature parse : basics#string -> Self ;
end ;;

Of course, it is possible to add, at any point of the development, a print and a
parse methods to any species — as illustrated later in this section for subsets. But
the definition of a PrintParseSpecies interface is required. Indeed, to implement

30 8 A COMPLETE IMPLEMENTATION

for example the print method for a subset, one has to be able to rely on the print
method of its superset parameter, that is to ensure that such method exists in
the interface.

8.1.2 A Complete Integer Species

Provided the specification PrintParseSuperset, we develop a complete species rep-
resenting machine integers:

spectes Int =

inhertit PrintParseSuperset ;

representation = basics#int ;

let (=)(z : Self, y : Self) = basics#(=)(z, y) ;
proof of eq_refl = by definition of (=) ;

proof of eq_symm = by definition of (=) ;

proof of eq_tran = by definition of (=) ;

let witness = 0 ;

let print(s : Self) = basics#print_int(s) ;

let parse(s : basics#string) = basics#int_of_string(s) ;

end ;;

In this species, the representation is defined, all the declared methods are de-
fined'® and all the properties are proved.

8.1.3 An Integer Collection

The species Int being complete, it can be transformed into a collection:

collection Int_Coll = implement Int; end ;;

Int now denotes a form of abstract data type, whose representation is hidden.
It is not possible to inherit from Int, or to modify otherwise its structure; of
course, it is still possible to use Int as a parameter.

Tip 11 (Implementation) Collections are the final entities of FOCALIZE de-
velopments and represent executable implementations. They cannot be parametrised
or inherited from, but they can be used as parameters for other species.

8.2 Lists if Integers

As we want to create a collection from the parametrised species EztSubset, we
need first to create a collection for the parameter itself, that is a collection
representing the species IndList:

collection IntList_Coll = implement IndList(Int_Coll) ; end ;;

5For =it is possible to use the int equality, denoted =0z in FOCALIZE, but ZENON does
not know much about it and cannot prove eq_refl, eq_symm and eq_tran.

8.3 Subsets 31

Remember that a collection cannot be parametrised, and that it has to imple-
ment a species whose all formal parameters are instantiated by a collection, as
it is the case here.

Tip 12 (Implementation) A collection can only implements a complete species
whose parameters are instantiated by collections.

8.3 Subsets
8.3.1 A Complete Subset Species

Having chosen to implement subsets as a species parametrised by lists, it is
straightforward to complete EztSubset in a new species ListSubset. We just pro-
vide some proofs, assuming most of the properties, and we add a print method
for subsets:

species ListSubset(Val ¢s PrintParseSuperset, Sup is IndList (Val)) =
inherit ExtSubset (Val) ;
representation = Sup ;
let (<<)(v : Val, s : Self) = Sup!/mem(v, s) ;

let empty = Sup!nil ;
proof of mem_empty = by definition of (<<), empty
property Sup!mem_nil ;

tet (+)(s : Self, v : Val) =
if v << s then s else Sup!cons(v, s) ;

proof of mem_insert =

<1>1 assume vl ve : Val, s : Self, hypothesis H1 : wl << s + w2,
prove Val!(=)(vl, v2) \/ vl << s
by definition of (<<), (+)

property Sup!mem_cons hypothesis H1

<1>2 assume vl v2 : Val, s : Self,
hypothests H1 : Val!(=)(v1, v2),
prove vl << s + w2
assumed (* TODO *)

<1>3 assume vl w2 : Val, s : Self, hypothesis H1 : vl << s,
prove vl << s + w2
assumed (* TODO *)

<1>f conclude ;

let (-)(s : Self, v : Val) = Supl!del(s, v) ;
proof of mem_remove = assumed (* TODO *) ;
proof of mem_congr = assumed (* TODO *) ;

let rec (<:)(s1 : Self, s2 : Self) =
if Sup!isnil(s1)
then true
else if Sup!/head(s1) << s2
then Sup!tatl(s1) <: s2
else false ;
(* TODO : Termination Proof *)

proof of mem_incl = assumed (* TODO *) ;

32 8 A COMPLETE IMPLEMENTATION

let rec (=)(s1 : Self, s2 : Self) =

if Sup!isnil(s1)

then Sup!isnil (s2)

else let hl = Sup!head(sl) and h2 = Sup'head(s2) in
if bastcs#(&)(hl << s2, h2 << s1)
then ((s1 - h1) - h2) = ((s2 - h1) - h2)
else false ;

(* TODO : Termination Proof *)

proof of eq_incl = assumed (* TODO *) ;

let print (s : Self) =
let z = basics#print_string ("{") in
let rec print_(s : Self)=
if Sup!isnil(s)
then basics#print_string ("}")
else let y = Val!print(Sup!head(s)) in print_(s - Sup!head(s))
in print_(s) ;

end ;;

8.3.2 A Subset Collection

We can finally implement ListSubset in a collection IntSubset_Coil as follows:

collection IntSubset_Coll =
implement ListSubset (Int_Coll, IntList_Coll) ;

end ;;

