Contents

1 Changes in Virgile’s PhD

2 Code generation model
2.1 SPECIES . . . . e e e
2.2 Collection . . . . . . . e e
2.3 Toplevelvalues . . . . . . . e
2.4 Topleveltheorems . . . . . . . . . e e e e
25 Typedefinitions . . . . . . .
2.6 Externaldefinitions . . . . . . . . . e

3 Compiler sources architecture

3.1 focalizeCsSOUrCEtree . . . . . . . . . 0 e e e
3.2 Othertools . . . . . . . e
3.3 Passesand direCtories . . . . . . . . . . e e e e e e e

4 Lexing/ parsing
A1 LeXiNg . . . . e e
4.2 Parsing . . .. e e

5 The environments structure
5.1 Thegenericenvironment . . . . . . . . . . . . e e e e
5.2 Scoping environment . . . . . . .. e
5.3 Typingenvironment . . . . . . . .. e e e
5.4 OCaml code generation environment . . . . . . . . . . e e e e
5.5 Cogcode generation environment . . . . . . . ... e e

6 Scoping

7 Type-checking
7.1 Typeinference . . . . . . . . e e e e e
7.2 Environment and structures for the typingpass . . . . . .o o oo
7.3 Typing aspeciesdefinition . . . . . . . .. e e
7.4 Typing acollectiondefinition . . . . . . . . . e
7.5 Typingatypedefinition . . . . . . . . e e
7.6 Allothertoplevel constructs . . . . . . . . . . . . e e

8 Intermediate form
8.1 “Computing abstractions” . . . . . . . . . . .. e



9 OCaml code generation
9.1 Species generation
9.2 Collection generation

10 Coq code generation
11 Doc generation
12 focalizedep

13 Cadavers in the cupboard

101
101
105

107

109

111

113



Chapter 1

Changes in Virgile’'s PhD

1.0.1 Type unification (1)

Section 3.3, definition 9, page 27.
Rule [SELF1] should bemng(t, Self, t) = Self, id
Rule [SELF2] should being(t, t, Self) = Self, id

1.0.2 Type unification (2)

Is the “preference obelf ” (see above) rule really needed ? It seems it can lead to ebsdprincipal type. C.f. the
section 13.

1.0.3 Normal form algorithm

Section 3.7.1, page 36.

In the algorithm, line 10 should b&V; «— ((¢;, © ¢),X).

In the algorithm, line 13 should b&¥V, «— (W5, ¢).

In the running text, page 37, line 8, the same modificationtioesione to get “on garde,;, © ¢ dansW, ...".

1.0.4 Typing rules for parametrised species

Section 3.8, figure 3.2, page 43.
Rule [COL-PRM] should be:
C,OFe’:a C+C: Ala,C),Q F species S(prms) inherits e, . .. eff =®,...9, : tg

C, 0+ species S(C is e, prms) inherits e, . .. eff =®,...90,: (Cisa)tg

1.0.5 Dependency on the carrier

Section 3.9.4, definition 28, page 50.

The definition should be: “Soit une expressigrsi une sous-expression dex-te-typefait référence a (“contient”)
Self , il y a une decl-dépendance vis-a-vis du type support.”.

In English: "Let’s havee an expression, if a sub-expressionedfastypemakes reference to (“contains”)Self ,
then there is a decl-dependency on the carrier”.

This is more accurate since an expression having type— Self does not have typBelf , but when we state
its type,Self occurs in the type and must be bound somewhere (and the epehdency on the carrier is just there
for this purpose).



1.0.6 Dependencies in a species

Section 3.9.5, definition 31, page 53.
Lines 3 and 4 should be:

Vi<n,y €lvilsUlys1Js

Fay= Hyitiz1..m tel queyy Og x1,yn Os 22,5 <n, y; € | Yjt1 Js

de
T <S€

1.0.7 Parameters used by a method

Section 3.9.5, definition 66, page 124.
To understand the rul§BODY], [TYPE] , [DEF-DEP] , [UNIVERS] and[PRM], it should be stated that implicitly
the paramete€’,, has the form:

Cpis/in Ty

1.0.8 Instanciation of species parameters

Section 3.9.5, definition 67, page 124.
95 =25, ESL) =Cram,...,Cp, lph=e1...
Second rule should be: ! (5n) = (C1 - bs * o) h = Oy
Instg(z) = {Instc, (ep)c,eus, ()}

1.0.9 Translation example inOCami

Section 8.2, page 152.

The code sample shown and the explanation abi@atte at the top of the page is wrong or at least not complete.
In effect, if presented this way, we don’t know from whereate comes. In fact, we must used the one coming
from the species we “implement”. So a qualified notation {in@dule name + function name) is required.

1.0.10 Dependencies of a method
Section 8.3.1, definition 72, page 153.

Missing notion of order

All along the rules, dependencies are stated as a set of némfest this is incomplete since there can be dependencies
between these names for a collection parameter. So theybaustdered according to their own dependencies (i.e.
according to def-dependencies inside the hosting spda¢sstthat collection parameter).

For instance:

species S1 ... =
let eq = ...
theoremthl : all x in .. leq (..) ..
proof = .. ;
end ;;

species S2 (P is S1) .. =
theoremth2 : all x in P, ..
proof = .. property Plthl ..
end ;;

In S1, thl decl-depends oaq. In S2, methodth2 has a dependencies on its collection parameterethods.
Especially, onP!thl , and completions rules require to aBtkq (in order to express the “type” dhl , i.e. its

4



statement). Since iR, thl decl-depends oaq, when making\-liftings to abstracP’s methods in the dependencies
on methods of parameters®1, we must ensure thay is \-filter beforethl otherwiseeq will be unbound irthl .
This order is given be the dependencies of the methods itisédgpecies used as collection parameter.

Missing rule

The rules [DEF-DEP], [UNIVERS] and [PRM] can add dependesain parameters after rule [BODY] and [TYPES].
However, the added methods can have decl-dependencigseiidtypes”. An this is not taken into account by the
current set of rules. To circumvent, a new rule is added, [DU) (better name to be found, but the day | thought to
this rule, | was very poor in naming schem@g This rule intuitively takes the all dependencies foundB@DY],
[TYPES], [DEF-DEP], [UNIVERS] and [PRM] as initial set anceiforms a fixpoint by adding for each method
of dependencies, its decl-dependencies coming from ige"tyi.e. ML-like type for computational methods, and
statement for logical methods). Of course, when trackirgrdependencies of a method, we address the method body
in its species. But this species is a collection parametehefore adding the found method to the set of dependencies
on collection parameters of the analysed species, we mpisiceein the method, occurrencesS#lf by the by the
species parameter from where this method comes.

Missing substitution in rule [PRM]

First, the rulgPRM] needs further explanations to understand its presentdtiotust first be understood that in this
rule, the specieS has the following form:

species S(Cp is ...,Cy is §'(C)))

Moreover, implicitlyi,, is the interface o€, . And C,, is a valid implementation of the paramet@ (having the
interfacei;,) of the species’.

Now, the rule says:

z € Deps(S, Cp)[z]
iy =8"(e1,...,Cp,...)  ES)=(Cl.i,...,C) is iy, .. ) y € Deps(S’,C})|7]

y € Deps(S, Cp)|x]
This rule forget to show that we must instantiate the fornalameter ofS’ by the effective argument provided.
In effect, in the bodies/types of the methodsSif (those methods the conclusion adds to the currently cordpute
dependencies set), parameters are tho& phot our current ones we use to instantiate the formal on&s dfTo
prevent those o’ to remain in the expressions and be unbound, we do the inatamchere.

Inconsistency between inherited/re-computed dependeres

When computing dependencies on collection parameters otlzoohgt is never clearly stated about how to compute
them when the method is inherited.

One way is to compute from scratch the dependencies fromadbg bf the inherited method. The second is
to recover the inherited dependencies and to perform sutisti of formal parameters of the inherited species by
effective arguments used in theherits species expression.

This last process is in fact very difficult due to the amountnéérmation recorded in the parameters/methods
descriptions (moreover, making severe usage of sharing).

So we really prefer to use the first method that naturallytertfee data-structures and information to record. The
only problem is that during inheritance, some dependenmiesent in the original inherited species may “disappear”
due to parameters instantiations.

For example:

In fact, the problem is that when we compute dependencieslettion parameters, in the case where we inherit
from a species having 2 parameters instantiated by the smumant, we get into a fusion of the methods we depend
on.