8.4 Using Subsets
8.4.1 Top Level Use

We have now an implementation of finite subsets of integers, whose concrete
representation is hidden. To use this implementation, we can for example use the
OCAML files produced by FOCALIZE as proved libraries for OCAML programs.
But it is also possible to use directly the various methods of any collection from
the FOCALIZE top level, as follows:

basics#print_string ("\n") ;;
basics#print_string ("Subsets of Integers :\n") ;;
basics#print_string ("--------------——————- \n")

let subsetl = IntSubset_Coll!empty ;;
basics#print_string ("Creating empty set : ") ;;
IntSubset_Coll!print (subsetl) ;;
basics#print_string ("\n") ;;

let subset2 = IntSubset_Coll!(+)(subsetl, Int_Coll!parse("1")) ;;
basics#print_string ("Inserting 1 : ") ;;

IntSubset_Coll!print (subset2) ;;

basics#print_string ("\n") ;;

let subset3 = IntSubset_Coll!(+)(subset2, Int_Coll!parse("2")) ;;
basics#print_string ("Inserting 2 : ") ;;
IntSubset_Coll!print (subset3) ;;

33

basics#print_string ("\n") ;;

let subset4 = IntSubset_Coll!(+)(subset3, Int_Coll!parse("3")) ;;
basics#print_string ("Inserting 3 : ") ;;

IntSubset_Coll!print (subsetd) ;;

basics#print_string ("\n") ;;

let subsets = IntSubset_Coll!(+)(subsets, Int_Coll!parse("2")) ;;
basics#print_string ("Inserting 2 : ") ;;

IntSubset_Coll!print (subsets5) ;;

basics#print_string ("\n") ;;

let subset6 = IntSubset_Coll!(-)(subset5, Int_Coll!parse("2")) ;;
bastcs#print_string ("Removing 2 : ") ;;

IntSubset_Coll!print (subset6) ;;

basics#print_string ("\n") ;;

let subset7 = IntSubset_Coll!(-)(subset6, Int_Coll!parse("3")) ;;
basics#print_string ("Removing 3 : ") ;;

IntSubset_Coll!print (subset7) ;;

basics#print_string ("\n") ;;

8.4.2 Producing an Executable

Once all FOCALIZE files have been compiled by focalizec, there is still a final
stage of compilation required to produce an executable, an OCAML compilation,
with the following command?!:
ocamlc -1 /focalize/focalizec/src/stdlib/
-0 main
ml_builtins.cmo basics.cmo
superset.cmo subset.cmo mylist.cmo main.cmo
This produces an executable file named main, which can be executed:
Creating empty set: {}
Inserting 1: {1}
Inserting 2: {21}
Inserting 3: {321}
Inserting 2: {321}
Removing 2: {31}
Removing 3: {1}

9 Some Remarks

We discuss here more theoretical aspects, considering extensions and alterna-
tives to our development and their consequences.

9.1 Over-specifications

We have considered, at the end of Sub. 5.1, the opportunity to declare additional
methods and properties for the species Subset. Our concern was not to enrich
the specification of subset to enforces inhabitants of the species to be finite, but
to provide more features — recognising that it may causes unnecessary burden
for the developer if these features are not used.

16Modulo the path for the stdlib, and the use of the correct version of the OCAML compiler.

34 9 SOME REMARKS

For example, one could ask for the union, the intersection or the comple-
ment operations. If the two formers seems to be straightforward, the situation
of the latter if more complex. Indeed the complement, for any subset S, returns
the subset of elements of the superset not belonging to S. This is a perfectly
valid requirement, and as we will see later in this section, we can even implement
directly the species subset enriched with this operation. Yet the complement op-
eration would also be part of all the other inheriting species, including EctSubset,
ListSubset. This would clearly cause some difficulties, preventing the parameter
val to be infinite, as in such a case for S a finite subset, the complement of S
would not be finite. In other words, provided an infinite superset, complement
would not be an internal operation on finite subsets.

It is not always easy to identify well in advance this type of traps, and a re-
engineering of the inheritance tree can be required when facing similar problems
during development. Yet to make such difficulties less likely to happen as well as
to ease possible modifications of the species structure, a good recommendation
is to multiply the inheritance steps and branches, introducing very gradually
new methods and properties. Remember that early branching is not a problem
in a system such as FOCALIZE, as it supports multiple inheritance: having for
example species EztSubset and SubsetComplement (inheriting from Subset and en-
riched with the complement operation) does not prevent a later definition of a
species CoSubset inheriting from both if we are able to define an appropriate con-
crete representation. Although deep and multiple inheritance can seem difficult
to understand, we must not forget that the compiler is able to provide traces
of methods provenance which greatly help understanding in case of a complex
development.

9.2 Closure Reasoning’s

It is worth mentioning that a species defines an interface which can be completed
later, therefore closure reasoning does not apply for such an interface.

Taking the example of the species Subset, we only provide a few methods to
build subsets: the empty subset, the insertion and the removal of an element.
Using only these methods it is not possible to build an infinite subset. But that
does not mean that the species Subset only describes finite subsets — nothing
prevent the developer to introduce through inheritance more powerful methods
such as a complement operation. The fact that the species Subset only requires
methods building finite subsets actually ensures that it is indeed valid as an
ancestor for the species representing finite subsets.

For the same reason, species invariants have to be handled with care. It is
possible to write a fully defined species, with methods such that all returned
values of the species are of a specific form (for example sorted lists). It is however
important to note that inheritance may, either by creation of new functions or
by redefinition of existing ones, break such invariants. The only mechanism
provided in FOCALI1ZE for preventing such modification is to freeze a complete
species by transforming it into a collection.