But, the method generator coming from the originally inteetimethod expects to be applied to as many arguments
thatlambda-lifting were created.



speci es Simple =
signature equal : Self -> Self -> bool
end ;;

species Couple (S is Simple, T is Simple) =
signature morph: S -> T,
I et equiv(el, e2) = Tlequal(morph(el), !morph(e2))
end ;;

species Bug (G is Simple) inherits Couple (G, G) =
theorem theo : true
proof =
<1>1
prove true
<2>f ged assuned {* *}
<1>2 ged by definition of equiv
end ;;

In the above examples and T are instantiated both b§ So we get 1 dependency @irep (the carrier) and
1 onGlequal although the method generator expects 3 arguments : @@ and oneGlequal because in
Couple was abstracted on the carrier@fthe carrier ofT andTlequal . Because we work with sets to represent
dependencies, twidB!rep is...1Gl!rep . And same thing foG'!equal .

We described the problem here via a dependency on the cduuieits is the same thing with dependencies on
other methods: we would just need to makgiiv depending for instance @®lequal andS!equal

The solution is to make a mix between the two initial solusioRirst, we compute the abstractions due to depen-
dencies on collection parameters in the body of the method orherited. This way, we naturally let data-structures
be created and sharing what they need. In fact, this gives'sieeteton” of dependencies where sonftings may
have disappeared compared to the number of required in ttegiied species. But, we know that all the methods
involved in the dependencies are present, may be not witighenumber of occurrences. Then we take the depen-
dencies scheme of tin inherited method and we rebuild a fieyaéddencies structure by replacing in the inherited one
all the occurrences of dependencies on the formal pararbgttire corresponding effective argument (used during
instanciation) ones. This way, we just “remap” the computependencies on the inherited ones’ scheme.

In the example above, this means that we compuiuig that we have dependencies Gitrep andGlequal .
We look back in the inherite@ouple dependencies, we firdlrep , Slrep andT!equal . So we construct the
final dependencies &rep[S<-G] S'rep[S<-G] andT!equal[T<-G]

Dependencies on collection parameters for record type

Computing real dependencies on collection parametersfmrd type is not clearly stated. FOICaml, it is quite
trivial since we don’t have any logical methods, hence weaday have dependencies via “types”. FoCaml, the
situation is more tricky. In fact, due to logical methodse(thems and properties), dependencies may more complex,
involving types and methods found in the expressions fogrttie logical statements.

The same kind of problems arises than above (missing rutegxta rule is needed (the [DIDOU] rule), but the
only difference is that since the record type only shows ég/p the initial set of dependencies to close is the one
obtained by the rule [TYPE].

Itis not yet formally clear that computing dependenciesiiegl by the record type is complete. Experiment seems
to show that yes, but further theorical investigations $thbe performed.

Taking a wider set of dependencies (for instance the samethiose computed method per method, all grouped in
a single big union) would lead to extra arguments fbljfting) to the record type that would not be used. This is un
wanted for 2 reasons: efficiency/readability of the gerselabde, and more importantly, the risk to have variables not
bound to a type, infered as polymorphics, and for wiidy would say that it “can’t infer a type for this placeholder”.

6



1.0.11 Coq code generation model
The problem

The initial Coq code generation model appeared to have a strong weaknessowq it was strongly different from
theOCaml one. Let’s understand the weakness on a simple examplee prbblem is:

speci es IntModel inherits Basic_object =

representati on = basics #int

let one in Self 1;

| et modulo (a, b) if true then a else (if false then b el se one) ;
end ;;

speci es Me (Naturals is IntModel, n i n Naturals) =
representation = Naturals

theorem lookatme : all x in Self, basics #base _eq (n, Naturals! one)
proof : assumed {* *} ;

| et reduce (x in Naturals) in Self = Naturals'modulo (x, n)
end ;;

The generate€oq code follows (at least, for the interesting part of our peoh) i.e. thdookatme theorem):

We see that there is®ection  for the specied/le The theorenfookatme isin a neste®ection (Chapter
is a synonym foiSection in Coq).

It depends omne coming fromNatural (which is a collection parameter), andiemvhich is an entity parameter.

Hence, naturally, we will need to abstract these 3 thinge ( n and the typeéNatural ). This really performed
by the 4Variable s at the beginning of th8ection lookatme . Hence, looking at the type of thtbeorem
generator Me__lookatme insidetheSection lookatme , we see thatis has type:
since theSection is not closed, because th@riable s are not yet abstracted by tGeq’s Section mechanism.

We now close th&ection |, then naturally theheorem generatorMe___lookatme turns having the type:

Great ! theVariable s have been abstracted for us®gq. Now, the idea is that this generator will be used to
create a collection like:

Let’s continue and close théhapter (~ a Section ) of speciesMe And then, here the theorem generator
Me__lookatme turns unfortunately to have type:

We see that we have an exiMaturals T : Set in
forall (Naturals T _p Naturals T : Set) ...
So now, we have 2 arguments of typet . Why ?

Let’s have a look in the outeBection related to the specidde We had avariable already abstracting the
type of the collection paramet&atural , namelyVariable Natural_T : Set . And so, by closing the outer
Section of the speciede Coq abstracted once again. Then, it is the o@ection that brings the problem, not
the inner one.

And obviously, this typing problem makes so that when wedrgreate collection like above, we do not apply the
method generator to the number of arguments @t expects.

A solution could be to say “let’'s remove tMariable Natural T : Set from the outeSection ”. Right,
no ! Since we do noi-lift in properties (generated &$ypothesis in Coq), if a FoCalize property needs to make
reference to this type, we need a way to speak of if. And if weaee it, then we are not able anymore to speak of
it. ..

A few remarks

e The annoyingSection is then the outer one, the one of the species. Indeed, whereave lthe inner
Section , the theorem gets right abstracted on the invemiable

e This only arises on theorems because they are the only otesitoa neste@ection

7



e Moreover, we can note in this code generation model that tloal self xxx are always generated even
when the methodxx is inherited. The reason is that since we do Adift in properties (leading taCoq
Hypothesis ), if a property depends on another method, it really needate la way to speak of it in the
property’s statement. And namely, that’s via te&df xxx . However, in theDCaml code generation model,
inherited methods are not generated again, hence do notddadal xxx  definitions. This is not really
homogeneous.

Conclusion

In order to solve this problem and to maReq andOCaml code generation models (her@eq andOCaml generated
codes), we decided to use the same model, witBegtion s andChapter ’s, and to manage abstractions ourselves
via explicit A-liftings even for properties and theorems.

This raises a technical problem however sid@emon does not support yet higher order. And in fact, with this
generation model, out theorems get parametrised by aNtited definitions. o circumvent this problem, we decided
to only reintroduceSection s in the code dedicated to be senZenon, then map back the proved theorems onto
regular-lifted definitions. This means that afenon’s the point of view, there is na-lifts, all is first order, and it
can exhibit a proof. Once we get the proof done, we apply iéostated theorem in ti&ection to get a temporary
version of the theorem. And finally, after closing tBection for Zenon, we transform this temporary version into
a fully A-lifted definition.



Chapt er Me.

Record Me (Naturals_T : Set) (_p_n_n : Naturals_T)
(_p_Naturals_one : Naturals_T) : Type : =
mk_Me {
Me_T :> Set ;

(* From species ok__in_exanpl e#Me. *)
Me_lookatme

forall x : Me_T, Is_true ((basics.base_eq _ _p_n_n _p_Naturals_one )) ;
(* From species ok__in_exanpl e#Me. *)
Me_reduce : Naturals T -> Me_T
}
(* Variable abstracting the species paranmeter [Naturals]. *)
Variabl e Naturals_ T : Set.

(* Variable abstracting the species paranmeter [n]. x)
Variable n_n : Naturals_T.

(* Carrier representation. *)
Let self T : Set := Naturals_T.

(* Variable(s) induced by dependenci es on nmethods from species
paraneter(s). *)

Vari abl e Naturals_modulo : Naturals_ T -> Naturals_ T  -> Naturals_T.

Vari abl e Naturals_one : Naturals_T.

(* From speci es ok__in_exanpl e#Me. *)
Sect i on lookatme
(* Due to a decl-dependency on species paraneter carrier type 'Naturals' . x)

Variabl e _p_Naturals_T . Set.
(* Due to a decl -dependency on nethod 'one’ of species paraneter’ Naturals'. x)
Vari abl e _p_Naturals_one : _p_Naturals_T.
(* Due to a decl-dependency on nethod 'n' of species paraneter 'n’. *)
Variable _p n.n : _p Naturals T.
Theor em Me__lookatme

forall x : self T, Is_true ((basics.base eq _ p n_n _p_Naturals_one )).

(» Artificial use of type 'Naturals_T' to ensure abstraction of it’'s
related variable in the theorem section. =)

assert (__ force_abstraction_p_Naturals_T := _p_Naturals_T).

(» Artificial use of nethod ' _p Naturals_one’ to ensure abstraction of
it’s related variable in the theorem section. *)

assert (__ force_abstraction__p_Naturals_one ;= _p_Naturals_one ).

(» Artificial use of nethod ' _p n_n' to ensure abstraction of it’'s
related variable in the theorem section. *)

assert (__ force_abstraction__p_n_n ©= _p_n_n).

apply basics.magic_prove.

Qed.

End lookatme
Let self_lookatme

forall x : self T, Is_true ((basics.base_eq _ n_n Naturals_one)) 1=
Me__lookatme Naturals_T Naturals_one n_n.

End Me.

Me__lookatme :
self T -> Is_true (basics.base_eq _p_Naturals_T _p_n_n _p_Naturals_one )




Me__lookatme

forall (_p_Naturals_ T . Set) ( _p_Naturals_one _p_n_n : _p_Naturals_T),
self T -> Is_true (basics.base_eq _p Naturals_ T _p_nn _p_Naturals_one )
col |l ecti on Concretelnt i mpl enents IntModel ;;
col l ecti on ConcreteMe inpl enents Me (Concretelnt, Concretelnt! one) ;;

Me__lookatme :

forall (Naturals_ T _p Naturals T ;. Set)
(_p_Naturals_one _p_n_n : _p_Naturals_T),
Naturals T  ->
Is_true (basics.base_eq _p_Naturals_T _p n_n _p_Naturals_one )

10




Chapter 2

Code generation model

The code generation model is the now closely the same for®@&t&m| and Coq generated source files. The main
difference comes from the fact that@Caml, logical methods are discarded. However, except for the eB&enon
proofs where we introduc€oq Section , the generation model for “computation” and logical methade exactly

the the same. This especially means that dependencies aneiathy” abstracted by explici-lifting instead of using

(like in the previous compiler) th€oq’s Section mechanism. In the same order of idea, in order to have a common
model, bothOCaml andCoq code are based on a record-oriented structure for the spawikcollection, with explicit
record fields accesses.

2.1 Species

2.1.1 Species header

The generated code for a species is hosted by a module whoseigdhe species’ name. This way, it is possible
to have species having the same names of methods withoutctodthe module hence defines the name-space of
“things” contained in and induced by a species.

2.1.2 Carrier representation

In OCaml, if the structure of the carrier of the species is known (ifethe methodrepresentation was de-
fined), then we generate a type definition whose nanmeeisas_carrier ~ and body is the type translation of the
correspondingroCal.ize type expression.

In such a type definition, carriers of species parametersapyy in the species’ carrier are abstracted by type vari-
ables. The naming scheme of these variablé st'the species parameter’'s name un-capitalisedas"” carrier "
+ an integer stamp that is unique (inside this type definjti@ince species names koCalize are capitalised and
capitalised identifiers i©Caml are reserved for modules and sum type value constructoregee to un-capitalise
the name when generati@Caml code. For the stamp, it is required to prevent several typahla from having the
same name in case the species is parameterised by both @ioallgarameter and an entity parameter whose names
differ only by the capitalisation of the first letter.

For instance, the following header of a species definition:

speci es Cartesian_product(A is Setoid, B is Setoid) =
representation = A+ B

will generate thedCaml type definition:

nmodul e Cartesian_product =
struct
(* Carrier’s structure explicitly given by "rep". x)

11



type (‘a0_as_carrier, 'b1l_as_carrier) me_as_carrier =
'a0_as_carrier * 'bl_as_carrier

In fact, a posteriorj | think now that it's useless in case of a species, even dloBkis type definition is only used
in the case of a collection.

In Coq, no definition generated, the knowledge of the structur&efarrier being reflected directly is needed in
the methods (see later).

2.1.3 The record type

The type of data representing a species is a record type. Weekamine its header, i.e. stuff before this type
definition’s body, then it's body.

The record header

The name of this type is alwayse_as_species . It can be parametrised due to various abstraction regein&n
induced by the late-binding feature B6CalLize. OCaml requires a parameter not needed@mq: this is the only
fundamental difference. We will see that abstractions ¢beparameters) required KBoq can involve methods but
this is only because some of the dependencies that are piresieeiCoqcode are always trivially absent in teCaml
code.

1. First come all the species parameter carriers appearitigetypes of the methods of the species. Each carrier
will be abstracted by one type variable. This allows to “labed” the representation of the species
parameters. We say here “appearing in tyy@es...”: be aware that the type of “computational” methods
are ML-like types and the ones of logical methods are thitement! We do not explain here how these
parameters are found: this is the role of dependency cortipitan species parameters.

The naming scheme of these type variabl®©@aml is the same than described above for the carrier represen-
tation.

In Cog these parameters of the type are not “really type variabtes’arguments of typ&et (simply a
technical question). Their naming scheme is the speciesyer’s name +T".

2. Next, only in the OCaml code the record type is always parametrised by a type varialgeesenting the
carrier of (i.e. the internal representation of the typea@sclated in this) species. By convention, this type
variable is always naméedie_as_carrier (don't confuse withme_as_carrier  that is the name of the
type definition representing the effective structure ofdagier when it is known).

In Coq we don’t have this mandatory type parameter, but insteat] wki will have one extra field in the body
of the record. This variable enable to “late-bind” tlepresentation of the species.

3. Finally come all the methods of the species parameteragipygein thetypes of the methods of the species.
Since inOCaml the type of a method can only involve type constructors (alMé-type), it is clear that we
won't have any such parameters. In effectOi@aml the logical methods are discarded. However, since for the
type of a logical method is its logical statementQoq’s side, we can have any expression inside their type..
In particular, we can have calls to some collection pararseteethods. Having these parameters in the record
type allows the “late-binding” on the collection paramatself (i.e. on by which effective collection will be
used to instantiate the parameter). The naming schemedguarameters induced by these dependencies is
“_p_" +the species parameter’s name + the method’s name.

There is a special a case: the entity parameters. We wilhaxhtis after the following example.
Let's now change our previous example to illustrate the Beatlour record type i©®Caml andCoq:

12



speci es Cartesian_product(A is Setoid, B is Setoid) =
representation = A » B;
let make (x in A,y inB) in Self = (x, y)

let equiv (x in Self) = .. Alequal (... && Blequal (...)
theoremthm : all x in A, Altst (x) ->
proof = .. by property Alcommutes ...

We can see that we have:
e the carrier defined,
e a methodmake of typeA -> B -> Self

e a methocequiv having typeSelf -> bool , having dependencies on the methedsial of the collection
parameter#é andB, but in itsbody, not in its type équal doesn’t appear iequiv s type). Hence, the record
type (inCog and inOCaml) won’t have any parameter to abstract the dependenciesesa thethods.

e atheorenthm of “type” all x in A, Altst (x) -> ... and “body” (proof)... by property
Alcommutes ... . Hence, it has dependenciesttst in its type and orAlcommutes in its body. This
means that irCoq the record type will have a parameter to abstract the depegdeund in the type of the
theorem, i.eAltst  but not forAlcommutes

The record type fo©Caml will then look like:

nodul e Cartesian_product =
struct
(* Carrier’s structure explicitly given by "rep". x)
type (‘a0_as_carrier, 'bl_as_carrier) me_as_carrier =
'a0_as_carrier * ’'bl_as_carrier
type (‘aO_as_carrier, 'bl_as_carrier, 'me_as_carrier) me_as _species =

In Coq a record is introduced by a constructor. By convention, wegs name imk_record . The record type
for Coq will then look like:

Modul e Cartesian_product.