9.3 Observability Considerations

We consider here the creation of a new species inheriting from EztSubset, pro-
viding a choice operator. This is a standard notion in set theory: the choice

9.3 Observability Considerations 35

operator returns a value belonging to a subset, provided this subset is not empty.
One of the interest of such an operator in our development is to define a method
for enumerating all elements of a subset, as indicated by the theorem enumerate:

spectes EztSubsetChc (Val <s Superset) =
inherit ExtSubset (Val) ;

signature chc : Self -> Val ;
property mem_chc : all s : Self, “(s = empty) -> chc(s) << s ;

theorem enumerate : all s : Self,
s = empty \/ s = (s - chec(s)) + chc(s)
proof = by property mem_choice, remove_insert ;
end; ;

The choice operator has interesting properties. Indeed, it is able to extract
a value from any non empty subset, but we have no indication about which
value will be returned provided the subset passed as a parameter contains at
least two of them. In fact, whereas the choice operator has to be implemented
as a FOCALIZE function at some point in the development, it may not be a
function in the sense of set theory. Indeed, provided S; and Sy two sets that
are extensionally equal, i.e. containing the same elements, nothing enforces to
have chc(S1) = che(S2). Of course, we can prevent those strange behaviours by
adding a property requiring extensional equality to be a congruence w.r.t. chc:

property chc_congr : all s1 s2 : Self,
s1 = s2 -> Val!(=)(chc(s1), chc(s2)) ;

But this deserves additional consideration, as it may be inadequate. Indeed,
any implementation of our subset species has to be parametrised by a collection
having an interface compatible with Superset. That is, values in our subsets can
be of any sort, as soon as we can define an equivalence relation (representing a
form of equality). The point is that even if other operations are available for the
provided collection, such as for example a comparison, they will not be visible
(usable) from the species EztSubsetChe; as a consequence, it may not be possible
to satisfy the property che_congr.

Consider an implementation of EztSubsetChe using lists: thanks to = it is
possible to build injective lists (no repetition of elements), but without a com-
parison operator there is no way to sort such lists. So for example the set {1,2}
has two possible implementations, cons(1, cons(2, nil)) and cons(2, cons(1, nil)).
Whereas we can distinguish them using the structural equality basics#(=),
there is no way to characterise a good one and a bad one. If we now try to
implement che, we have to exhibit a function that provided a non-empty list,
returns an element of this list. Remember that beyond an equality, we have no
operation on values, that is for example we cannot code ckhe such that it always
returns the smallest element of the list. The only criteria which is available is
the position of the value in the list, and che can for example return the head
value. This definition complies with mem_chc but not with chc_congr.

It is possible to provide an implementation of EztSubsetChoice with the prop-
erty che_congr, but we need to slightly make our inheritance tree more complex.
For example, we can define a species OrderedSuperset inheriting from Superset,
with a total order between values, and a species NormalisedSubset as follows:

36 9 SOME REMARKS

species NormalisedSubset (Val is OrderedSuperset) =
inherits ExtSubsetChc (Val) ;

property eq_congr : all s1 s2 : Self,
sl = s2 -> bastcs#(=)(s1, s2) ;

end ;;

With this approach, any collection implementing orderedSubset of course imple-
ments EztSubsetChc as well, but is parametrised by a collection providing a total
order; using this order, a normal form for subsets as well as a chc operator can
be defined, ensuring that the property chc_congr is indeed satisfied, for example
returning the smallest element of the subset.

9.4 Functional Representations

For the sake of illustration, we consider in this subsection a totally different
implementation of subsets based on a functional representation. Our intent
is not to advice to use such type of code — which is generally considered as
inefficient — but rather to emphasise the freedom offered to a developer facing
an abstract specification, provided this specification is appropriate.

As mentioned in Sub. 5.1, a subset is characterised by the values it con-
tains, in other words a subset is characterised by its membership function. It is
therefore possible to represent a subset by this very function, FOCALIZE being
a functional (higher order) language. One of the interest of this representation
is that we can represent infinite subsets: the function deciding if a natural value
is even or not defines the subset of even values. The complement operation is
also naturally supported, the difficulties identified in Sub. 9.1 being irrelevant
here. The description is straightforward:

species SubsetFun(Val is Superset) =
inhertt Subset (Val) ;
representation = Val -> basics#bool ;
let (<<)(v : Val, s : Self) = s(v) ;

let empty = let empty_in(v : Val) = false in empty_in ;
proof of mem_empty = assumed (* TODO *) ;

let (+)(s : Self, v : Val) =
1f v << s

then s
else let inner(w : Val) = <f Val!(=)(w, v) then true else w << s
in inner
proof of mem_insert = assumed (* TODO *) ;

let (-)(s : Self, v : Val) =
if v << s
then let inner(w : Val) = 4f Val!(=)(w, v) then false else w << g
in inner
else s;
proof of mem_remove = assumed (* TODO *) ;

let comp(s : Self) =
let inner(v : Val) = basics#(~~)(v << s) in inner ;

9.4 Functional Representations 37

end ;;

Being higher order this encoding is not supported by ZENON, so the properties
have to be assumed or proved in COQ; yet this is just a technical concern. More
fundamentally, SubsetFun is not an extensional representation — it is clearly not
compatible with the interface of EztSubset. Inclusion or equality between subsets
cannot be implemented in the general case. It is also interesting to note that the
choice operator, described in Sub. 9.3, is not implementable as well. Finally, a
property such as mem_congr, defined in Par. 5.2.3, is true but not provable because
once we have represented a subset by a function, we cannot later analyse this
function to check its structure.