Record Cartesian_product (A_T : Set) (BLT : Set)
(p Atst : AT -> basics.bool_t) . Type : =
mk_record

The entity parameters In OCaml they can never appear in the record type since in ML-like sypee can't have
expressions. However, iB0q it is possible to have dependency on an entity parameter reaeém or property
statement (i.e. in the type of a logical method). For example

speci es Me (Naturals i's IntModel, n i n Naturals) =
representation = Naturals

theoremmyth : all x in Self,

basics #syntactic_equal (n, Naturals!un)
proof = assumed {* *} ;
end ;;

The theorenmyth shows a dependency on the entity parametén this case, the record type will be parametrised
by this entity parameter like if it was a collection paramstenethod. Obviously, an entity parameter doesn’t have
methods since it is a “value” and not a species. So we don# laay notion of method in the naming scheme. We

choose to name these entity parameters lgy “ + the entity parameter’'s name_++ the the entity parameter’s name
again.

13



Modul e Me.

Record Me (Naturals_T : Set) (p_n_n : Naturals_T)
(_p_Naturals_un : Naturals_T) . Type : =
mk_record

The record type fo©Caml will then look like:

nodul e Cartesian_product =
struct
(*» Carrier’s structure explicitly given by "rep". =*)
type (‘aO_as_carrier, 'b1_as_carrier) me_as_carrier =
'a0_as_carrier * 'bl_as_carrier
type (‘a0_as_carrier, 'b1l_as_carrier, 'me_as_carrier) me_as _species =

The record type fo€oq will then look like:

Mbdul e Cartesian_product.

Record Cartesian_product (A_T : Set) (BLT : Set)
(p_A_tst : A_T -> basics.bool__t) : Type : =
mk_record

The entity parameters In OCaml they can never appear in the record type since in ML-like symee can’t have
expressions. However, iB0q it is possible to have dependency on an entity parameter reaeém or property
statement (i.e. in the type of a logical method). For example

speci es Me (Naturals is IntModel, n in Naturals) =
representation = Naturals

theoremmyth : all x in Self,

basics #syntactic_equal (n, Naturals!un)
proof = assuned {* *} ;
end ;;

The theorenmyth show a dependency on the entity parametdn this case, the record type will be parameterised
by this entity parameter like if it was a collection paramstenethod. Obviously, an entity parameter doesn’t have
methods since it is a “value” and not a species. So we don# laay notion of method in the naming scheme. We
choose to name these entity parameters lgy “ + the entity parameter’'s name _++ the the entity parameter’'s name
again.

Fields and their types

Now we saw the header of the record type definition, we mustesddts body, i.e. its fields. Roughly speaking, the
fields will be all the methods with their types hosted in the@es in normal form. By “all” we mean the methods
declared, defined in the species and those inherited. Bethespecies is in normal form, this means that we do not
have several times a method: inheritance has been resatdechase the right version of each method to keep.

The type accompanying each method is, like we previousty, saVL-like type for “computational” methods and
a logical statement for logical methods. This especiallansethat since logical methods are discarde@@aml, in
this target language, we will only have ML-like types.

The only important difference betwe&@Caml and Cogqis that inCoq we always have an extra (and first) field
representing the carrier of the species (remember tHaGaml, instead, we had a type definition that we didn’t have
in Coq). This field always appears a& T > Set ; and represents the type encapsulated in the species. In
OCaml, the field corresponding to a method is straight the methaaise. InCoq, the field’s name isrf_ " + the
method’s name (“rf” for ecordfield).

Let's now take a simple example and seen the record typ@€aml| and inCoq.

speci es Me (Naturals is IntModel, n i n Naturals) =
representation = Naturals

14



theorem daube : all x in Self,
basics #syntactic_equal (n, Naturals!un)
proof = assumed {* *} ;

let junk (x in Self) inint=1 ;

| et reduce (x in Naturals) in Self =
Naturals!modulo (x, n) ;
end ;;
modul e Me =
struct

(* Carrier’s structure explicitly given by "rep". x)
type (‘naturalsO_as_carrier, 'nl_as_carrier) me_as_carrier =
‘naturalsO_as_carrier

type (naturalsO_as_carrier, 'nl_as_carrier, 'me_as_carrie r) me_as_species = {
(* From speci es ok__in_exanpl e#Me. x)
junk : 'me_as_carrier -> Basics._focty_int
(* From speci es ok__in_exanpl e#Me. =)
reduce : ’naturalsO_as_carrier -> 'me_as_carrier
}

Modul e Me.

Record Me (Naturals_T : Set) (p_n_n : Naturals_T)
(_p_Naturals_un : Naturals_T) . Type : =

mk_record {
T :> Set ;
(* From speci es ok__in_exanpl e#Me. x)
rf_daube

forall x : rfT,
Is_true ((basics.syntactic_equal _ _p_n_n _p_Naturals_u n)) ;

(* From speci es ok__in_exanpl e#Me. x)
rf junk : rf. T -> basics.int_t ;
(* From speci es ok__in_exanpl e#Me. x)
rf_reduce : Naturals_ T -> rf_T
}.

Note that in the generatdétiog code, the methodaube (in fact, the theorem) contains an application of
basics.syntactic_equal . We can see the mechanism of explicit polymorphism and ttexast of having
kept in theCoq code generation environment the number of extra argumenjstfat must be added to identifiers in
applicative position.

2.1.4 Methods

Once the record type is defined, it is time to generate theitefia corresponding to the various methods of the
species. Several cases exist: a method can be declare@dlefid in each case either at the current inheritance level
or inherited from an ancestor.

Inherited, declared, defined ?
First of all, the point is that methods only declaredndrerited areneverleading to generated code, neitheG@aml,
nor in Cog. This means that only methods freshly defined in the specgleading to code.

Defined methods

In term of generation model, there is no difference betw@€aml andCoq. The point is because idDCaml we don't
have logical methods, all what we will explain about theaseand proof is trivially out of the subject f@Caml.
Hence we won’t make any difference in our explanation hengply considering both kinds of methods independently
of the target language.

15



There are 2 kinds of methods: “computational” and logicahe Generation model makes only a difference for
theorems because they have a proof, but the final definitibotbfkinds of method uses the same mechanism: making
explicit abstractionsX-lifts) for all the types andieclared methods (fronSelf or from the species parameters) the
defined method depends on. Moreover, an entity parametee(gis in fact a value) will appear as an argument of a
method if it is used by it: it becomes hence an argument of ththad.

To help us, we need 3 notions. We don’t examine here how theg@anputed. This will be investigated later and
is mostly described in Virgile Prevosto’s PhD.

e The carriers present in the methods from parameters (ahe itype of entity parameters) and methodSelf
the method depends on. Since they are atomic types, theosoiglaring issue in this set.

e The “minimal typing environment”. It represents thedered set of methods ofelf a method depends on. It
must be ordered because some of the dependencies can depsmd®others. Because of the well-formation
property, we are sure this order exists.

e Theordered set of methods from parameters the method depends on.

A method will lead to det of theorem definition depending on its kind. The generated name is thmethan
in the FoCalize source. labelident-stringification Only a “stringificatiois done when the method is an operator
(e.g.=, +, +=€, ...). This stringification is done on the fly using a very sienmechanism (check function
pp_vname_with_operators_expanded in the source file
focalize/focalizec/src//basement/parsetree_utils.ml

The generated definition is in fachaethod generator, not the method |tseIf Its is a function that is paramettise
by all the thing the method depends on, and whose body is tlleoaie body”. This mechanism serves the late-
binding feature and allow to really create a method oncegthindepends on are defined by applying the generator to
the effective definitions of the methods the current methegkdds on. Hence, until the method we depend on are not
yet defined, one can still work with our method generator. &doer, this allows to make several effective methods
from a same generator, by applying different effective debins for A-lifted parameters of the generator.

Next come all the\-lifts that represent the dependencies of the method: Ifolf@ving order come:

1. The parameters representing the carriers of speciemptaes appearing in the method (i.e. used in its whole
definition). Their name is “p_" + the species parameter’'s name T

2. The parameters representing the methods of specieshptees the current method depends on. They are
ordered in 2 directions. First, all the methods of a samemater are consecutive and wdift following the
order of apparition of the species parameters. Second aftit species parameter, the consecutive list of its
methods is ordered according to their own dependenciethege

The first point naturally ensure that following the speciasameters’ order, definitions of methods of a param-
eter can only depend on former parameters (otherwise, sg@pid type-checking would have told “Unbound
.."). The second point is not obtained for free. We mustlyeaider the methods of a species parameter accord-
ing to their own dependencies “on Self's methods” in thesthig species. For instance, let’s imagine that in a
species, we need to abstréddtleq_refl : all x in Self, lequal (X, X) andP1llequal :

Self -> Self -> bool , Clearly to haveP1leq_refl  well typed,P1llequal must be known, hence
appear sooner (i.e. must Rdifted beforeP1leq_refl ).

Methods are named by p_" + the species parameter’'s name +*“ the method’s name.

The translation mechanisms of expressions is not studitiddisection since it isn't really part of the “species”
compilation model. We can however note that in the body ofexigs parameter's method, calls performed
to other methods dthis parameter (i.e. so, obviously, on which the method of thampater depends on) are
done using the naming scheme:p* "+ the species parameter’s name +'“+ called method’s name (flag
SMS_from_param used when calling the function
Species_record_type_generation.generate_logical_exp r).

16



3. The parameters representing the methods of ourseleefiSelf ) we dectkdepend on. They are named by
“abst_ "+ the method’s name. The only exception is in case where #&thaod is theepresentation , the
name will beabst T .

Methods on which welef-depend are not abstracted (i.e. not represented-lf§ing). In effect, since we
depend on theidefinition, they are defined (the compiler ensures that) anit #fective definition must be
used in the body of the method that depends on. Otherwisewbald be no link between the fact the method
depends on a definition and\alift that would represent any definition that will be proemi one days, nobody
know when and where ! This deals with the first sentence ofdbedaragraph of page 116 (below definition
58) in Virgile Prevosto’s PhD.

Finally comes the translation of the method definition ftsed. it's parameters (if the definition is functional) and
its body. As above, we leave for later the translation meisimas of expressions. We can however note that in the
body of a method, calls performed to other methodSeif (i.e. so obviously on which we depend) are done using
the naming schemeabst_ "+ the called method’s name (fl&®MS_abstracted used when calling the function
Species_record_type_generation.generate_logical_exp r).

Attention, theoremsrequire some intermediate cooking before one can diredild their method gen-
erator. In effect, their proof may involve a script fdenon and in this case, a complex process must be inserted in
order to get the proof done to finally get the method generditds will be explained in sectioR?odol.

Sample code to help to summarise

We take a part of the example given in Virgile Prevosto’s Rledtion 2.2.2 starting page 14 to illustrate the model we
exposed until now. Attention, we explicitly skipped (reredvin the generated listings) code dealing with collection
generator we will explain in the next section.

speci es Setoide inherits Basic_object =
signature (=) : Self -> Self -> bool
signature element : Self ;
| et different (x, y) = basics #not b (X =)

property refl : all x in Self, x = x ;
property symm: all xvy in Self, Selfl( =) (x, y) ->y =X ;
end ;;

speci es Monoide inherits Setoide =
signature ( * ) : Self -> Self -> Self ;
signature un : Self ;

let element = Self! un =* lun
end ;;
speci es Setoide_produit (A is Setoide, B is Setoide) inherits Setoide =
representation = (A * B) ;
let (=) (x y) =
and_b

(Al( =) (basics  #fst (x), basics #ist (y)),
BI( =) (snd (x), shd (y))) ;

| et creer (x, y) in Self = basics #pair (X, y)
| et element = Sel flcreer (Alelement, Blelement)
let print (x) =

"(" ~ Alprint (fst (x)) A ") A~ Blprint (snd (x)) ~ )"

proof of refl = (* by definition of ( =) ) assumed {* *} ;
proof of symm =assuned {* *} ;

end ;;

17



nodul e Setoide =
struct
type 'me_as_carrier me_as_species = {
(* From speci es ok__phd_sanpl e#Set oi de. =)

element : ’'me_as_carrier ;
(* From speci es ok__phd_sanpl e#Set oi de. =)
_equal_ : 'me_as_carrier -> 'me_as_carrier - > Basics._focty _bool ;
(* From speci es basi cs#Basi c_obj ect. x)
parse : Basics._focty_ string -> 'me_as_carrier ;
(* From speci es basi cs#Basi c_obj ect. x)
print : 'me_as_carrier - > Basics._focty_string ;
(* From speci es ok__phd_sanpl e#Set oi de. =)
different : 'me_as_carrier -> 'me_as_carrier - > Basics._focty_bool ;
}
| et different abst__equal_ (x : ’'me_as_carrier) (y © 'me_as_carrier) =
(Basics.not_b (abst__equal_ x y))
end ;;

nodul e Monoide =

struct

type 'me_as_carrier me_as_species = {
(* From speci es ok__phd_sanpl e#Monoi de. =)
un : ’'me_as_carrier ;
(* From speci es ok__phd_sanpl e#Monoi de. =)
_star_ . 'me_as_carrier -> 'me_as_carrier -> 'me_as_carrier ;
(* From speci es ok__phd_sanpl e#Set oi de. =)
_equal_ : 'me_as_carrier -> 'me_as_carrier - > Basics._focty_bool ;
(* From speci es basi cs#Basi c_object. =*)
parse : Basics._focty_string -> 'me_as_carrier ;
(* From speci es basi cs#Basi c_obj ect. *)
print : ’'me_as_carrier - > Basics._focty_string ;
(* From speci es ok__phd_sanpl e#Monoi de. =)
element : ’'me_as_carrier ;
(* From speci es ok__phd_sanpl e#Set oi de. =)
different : 'me_as_carrier -> 'me_as_carrier - > Basics._focty_bool ;

| et element abst un abst star = (abst__star_ abst un abst u n)
end ;;

nmodul e Setoide_produit =
struct
(* Carrier’s structure explicitly given by "rep". x)
type (‘a0_as_carrier, 'bl_as_carrier) me_as_carrier =

'a0_as_carrier * 'bl_as_carrier
type (‘a0_as_carrier, 'bl_as_carrier, 'me_as_carrier) me_as _species = {
(* From speci es ok__phd_sanpl e#Set oi de_produit. =*)
creer : 'a0_as_carrier -> 'bl_as_carrier -> 'me_as_carrier ;
(* From speci es basi cs#Basi c_obj ect. *)
parse : Basics._focty_string -> 'me_as_carrier ;
(* From speci es ok__phd_sanpl e#Set oi de_produit. =*)
print : ’'me_as_carrier - > Basics._focty_string ;
(* From speci es ok__phd_sanpl e#Set oi de_produit. =*)
_equal_ : 'me_as_carrier -> 'me_as_carrier - > Basics._focty _bool ;
(* From speci es ok__phd_sanpl e#Set oi de_produit. =*)
element : 'me_as_carrier ;
(* From speci es ok__phd_sanpl e#Set oi de. =)
different : 'me_as_carrier -> 'me_as_carrier - > Basics._focty_bool ;
}
let creer (x : ’'a0_as_carrier) (y : 'bl_as_carrier) = (Basics.pair X y)
et print _p_A_print _p_B_print (x : 'me_as_carrier) =

(Basics._hat_ "("
(Basics._hat_ (_p_A_print (Basics.fst x))

(Basics._hat_ "," (Basics._hat_ (_p_B_print (Basics.snd X)) "))
let _equal_ p A equal_ _p B _ equal_ (x : 'me_as_carrier)
(y : ’'me_as_carrier) =

18




(Basics.and_b (_p_A__equal_ (Basics.fst x) (Basics.fst y )
(_p_B__equal_ (Basics.snd x) (Basics.snd Y)))
l et element _p A element _p B_element abst creer =
(abst_creer _p_A_element _p_B_element)

<<<< ATTENTION >>>>
<<<< SKIPPED THE COLLECTION GENERATOR STUFF THAT WE EXPUAMNER >>>>
end ;;

Modul e Setoide.
Record Setoide : Type :=

mk_record {
rf. T :> Set
(* From speci es ok__phd_sanpl e#Set oi de. =)
rf_element T
(* From speci es ok__phd_sanpl e#Set oi de. =)
rf__equal_ T ->rf.T -> basics.bool__t ;
(* From speci es basi cs#Basi c_object. =*)
rf_parse . basics.string__t -> T
(* From speci es basi cs#Basi c_obj ect. *)
rf_print . rf. T -> basics.string__t ;
(* From speci es ok__phd_sanpl e#Set oi de. =)
rf_different o rf. T ->1rf. T -> basics.bool t ;
(* From speci es ok__phd_sanpl e#Set oi de. =)
rf_refl o forall x : rf_T, Is_true ((rf__equal_ x X)) ;
(* From speci es ok__phd_sanpl e#Set oi de. =)
rf_symm :
forall x y : rf.T,
Is_true ((rf_equal_ x vy)) -> Is_true ((rf__equal_ y X))
}
Definition different (abst T : Set)
(abst__equal_ : abst. T -> abst T -> basics.bool__t) (x : abst_T)
(y : abst_T) : basics.bool__t ;= (basics.not_b (abst__equal_ x vy)).
End Setoide.