38 A INHERITANCE GRAPH

A Inheritance Graph

Inheritance in our development is as follows:

ColList Superset Subset
FiniteList Superset Witness ———=> ExtSubset FunSubset
EnumlList PrintParseSuperset ———=> ListSubset

IndList Int IntSubset_Coll

If B inherits of A then an arrow is drawn from A to B. Complete species
are underlined, and collections are boxed. Note that parametrisation is not
represented here to avoid over-complexification.

We have slightly amended the inheritance relation, compared to what is de-
scribed in this tutorial. For example, the species EztSubset inherits not from
the species Superset as in Par. 5.2.2, but from the species Supersetwitness in-
troduced in Par. 7.2.1. Indeed, we have noted that whatever his parameters
is, the species Superset is never empty, something characteristic of the species
SupersetWitness. This requires of course to add the definition iet witness = empty.
Similarly, the species ListSubset now inherits from the species PrintParseSuperset;
it indeed offers a print method, and the parse method can be implemented for
example by the stub iet parse(s : basics#string) = empty.

Once fine tuned, our development is more consistent and allows for easy
extensions. This is illustrated in the final code given at annex B. It includes a
new collection implementing subsets of subsets of integers at a minimal cost (2
collections, 6 lines of code); executing this program, we get:

Subsets of Integers : Subsets of Subsets of Integers :
Creating empty set : {} Creating empty set : {}
Inserting 1 : {1} Inserting {} : {{}}

Inserting 2 : {21} Inserting {1} : {{1}{}}
Inserting 3 : {321} Inserting {21} : {{21}{1}{}}
Inserting 2 : {321} Removing {1} : {{21}{}}
Removing 2 : {31} Creating {12} : {12}

Removing 3 : {1} Inserting {12} : {{21}{}}

B Full Sources

B.1 superset.fcl

use "basics" ;;

species Superset =
signature (=) : Self -> Self -> bastics#bool ;

property eq_refl : all =z Self, z =z ;

property eq_symm : all = y Self, z =y ->y ==z
property eq_tran : all =z y z : Self, ¢ =y ->y =2 -> = 2
end ;;
species SupersetWitness =

inhertt Superset ;

signature witness : Self ;

end ;;
species PrintParseSuperset =

inhertt SupersetWitness ;

signature print : Self -> basics#unit ;

signature parse : basics#string -> Self ;

end ;;

B.2 subset.fcl

use "basics" ;;
open "superset" ;;

species Subset(Val is Superset) =
signature (<<) : Val -> Self -> basics#bool ;
signature empty : Self ;
property mem_empty : all v : Val, ~(v << empty) ;
signature (+) : Self -> Val -> Self ;
property mem_insert : all vl w2 : Val, all s : Self,
vl << s + w2 <-> (Val!(=) (w1, vw2) \/ vl << s) ;
signature (-) : Self -> Val -> Self ;
property mem_remove : all vl w2 : Val, all s : Self,
vl << s - w2 <> ("(Val!(=)(v1, vw2)) /\ vl << s) ;
end ;;

species ExtSubset (Val is Superset) =
inherit SupersetWitness, Subset(Val);
property mem_congr : all vl w2 : Val, Val!(=)(v1, v2) ->
(all s : Self, (vl << s) <-> (v2 << s5)) ;
signature (<:) : Self -> Self -> basics#bool ;
property mem_incl : all s1 s2 : Self,

sl <: s2 <-> all v : Val, v << s1 -> v << s2 ;
theorem incl_refl : all s : Self, s <: s
proof = by property mem_incl ;
theorem incl_tran : all s1 s2 s3 : Self, sl <: s2 -> s2 <: s3 -> s1 <: s3

proof = by property mem_incl ;

property eq_incl : all sl s2 : Self, sl = s2 <-> s1 <: s2 /\ s2 <: sl ;
proof of eq_refl = by property eq_incl, incl_refl ;
proof of eq_symm = by property eq_incl ;

proof of eq_tran = by property eq_incl, incl_tran ;
theorem mem_eq : all s1 s2 : Self, s1 = s2 <->
(all v : Val, v << s1 <-> v << s2)
proof = by property eq_incl, mem_incl ;
theorem tncl_empty : all s : Self, empty <: s
proof = by property mem_incl, mem_empty ;
theorem incl_insert : all s : Self, all v : Val, s <: s + v
proof = by property mem_insert, mem_incl ;
theorem incl_remove : all s : Self, all v : Val, s - v <: s
proof = by property mem_remove, mem_incl ;
theorem incl_insert_mem : all s : Self, all v : Val,
v << 8§ -> s + v <: s
proof = by property mem_congr, mem_insert, mem_incl ;

theorem incl_remove_mem : all s : Self, all v : Val,

40 B FULL SOURCES

“(v << 8) -> s <:'s - w
proof = <1>1 assume s : Self, v : Val, hypothesis Hv : “(v << s),
prove s <: s - w
<2>1 assume w : Val, hypothesis Hw : w << s,
prove w << s - v