Modul e Monoide.
Record Monoide : Type :=

mk_record {
f T :> Set ;
(* From speci es ok__phd_sanpl e#Monoi de. *)
rfun : T
(* From speci es ok__phd_sanpl e#Monoi de. *)
rf__star_ T o -> AT -> T
(* From speci es ok__phd_sanpl e#Set oi de. =)
rf__equal_ T ->rf.T -> basics.bool__t ;
(* From speci es basi cs#Basi c_obj ect. *)
rf_parse . basics.string__t -> T
(* From speci es basi cs#Basi c_object. =*)
rf_print . rf. T -> basics.string__t ;
(* From speci es ok__phd_sanpl e#Monoi de. =)
rf_element T
(* From speci es ok__phd_sanpl e#Set oi de. =)
rf_different o rf. T ->1rf_T -> basics.bool_t ;
(* From speci es ok__phd_sanpl e#Set oi de. =)
rf_refl o forall x : rf_T, Is_true ((rf__equal_ x X))
(* From speci es ok__phd_sanpl e#Set oi de. =)
rf_symm :
forall x y : rf.T,
Is_true ((rf__equal_ x vy)) -> Is_true ((rf__equal_ y X))
}
Definition element (abst T : Set) (abst_un : abst T)
(abst__star_ coabst. T -> abst. T -> abst T) : abst T :=

19




(abst__star_ abst_un abst_un).

End Monoide.
Modul e Setoide_produit.

Record Setoide_produit (A_T : Set) (B_LT : Set) : Type :=
mk_record {

f T :> Set ;
(* From speci es ok__phd_sanpl e#Set oi de_produit. =*)
rf_creer AT ->BT->rfT
(* From speci es basi cs#Basi c_obj ect. *)
rf_parse : basics.string__t ->rf T
(* From speci es ok__phd_sanpl e#Set oi de_produit. =*)
rf_print . T -> basics.string__t ;
(* From speci es ok__phd_sanpl e#Set oi de_produit. =*)
rf__equal_ crf. T ->1rf.T -> basics.bool__t ;
(* From speci es ok__phd_sanpl e#Set oi de_produit. =*)
rf_element T
(* From speci es ok__phd_sanpl e#Set oi de. =)
rf_different o rf. T ->rf.T -> basics.bool__t ;
(* From speci es ok__phd_sanpl e#Set oi de_produit. =*)
rf_refl o forall x : rf_T, Is_true ((rf__equal_ x X)) ;
(* From speci es ok__phd_sanpl e#Set oi de_produit. =*)
rf_symm

forall x y : rf_T,

Is_true ((rf_equal_ x v)) -> Is_true ((rf__equal_ y X))

}

Definition creer (p AT : Set) (p BT : Set
(@bst. T := (P, AT x _p B TT)%type) x : _p AT : _p BT
abst T := (basics.pair _ _ X Y).

Definition print (Cp_A_T . Set) (p_B_.T : Set) (_p_A_print
_p_A_T -> basics.string__t) (_p_B_print : _p_B_T -> basics.string__t)
(@bst. T := (P, AT * p B T)%type)) (x : abst T) : basics.string_t =
(basics._hat_ coq_builtins.___a_string

(basics._hat_ (_p_A print (basics.fst _ _ X))
(basics._hat_ coq_builtins.___a_string
(basics._hat_ (_p_B_print (basics.snd _ _ x))

cog_builtins.___a_string)))).
Definition _equal_ (p AT : Set) (p BT : Set) (p_ A equal_
P AT -> _p AT -> basics.bool__t) (_p_B__equal_ :

_p_B.T -> _p B T -> basics.bool__t) (abst_ T = (P, AT * _p_ B _T)wtype))
(x : abst. T) (y : abst.T) : basics.bool_t 1=
(basics.and_b (_p_A__equal_ (basics.fst _ _ x) (basics.fs t_ _y)
(_p_B__equal_ (basics.snd _ _ x) (basics.snd _ _ y))).
Definition element (p AT : Set) (p_B.T : Set) (_p_A_element P AT
(_p_B_element : _p_B_T) (abst. T : Set)
(abst_creer © _p AT -> _pBT->abstT) : abstT :=

(abst_creer _p_A_element _p_B_element).

(* From speci es ok__phd_sanpl e#Set oi de_produit. =*)

Theoremrefl (p AT : Set) (p. BT : Set) (abst_ T . Set)
(abst__equal_ : abst T -> abst T -> basics.bool__t) :
forall x : abst T, Is_true ((abst__equal_ x x)).

(* Proof assuned because " ". x)

apply coq_builtins.magic_prove.

Qed.

(*» From speci es ok__phd_sanpl e#Set oi de_produit. =*)
Theorem symm (_p_ A T : Set) (p_B_. T : Set) (abst T . Set)
(abst__equal_ : abst T -> abst T -> basics.bool_t) :

forall x y : abstT,
Is_true ((abst__equal_ x y)) -> Is_true ((abst__equal_ y x)).

(* Proof assuned because " ". *)

apply coq_builtins.magic_prove.

20




Qed.

<<<< ATTENTION >>>>
<<<< SKIPPED THE COLLECTION GENERATOR STUFF THAT WE EXPUMNER >>>>
End Setoide_produit.

Defined recursive methods

The compilation scheme of a recursive function is prettfedént and will be explained in the dedicated secfi@nlt
however finally uses the same abstraction mechanism)di&ed things). The main difference is induced by the use
of the Coq construct Function " and the need for a termination proof.

2.1.5 Fully defined species

In case a species is fully defined, i.e. all its methods areé@fino more remaining only declared, the species can
be turned into a collection by amplements . To allow creating collections, we must then add to this Esea
collection generator. The intuitive view of such a generator is that it is a functibat takes the parameters required
by the method generators and feed them with their relatednpeters to produce a bunch of effectiveethods
Hence, the collection generator takes as many paramettrs asethod generators of the species need to abstract the
dependencies of the methods (i.e. in fact, Xhfts of each method generator) and apply each method gtaretio

the set of parameters it needs. Hence applying the colteti@ffective arguments will create a bunch of effective
methods of the species by applying the method generatoctinially, this bunch of methods is stored in a value of
...the record type representing the species. Hence, atiolids just a value of this record type, storing functions
(methods) provided to process value whose type is the caffribe species.

You may note that this carrier type is not recorded in the netstructure. However, methods of the record will
obviously have traces of this type in their own type schermaming the carrier abstract (i.e. not exporting its intgrn
structure), it becomes impossible to manipulate it excepthe provided methods, i.e. functions stored in the record
value representing one collection.

Collection generator function’s header

As presented above, the collection generator is a functtemame is alwaysollection_create . As we said,

this functions take arguments that represent all the thrabgsracted in the method generators of the species.
Attention: Because to have a collection generator, the species mésityodefined, it is clear that the only things

that can remain abstracted are species parameters’ sagpecies parameters’ methods and entity parameters t Neve

some methods ofSelf ” since all the methods ofSelf " are ...defined !

Local functions

For each method of the species, we will create a “real methag’create a local function of the collection generator,
applying the method generator to its required argumententaknong the effective arguments of the collection gen-
erator. Hence, for each method of the species, we buildIyoathe collection generator) a function. These local

functions will be named:l6cal_ " + method’s name. We have 2 possible cases to find the methoetater to use

to create the collection generator:

e Either the method generator belongs to the current inmexétéevel (i.e. the method was defined at this level in
the species). In this case, this generator is simply the rditie method because a local function in the module
was generated with this name. In the following sample cdug;s the case for the methodeeer , print
element ...

e Or the method generator belongs a previous inheritancé (eee the method was defined previously, in an
ancestor). In this case, the name of the method generatogaidigd by the module hosting the ancestor. This
means that is the ancestor belongs to another compilatibnwenneed to also specify the module on which the

21



compilation unit is mapped. This gives a name like: file as ub@d “. + hosting species name + “+ name of
the method corresponding to this generator. In the follgveiample code, that's the case for the metpacse
defined in the specid3asic_object  of the compilation unit basics.fcl "

Creating the record value

Now we have our bunch of functions representing the methédseospecies, we just need to create a value of the
record type by feeding each record fields with its relatedtion we locally created.