<3>1 prove “(Val!(=)(w, v)) /\ w << s
<4>1 prove “(Val!(=)(w, v))
by property mem_congr hypothesis Hv, Huw
<4>2 prove w << s
by hypothesis Huw
<4>f conclude
<3>f ged by property mem_remove step <3>1
<2>f qed by property mem_incl step <2>1
<1>f conclude ;

theorem remove_insert : all s : Self, all v : Val,
v << s => s = (s -w) +w
proof = <1>1 assume s : Self, v : Val, hypothesis Hv : v << s,
prove s = (s - v) + v
<2>1 assume w : Val, hypothesis Hw : w << s,
prove w << (s - v) + v
<3>1 prove “(Val!(=)(w, w)) -> w << s - v

by property mem_remove hypothesis Huw
<3>f ged by property mem_insert step <3>1
<2>2 assume w : Val, hypothesis Hw : w << (s - w) + v,
prove w << s
<3>1 prove Val!(=)(w, v) -> w << s
by property mem_congr hypothesis Hv
<3>2 prove w << s - v -> w << s
by property mem_remove
<3>f ged by property mem_insert hypothesis Hw step <3>1, <3>2
<2>f qed by property eq_incl, mem_tincl step <2>1, <2>2
<1>f qed by step <1>1 ;
let witness = empty;
end ;;

species SubsetFun(Val is Superset) =

inherit Subset (Val) ;

representation = Val -> basics#bool ;

tet (<<)(v : Val, s : Self) = s(v) ;

let empty = let empty_in(v : Val) = false in empty_in ;
proof of mem_empty = assumed (* TODO *) ;

let (+)(s : Self, v : Val) =

if v << s

then s
else let inner(w : Val) = if Val!(=)(w, v) then true else w << s
in inner ;
proof of mem_insert = assumed (* TODO *) ;

tet (-)(s : Self, v : Val) =
if v << s
then let tmner(w : Val) = 4f Val!(=)(w, v) then false else w << s
in inner

else s;

proof of mem_remove = assumed (* TODO *) ;

let comp(s : Self) = let inner(v : Val) = basics#(7)(v << s) in inner ;
end ;;

B.3 mylist.fcl

use "bastcs" ;;
open "superset” ;;

species CoList(Val is Superset) =

stgnature nil : Self ;
signature cons : Val -> Self -> Self ;
signature tsnil : Self -> basics#bool ;

signature head : Self -> Val ;
signature tail : Self -> Self ;
property isnil_nil : all 1 : Self, isnil(l) <-> basics#(=)(l, nil) ;
property isnil_cons : all v : Val, all 1 : Self, ~ 4snil(cons(v, 1)) ;
property head_cons : all v : Val, all 1 : Self,

basics#(=)(head(cons (v, 1)), v) ;

B.3 mylist.fcl

property tail_cons : all v : Val, all 1 : Self,
basics#(=)(tail(cons (v, 1)), 1) ;
property list_dec : all 1 : Self,

“ 4isnil (1) -> basics#(=)(l, cons(head(l), tail(1l)))

theorem cons_left : all 11 12 : Self, all vl w2 : Val,
basics#(=)(cons(vl, 11), cons(v2, 12)) ->
basics#(=)(v1l, v2)

proof = <1>1 assume t1 t2 : Self, hl h2 : Val,

hypothesis Heq : basics#(=)(cons(hil, t1), cons(h2, t2)),

prove basics#(=)(hl, h2)

<2>1 prove basics#(=)(head(cons(hl, t1)), head(cons(h2, t2)))

by hypothesis Hegq
<2>2 prove basics#(=)(hl, head(cons(h2, t2)))
by step <2>1 property head_cons
<2>f ged by step <2>2 property head_cons
<1>f qed by step <1>1 ;
theorem cons_right : all 11 12 : Self, all vl w2 : Val,
basics#(=)(cons(vl, 11), cons (w2, 12)) ->
basics#(=) (11, 12)
proof = <1>1 assume 11 12 : Self, vl w2 : Val,
hypothesis Heq : basics#(=)(cons(vl, 11), cons(v2,
prove basics#(=)(11, 12)

12)),

<2>1 prove basics#(=)(tail (cons(v1l, 11)), tail(cons(v2, 12)))

by hypothesis Hegq
<2>2 prove basics#(=)(11, tail(cons(v2, 12)))
by step <2>1 property tail_cons
<2>f ged by step <2>2 property tail_cons
<1>f qed by step <1>1 ;
end ;;

species FiniteList (Val is Superset) =

inherit CoList (Val) ;

property finite

all f : (Self -> basics#bool),

f(nil) ->

(all 1 : Self, f(l1) -> all v : Val, f(cons(v, 1))) ->

all 1 : Self, f(l) ;

signature mem : Val -> Self -> basics#bool ;

property mem_nil : all v : Val, ~ mem(v, nil) ;
property mem_cons : all v h : Val, all t : Self,

mem (v, cons(h, t)) <-> Val!(=)(v, h) \/ mem(v, t)

signature del : Self -> Val -> Self ;
property mem_del : all v w : Val, all 1 : Self,

mem (v, del(l, w)) <-> ~ Val!(=)(v, w) /\ mem(v, 1)

end ;;

species EnumList(Val s Superset) =
inherit FiniteList (Val) ;
let rec mem(v : Val, 1 : Self) =
if dsnil(l)
then false
else (if Val!(=)(v, head(l)) then true else mem(v, tail(l)))
(* TODO : Termination Proof *)
proof of mem_nil = by definition of mem property isnil_nil
proof of mem_cons =
<1>1 assume v h : Val, t : Self, hypothesis H : Val!(=)(v, h),
prove mem(v, cons(h, t))
<2>1 prove Val!(=)(v, head(cons(h, t)))
by property head_cons hypothesis H
<2>f qed by definition of mem property isnil_cons step <2>1
<1>2 assume v h : Val, t : Self, hypothesis H : mem(v, t),
prove mem(v, cons(h, t))
<2>1 prove mem(v, tail(cons(h, t)))
by property tail_cons hypothesis H
<2>f qed by step <2>1 definition of mem property isnil_cons

s

;

<1>3 assume v h : Val, t : Self, hypothesis H : mem(v, cons(h, t)),

prove Val!(=)(v, h) \/ mem(v, t)
<2>1 hypothesis H2 : ~ Val!(=)(v, h),
prove mem(v, tail(cons(h, t)))
by hypothesis H, H2 definition of mem property isnil_cons,

<2>f qed by step <2>1 property tail_cons
<1>f conclude ;
let rec del(l : Self, v : Val) =
if dsnil(l)

head_cons

5

41

42 B FULL SOURCES

then nil
else if Val!(=)(v, head(l))
then del (tail (l), w)
else cons(head(l) , del(tail(l), v)) ;
(* TODO : Termination Proof %)
logical let mdm_(v : Val, w : Val, 1 : Self) =
mem (v, del(l, w)) -> mem(v, 1) ;
theorem mem_del_mem : all v w : Val, all 1 : Self, mdm_ (v, w, 1)
proof = <1>1 assume v w : Val,
prove mdm_ (v, w, nil)
by definition of mdm_, del property isnil_n<l
<1>2 assume v w : Val, t : Self, hypothesis Hind : mdm_(v, w, t),
assume h : Val,
prove mdm_ (v, w, cons(h, t))
<2>1 hypothesis H1 : mem(v, del(cons(h, t), w)),
prove mem(v, cons(h, t))
<3>1 hypothesis H2 : Val!(=)(v, h),
prove mem(v, cons(h, t))
by property mem_cons hypothesis H2
<3>2 hypothesis H2 : ~ Val!(=)(v, h), H3 : Val!(=)(w, h),
prove mem(v, cons(h, t))
<4>1 prove ~ isnil(cons(h, t))
by property isnil_cons
<4>2 prove Val!(=)(w, head(cons(h, t)))
by property head_cons hypothesis H3
<4>3 prove mem(v, del(tail (cons(h, t)), w))
by definition of del step <4>1, <4>2 hypothesis HlI
<4>4 prove mem(v, del(t, w))
by step <4>3 property tatil_cons
<4>f qed by step <4>4 hypothesis Hind definition of mdm_
property mem_cons
<3>3 hypothesis H2 : ~ Val!(=)(v, h), H3 : ~ Val!(=)(w, k),
prove mem(v, cons(h, t))
<4>1 prove ~ 4isnil(cons(h, t))
by property tsnil_cons
<4>2 prove ~ Val!(=)(w, head(cons(h, t)))
by property head_cons hypothesis H3
<4>3 prove mem(v, cons(head(cons(h, t)),
del (tail(cons(h, t)), w)))
by definition of del step <4>1, <4>2 hypothesis HI
<4>4 prove mem(v, cons(h, del(t, w)))
by step <4>3 property head_cons, tail_cons
<4>5 prove mem(v, del(t, w))
by step <4>4 property mem_cons hypothesis H2
<4>f qged by step <4>5 hypothesis Hind definition of mdm_
property mem_cons
<3>f conclude
<2>f qed by step <2>1 definition of mdm_
<1>3 assume v w : Val,
prove mdm_ (v, w, nil)->
(all t : Self, mdm_ (v, w, t) ->
all h : Val, mdm_ (v, w, cons(h, t))) ->
all 1 : Self, mdm_ (v, w, 1)
assumed (* Standard induction principle *)
<1>f conclude ;
logical let mde_(v : Val, w : Val, 1 : Self) =
mem (v, del(l, w)) -> ~ Val!(=)(v, w) ;
theorem mem_del_eq : all v w : Val, all 1 : Self, mde_ (v, w, 1)
proof = <1>1 assume v w : Val,
prove mde_ (v, w, nil)
by definition of mde_, del property isnil_nil, mem_nil
<1>2 assume v w : Val, t : Self, hypothesis Hind : mde_ (v, w, t),
assume h : Val,
prove mde_ (v, w, cons(h, t))
<2>1 hypothesis H1 : mem(v, del(cons(h, t), w)),
prove ~ Val!(=) (v, w)
<3>1 hypothesis H2 : Val!(=)(w, h),
prove ~ Val!(=)(v, w)
<4>1 prove mem(v, del(t, w))
<5>1 prove ~ isnil(cons(h, t))
by property isnil_cons
<5>2 prove Val!(=)(w, head(cons(h, t)))
by property head_cons hypothesis H2
<56>3 prove mem(v, del(tail (cons(h, t)), w))