And then, the return value of the collection generator ig¢iterd value. Hence, this shows clearly that a collection
is in fact a value whose type is the record type we created titehtbe species.

Sample code to help to summarise

Like we did to explain the code generation model of species1M, we use the same sample we used in 2.1.4 and
complete the parts about collection generators we prelji@mspped in the specieSetoide_produit (the other

species, not being fully defined, don’t have a collectionegator).
[language=MyOCaml]

<<<< ATTENTION >>>>
<<<< STUFF BEFORE, PREVIOUSLY SEENN PREVIOUS EXPLANATIONS >>>>

module Setoide_produit =
struct
<<<< ATTENTION >>>>
<<<< STUFF BEFORE, PREVIOUSLY SEENN PREVIOUS EXPLANATIONS >>>>

(* Fully defined 'Setoide_produit’ species’s collection generator. x)
| et collection_create () _p_B_element _p_B__equal_ _p_B_pri nt _p_A_element
_p_A__equal_ _p_A print =
(* From speci es ok__phd_sanpl e#Set oi de_produit. =*)
| et local_creer = creer in
(* From speci es basi cs#Basi c_object. =*)
| et local_parse = Basics.Basic_object.parse in
(* From speci es ok__phd_sanpl e#Set oi de_produit. =*)
| et local_print = print _p_A print _p_ B_print in
(* From speci es ok__phd_sanpl e#Set oi de_produit. =*)
I et local__equal_ = _equal_ _p_A equal_ _p_B__ equal_ in
(* From speci es ok__phd_sanpl e#Set oi de_produit. =*)
| et local_element = element _p_A_element _p_B_element local_ creer in
(* From speci es ok__phd_sanpl e#Set oi de. =)
| et local_different = Setoide.different local__equal_ in
{ creer = local_creer
parse = local_parse ;
print = local_print ;
_equal_ = local__equal_ ;
element = local_element ;
different = local_different

}

end ;;

In the aboveOCaml you may notice that the collection generator takes a “spsfi) (“unit ") parameter. This
is not a mistake and is only used to prevent a collection geoethat does not need any parameter (because there is
no collection and entity parameter for this species) frowifigano argument.

In effect, in this case, for sake of non-expansivity, ML typestem doesn’t allow to generalise type variables
appearing in values that are not functional (roughly, venyghly speaking, since there are other cases ...Let's say
that functional value can have their type generalised).

This is a problem since type variables appearing the the taa@presenting a species won't be generalisable,
then, as soon we create a collection, we instance these &yjables by the carrier representation and by parameters’
carriers. And if we want to create another collection, stheevariables are now instantiated (they are not polymajphi

22



we can't instantiate them by other types. And we get a typar @m OCaml side. For a full example, see the sample
code in section 2.1.5.
Obviously, we could add this extra parameter only if theeaxilbn generator has no parameter, but for sake of

simplicity and homogeneity, we prefer to add it in all theesas
[language=MyCoq]

<<<< ATTENTION >>>>
<<<< STUFF BEFORE, PREVIOUSLY SEENN PREVIOUS EXPLANATIONS >>>>
Module Setoide_produit.
<<<< ATTENTION >>>>
<<<< STUFF BEFORE, PREVIOUSLY SEENN PREVIOUS EXPLANATIONS >>>>
(* Fully defined ' Setoide_produit’ species’s collection generator. =)
Definition collection_create (p_ A T : Set) (p_B.T : Set) _p_A_element
_p_A_equal_ _p_A print _p B_element _p_B_ equal_ _p_B_ print =
| et local_rep = (PLAT * p B T)%type) in
(* From speci es ok__phd_sanpl e#Set oi de_produit. =*)
| et local_creer = creer _p AT pBT in
(* From speci es basi cs#Basi c_obj ect. *)
| et local_parse . = basics.Basic_object.parse local_rep in
(* From speci es ok__phd_sanpl e#Set oi de_produit. =*)
| et local_print = print _p AT p BT p A print_p B print in
(* From speci es ok__phd_sanpl e#Set oi de_produit. =*)
| et local__equal_ = equal _p AT pBT pA equal_ pB equal_ in
(* From speci es ok__phd_sanpl e#Set oi de_produit. =*)
| et local_element = element _p AT p BT p A element _p B element
local_rep local_creer in
(* From speci es ok__phd_sanpl e#Set oi de. =)
| et local_different . = Setoide.different local_rep local__equal_ in
(* From speci es ok__phd_sanpl e#Set oi de_produit. =*)
| et local_refl = refl _p AT p B T local_rep local__equal_ in
(* From speci es ok__phd_sanpl e#Set oi de_produit. =*)
I et local_symm :=symm _p A T _p_B_T local_rep local__equal_ in
mk_record (_p_A_T : Set) (p_B_T : Set) local_rep local_creer local_parse
local_print local__equal_ local_element local_differen t local_refl
local_symm.
End Setoide_produit.

Sample code for extra () parameter forOCaml

As described in 2.1.5, here is a full example showing the teédve an extr§ in OCaml for collection generators.

use "basics" i
open "basics" s

| et print_bool =
internal bool -> string

external | cam -> {* string_of bool *} | coq -> {* (* [Unsure] =) =}
let extnil =

internal list (‘a)

external | cam -> {* [] *} | coq -> {* (* [Unsure] =*) *}

| et ext_cons =

internal 'a -> list (a) -> basics #list (‘a)

external | cam -> {* (funel ->e :: I) *} | coq -> {* (* [Unsure] *) =}
| et ext_head =

internal list (&) ->'a

external | cam -> {* Listhd x} | coq -> {* (* [Unsure] =*) *}

23



l et ext tail =

internal list (a) -> list (‘a)
external | caml -> {* Listtl *} | coq -> {* (* [Unsure] =) =}
speci es Concrete_list (E i s Basic_object) =

representati on = basics #list (E) ;
let equal (x in Self, y in Self) in bool = syntactic_equal (x, y) ;

let nil in Self = extnil ;
let cons (e, I) in Self = ext_cons (e, I) ;
let head (I in Self) in E = ext_head () ;
let tail (I in Self) in Self = ext_tail (I) ;
let rec map (f, ) =
i f equal (I, nil) t hen nil
el se
let h=nhead () in
let q = tail (l) in

let h2 =f () in
let g2 = map (f, q) in
cons (h2, g2) ;

end ;;

Once compiled t@Caml we get the following code:

| et print_bool = string_of_bool -
let extnil =] i

let extcons = ( funel ->e :: 1) ;;
| et ext_head = List.hd -

| et ext_tail = List.tl -

nmodul e Concrete_list =

struct
(* Carrier’s structure explicitly given by "rep". x)
type ’'e0_as_carrier me_as_carrier = 'e0_as_carrier Basics._f octy_list

type ('e0_as_carrier, 'me_as_carrier) me_as_species = {
(* From species test#Concrete_list. x)

cons : ’e0_as_carrier ->
'e0_as_carrier Basics._focty_list -> 'me_as_carrier ;
(*» From species test#Concrete_list. x)
equal : 'me_as_carrier -> 'me_as_carrier - > Basics._focty _bool ;
(* From species test#Concrete_list. x)
head : 'me_as_carrier -> 'e0_as_carrier ;
(* From species test#Concrete_ |ist. x)
nil  : 'me_as_carrier ;
(* From species test#Concrete_list. =*)
tail . 'me_as_carrier -> 'me_as_carrier ;
(* From species test#Concrete_list. =*)
map : (‘'e0_as_carrier -> 'e0_as_carrier) ->
'me_as_carrier -> 'me_as_carrier ;
let cons (e : 'e0_as_carrier) (I : ’'e0_as_carrier Basics._focty list) =
(ext_cons e )
let equal (x : ’'me_as_carrier) (y © ’'me_as_carrier) =
(Basics.syntactic_equal x y)
let head (I : ’'me_as_carrier) = (ext_head )
et nil = ext_nil
et tail (I © ’'me_as_carrier) = (ext_tail I)
I et rec map abst cons abst equal abst head abst nil abst_tail
(f : ’'e0_as_carrier -> 'e0_as_carrier) (I . 'me_as_carrier) =
i f (abst_equal | abst_nil) t hen abst_nil else let h = (abst_head )
in
let g = (abst_tail I) in
let h2 = (f h)
in

24




let g2 = (map abst_cons abst_equal abst_head abst_nil abst_tai I fq)
in
(abst_cons h2 g2)