B.3 mylist.fcl 43

by hypothestis H1 definition of del step <5>1, <5>2
<6>f qed by step <5>3 property tail_cons
<4>f qed by step <4>1 hypothesis Hind definition of mde_
<3>2 hypothesis H2 : ~ Val!(=)(w, h),
prove ~ Val!(=) (v, w)
<4>1 hypothesis H3 : Val!(=)(v, h),
prove ~ Val!(=) (v, w)
by hypothesis H2, H3 property Vall!eq_symm, Val!eq_tran

<4>2 hypothesis H3 : ~ Val!(=)(v, h),
prove ~ Val!(=) (v, w)
<56>1 prove ~ idsnil(cons(h, t))

by property isnil_cons
<5>2 prove ~ Val!(=)(w, head(cons(h, t)))
by property head_cons hypothesis H2
<5>3 prove mem(v, cons(head(cons(h, t)),
del (tail (cons(h, t)), w)))
by hypothesis H1 definition of del step <5>1, <5>2
<6>4 prove mem(v, cons(h, del(t, w)))
by step <5>3 property head_cons, tail_cons
<5>5 prove mem(v, del(t, w))
by step <5>4 property mem_cons hypothesis H3
<6>f qed by step <5>5 hypothesis Hind definition of mde_
<4>f conclude
<3>f conclude
<2>f qed by definition of mde_ step <2>1
<1>3 assume v w : Val,
prove mde_ (v, w, nil) ->
(all t : Self, mde_ (v, w, t) ->
all h : Val, mde_ (v, w, cons(h, t))) ->
all 1 : Self, mde_ (v, w, 1)
assumed (* Standard induction principle *)
<1>f conclude ;
theorem mem_del_inv : all v w : Val, ~ Val!(=)(v, w) ->
all 1 : Self, mem(v, 1) -> mem(v, del(l, w))
proof = assumed (¥ TODO *) ;
proof of mem_del = by property mem_del_mem, mem_del_eq, mem_del_inv
definition of mdm_, mde_ ;
end ;;

type mylist(’a) = | FNil | FCons (’a, mylist(’a)) ;;

species IndList(Val %s SupersetWitness) =
inherit FiniteList (Val) ;

representation = mylist(Val) ;

let nil = #FNil ;

let cons(h : Val, t : Self) = #FCons(h, t) ;

let 4snil(l : Self) = match 1 with | #FNil -> true | _ -> false ;
let head(l : Self) = match 1 with | #FCons(h, _) -> h | _ -> Vall!witness ;
let tail(l : Self) = match 1 with | #FCons(_, t) -> t | _ -> #FNil ;
proof of finite = coq proof definition of nil, cons
{* Proof.
intros.

unfold abst_cons, abst_mnil, coms, nil in *.
induction 1.

trivial.
apply HO; apply IHL.
Qed. *} ;
proof of disnil_nil = assumed (¥ TODO *) ;
proof of 4smil_cons = assumed (* TODO *) ;

proof of head_cons = assumed (* TODO *) ;
proof of tatl_cons = assumed (¥ TODO *) ;
proof of list_dec = assumed (* TODO *) ;
let mem(v : Val, 1 : Self) =
let recstruct mem_(l : Self) =
match 1 with
| #FNil -> false
| #FCons(h, t) -> 4f Val!(=)(v, h) then true else mem_ (t)
in mem_ (1) ;
proof of mem_nil = assumed (* TODO *) ;
proof of mem_cons = assumed (* TODO *) ;
let recstruct del(l : Self, v : Val) =
match 1 with
| #FNil -> #FN<il
| #FCons(h, t) -> 4f Val!(=)(v, h)

44 B FULL SOURCES

then del(t, wv)

else #FCons(h, del(t, wv)) ;
proof of mem_del = assumed (* TODO *) ;
end ;;

B.4 main.fcl

use "basics" ;;
open "superset" ;;
open "subset" ;;
open "mylist" ;;

species Int =

inherit PrintParseSuperset ;

representation = basics#int ;

let (=)(xz : Self, y : Self) = basics#(=)(z, y) ;
proof of eq_refl = by definition of (=) ;

proof of eq_symm = by definition of (=) ;

proof of eq_tran = by definition of (=) ;

let witness = 0 ;

let print(s : Self) = basics#print_int(s) ;

let parse(s : basics#string) = basics#int_of_string(s) ;
end ;;
collection Int_Coll = <mplement Int; end ;;
collection IntList_Coll = implement IndList(Int_Coll) ; end ;;

species ListSubset (Val %is PrintParseSuperset, Sup is IndList(Val)) =
inherit EztSubset (Val), PrintParseSuperset ;
representation = Sup ;
ltet (<<)(v : Val, s : Self) = Sup!mem(v, s) ;
let empty = Sup!nil ;
proof of mem_empty = by definition of (<<), empty property Sup!/mem_nil ;
let (+)(s : Self, v : Val) = if v << s then s else Sup!/cons(v, s) ;
proof of mem_insert =
<1>1 assume vl v2 : Val, s : Self, hypothesis H1 : wl << s + w2,
prove Val!(=)(vl, v2) \/ vl << s
by definition of (<<), (+)
property Sup!mem_cons hypothesis HI1
<1>2 assume vl w2 : Val, s : Self, hypothesis H1 : Val!(=)(vi, v2),
prove vl << s + w2
assumed (* TODO *)
<1>3 assume vl v2 : Val, s : Self, hypothesis H1 : wl << s,
prove vl << s + w2
assumed (* TODO *)
<1>f conclude ;
let (-)(s : Self, v : Val) = Sup!del(s, v) ;
proof of mem_remove = assumed (* TODO *) ;
proof of mem_congr = assumed (% TODO *) ;
let rec (<:)(s1 : Self, s2 : Self) =
if Sup!isnil(s1)
then true
else if Sup!/head(s1) << s2
then Sup!/tail (s1) <: s2
else false ;
(* TODO : Termination Proof *)
proof of mem_incl = assumed (* TODO *) ;
let rec (=)(s1 : Self, s2 : Self) =
if Sup!isnil(s1)
then Sup!/isnil (s2)
else let hl = Sup'head(sl) and h2 = Sup!head(s2) in
if basics#(&8)(hl << s2, h2 << s1)
then ((s1 - h1) - h2) = ((s2 - h1) - h2)
else false ;
(* TODO : Termination Proof %)
proof of eq_incl = assumed (* TODO *) ;
let print(s : Self) =
let z = basics#print_string ("{") in
let rec print_(s : Self)=
if Sup!isnil(s)

B.4 main.fcl

then basics#print_string ("}")
else let y = Val!print (Sup!'head(s)) in print_(s - Sup!/head(s))
in print_(s) ;

let parse(s : basics#string) = empty;
let witness = empty ;
end ;;

collection IntSubset_Coll =
implement ListSubset (Int_Coll, IntList_Coll) ;
end ;;

collection IntSubsetList_Coll = implement IndList(IntSubset_Coll) ;

collection IntSubset2_Coll =
implement ListSubset (IntSubset_Coll, IntSubsetList_Coll) ;
end ;;

basics#print_string ("\n") ;;
basics#print_string ("Subsets of Integers :\n") ;;
basics#print_string ("-—-----——-----———---——- \n") ;;

let subsetl = IntSubset_Coll!empty ;;
basics#print_string ("Creating empty set : ") ;;
IntSubset_Coll!/print (subsetl) ;;
basics#print_string ("\n") ;;

let subset2 = IntSubset_Coll!(+)(subsetl, Int_Coll!parse("1")) ;;
basics#print_string ("Inserting 1 : ") ;;

IntSubset_Coll!/print (subset2) ;;

basics#print_string ("\n") ;;

let subset3 = IntSubset_Coll!(+)(subset2, Int_Coll!parse("2")) ;;
basics#print_string ("Inserting 2 : ") ;;

IntSubset_Coll!print (subset3) ;;

basics#print_string ("\n") ;;

let subset4 = IntSubset_Coll!(+)(subset3, Int_Coll!parse("3")) ;;
basics#print_string ("Inserting 3 : ") ;;

IntSubset_Coll!print (subsets) ;;

basics#print_string ("\n") ;;

let subsets = IntSubset_Coll!(+)(subset4, Int_Coll!parse("2")) ;;
basics#print_string ("Inserting 2 : ") ;;

IntSubset_Coll!print (subset5) ;;

basics#print_string ("\n") ;;

let subset6 = IntSubset_Coll!(-)(subset5, Int_Coll!parse("2")) ;;

basics#print_string ("Removing 2 : ") ;;
IntSubset_Coll!print (subset6) ;;
basics#print_string ("\n") ;;

let subset7 = IntSubset_Coll!(-)(subset6, Int_Coll!parse("3")) ;;

basics#print_string ("Removing 3 : ") ;;
IntSubset_Coll!print (subset?) ;;
basics#print_string ("\n") ;;

basics#print_string ("\n") ;;
basics#print_string ("Subsets of Subsets of Integers :\n") ;;
basics#print_string ("———----——------——----— - \n") ;5

let powerl = IntSubset2_Coll!empty ;;
basics#print_string ("Creating empty set : ") ;;
IntSubset2_Coll!print (powerl) ;;
basics#print_string ("\n") ;;

let power2 = IntSubset2_Coll!(+)(powerl, subsetl) ;;
basics#print_string ("Inserting {} : ") ;;
IntSubset2_Coll!print (power2) ;;
basics#print_string ("\n") ;;

let power3 = IntSubset2_Coll!(+)(power2, subset2) ;;
basics#print_string ("Inserting {1} : ") ;;
IntSubset2_Coll!print (power3) ;;
basics#print_string ("\n") ;;

45

46 B FULL SOURCES

let power4 = IntSubset2_Coll!(+)(power3, subset3) ;;
basics#print_string ("Inserting {21} : ") ;;
IntSubset2_Coll!print (powers) ;;
basics#print_string ("\n") ;;

let power5 = IntSubset2_Coll!(-)(powers, subset2) ;;
basics#print_string ("Removing {1} : ") ;;
IntSubset2_Coll!print (power5) ;;
basics#print_string ("\n") ;;

let subset8 =
IntSubset_Coll!(+)
(IntSubset_Coll!(+)(IntSubset_Coll!empty, Int_Coll!parse("2")),
Int_Coll!parse("1"));;
basics#print_string ("Creating {12} : ") ;;
IntSubset_Coll!print (subset8) ;;
basics#print_string ("\n") ;;

let power6 = IntSubset2_Coll!(+)(power5, subset8) ;;
basics#print_string ("Inserting {12} : ") ;;
IntSubset2_Coll!print (power6) ;;

basics#print_string ("\n") ;;

basics#print_string ("\n") ;;