(* Fully defined 'Concrete_|ist’ species’'s collection generator. x)

| et collection_create !!! WE REMOVED THE EXTRA!N =
(* From species test#Concrete_list. =*)
| et local_cons = cons in
(* From species test#Concrete_list. =*)
| et local_equal = equal in
(*» From species test#Concrete_list. x)
| et local_head = head in
(*» From species test#Concrete_list. x)
I et local_nil = nil in
(*» From species test#Concrete_list. x)
| et local_tail = tail in

(* From species test#Concrete_list. x)
I et local_map = map local_cons local_equal local_head local_n il
local_tail in
{ cons = local_cons ;
equal = local_equal ;
head = local_head ;
nil = local_nil ;
tail = local_tail ;
map = local_map ;

}

end ;;

If we check the interface of th@Caml compilatio unit, we can see that the mod@encrete_list has type:

nmodul e Concrete_list
sig
type 'a me_as_carrier = 'a Basics._focty_list
type (‘a, 'b) me_as_species = {

cons 'a -> 'a Basics._focty_list ->'b;
equal : 'b ->"'b -> Basics._focty bool ;
head : b -> 'a;
nil : 'b;
tal : b ->"'b;
map: (a ->"a ->b ->"'b;
}
val cons 'a -> 'a Basics._focty_list -> ‘a list
val equal : 'a ->"'a -> bool
val head : ’a list ->'a
val nil : ‘a list
val tail :a list -> 'a list
val map :
(a ->b ->'b) ->
(c ->'b -> bool) ->
(c ->1a ->b ->(c ->¢) ->(a ->"a ->c¢c ->Db
val collection_create . (_a, '_a Basics._focty_list) me_as_species
end
where the functiorcollection_create has a non generalised type variabla . Hence, to continue the

example, we just need to create two collections, oneiwith as carrier, the other withool and to create 2 collections
of lists using these 2 collections as argument.

speci es Contrete_int inherits Basic_object =
representati on = basics #int ;
| et print = string_of_int ;

end ;;

collection Int inplenents Contrete_int -

speci es Contrete_bool i nherits Basic_object =
representati on = basics #bool ;

25



| et print = print_bool
end ;;
col l ection Bool inplenents Contrete_bool

When creating the last collection implementing list of bawmig, thé_a type variable was already instantiated by
int , hence leading t&Caml complaining:

File ".....", line 210, characters 13-33:
This expression has type
int -> int Basics._focty list -> int Basics._focty_list
but is here used with type
bool -> Bool.me_as_carrier Basics. focty list -> me_as c arrier

Hence, adding a dummy parameter to the collection generatan now be generalised (i.e. become polymorphic)
and there is no more instanciation issue.

2.2 Collection

Collections are compiled differently as species but thayt &ty exactly the same kind of record type definition. This
record type will represent the type of data in the targetuggg collections are mapped onto.

Things differ after. In effect, we do not need anymore to dhe methods since all were already defined in
the fully defined species werfiplements . The aim to get a collection, it to get a value of the recordetywphere
fields are filled with the functions representing method$efdpecies weifhplements ”. In this species we created
a “collection generator” that was a function taking arguteeepresenting dependencies on the species parameters
(collection and entity) and returning a value of the recgmukt. . . a collection. So, to compile a collection, we will
apply the collection generator to things it need to give uteni to finally create the collection value that will alvgy
be nameckffective_collection

Once done, we will get from the record generated by the didlegenerator of the species wiaiplements 7,
each field’s value and put it in a record whose typeus (i.e. the collection) type. It is then simply a verbatim copy
since collection never add fields; so the species the caleohplements and the collection have the same methods,
so the records have the same fields. With this process, weeetisi the collection will be only type-compatible with
itself and won't be type-compatible with the speciesiinplements " and also not with other collections extracted
from this species (with the same arguments).

Now, the question is to know what to apply to the collectiomgrator of the species weniplements ”. In
fact, we need to apply this generator to the methods of tHeat@ns used to instantiate the collection parameters of
the species weifplements ”. For instance, going on with our example started in 2.1.d,add a fewFoCalize
code to create Monoide_produit some fully defined species to represent integers to finalilg laucollection
representing couples of integers:

More FoCalize code to create collections

speci es Monoide_produit (C i s Monoide, D is Monoide)
i nherits Monoide, Setoide_produit (C, D) =

end ;;

speci es Entiers_concrets i nherits Monoide =
representati on = basics #int

end ;;
col l ection Les_entiers i mpl enent s Entiers_concrets
col l ecti on Couple_d_entiers i mpl enent s

Monoide_produit (Les_entiers, Les_entiers)

26



We get interested directly by the way to get the collect@muple_d_entiers since it is more interesting be-
cause the implemented species has collection parameterthe=ollectiorLes_entiers , the process is the same,
except there is no problem of instanciation because there mrameter. Here we see that the collection parameters
CandD of Monoide_produit  were instantiated by the collectiohes_entiers  andLes_entiers . The col-
lection generator o€ouple_d_entiers is parametrised (due to dependencies on species parajisteraveral
methods of the species parameters (amongst others, trust ore print , element , ...). We then must apply the
collection generator to the corresponding methods of “bgtv@i' was instantiated and “by what D” was instantiated,
i.e fromLes_entiers  and fromLes_entiers

Now, where can we get these methodsLek_entiers ? Since it is a collection, the module hosting the
collection contains affective_collection value that has a type being a record. Then we just need topick i
the fields of this value to have the arguments we want to giteea@ollection generator.

Note: It appears that in this case, since the 2 parametersi@réhe same collection”, the dependencies will be
the same twice. But that's just for this particular case. I8y way, this also means that we do not “optimise” telling
“Oh, | see the dependencies are exactly on the same funatfdhe same species, so let's keep only one occurrence
of the parameter. ..”. No we keep the model without exception

We then get the generat€@Caml code for the 2 create collections:

OCaml code for collections

nodul e Les_entiers =
struct
(* Carrier’s structure explicitly given by "rep". x)
type me_as_carrier = Basics._focty_int
type 'me_as_carrier me_as_species = {
(* From speci es ok__phd_sanpl e#Enti ers_concrets. =*)

parse : Basics._focty_string -> me_as_carrier ;
(* From speci es ok__phd_sanpl e#Enti ers_concrets. =*)
print  : me_as_carrier - > Basics._focty_string ;

(* From speci es ok__phd_sanpl e#Enti ers_concrets. =*)
un : me_as_carrier ;
(* From speci es ok__phd_sanpl e#Enti ers_concrets. x)

_star_ : me_as_carrier -> me_as_carrier -> me_as_carrier ;

(* From speci es ok__phd_sanpl e#Enti ers_concrets. =*)

_equal_ : me_as_carrier -> me_as_carrier - > Basics._focty_bool ;
(* From speci es ok__phd_sanpl e#Monoi de. *)

element : me_as_carrier ;

(* From speci es ok__phd_sanpl e#Set oi de. =)

different © me_as_carrier -> me_as_carrier - > Basics._focty_bool ;
}

| et effective_collection =
let t =
Entiers_concrets.collection_create () in
{ parse = t.Entiers_concrets.parse ;
print = t.Entiers_concrets.print ;
un = t.Entiers_concrets.un ;
_star_ = t.Entiers_concrets._star_ ;

_equal_ = t.Entiers_concrets._equal_ ;
element = t.Entiers_concrets.element ;
different = t.Entiers_concrets.different ;
}

end ;;

nmodul e Couple_d_entiers =

struct
(* Carrier’s structure explicitly given by "rep". x)
type me_as_carrier = Les_entiers.me_as_carrier * Les_entiers.me_as_carrier

type 'me_as_carrier me_as_species = {
(* From speci es ok__phd_sanpl e#Set oi de_produit. =*)
creer : Les_entiers.me_as_carrier ->
Les_entiers.me_as_carrier -> me_as_carrier ;
(* From speci es basi cs#Basi c_obj ect. x)

27



parse : Basics._focty_ string -> me_as_carrier ;
(* From speci es ok__phd_sanpl e#Set oi de prodwt *)

print : me_as_carrier - > Basics._focty_string

(* From speci es ok__phd_sanpl e#Monoi de prodmt *)

_star_: me_as_carrier -> me_as_carrier -> me_as_carrier ;

(* From speci es ok__phd_sanpl e#Set oi de_produit. =*)

_equal_ : me_as_carrier -> me_as_carrier - > Basics._focty_bool ;
(* From speci es ok__phd_sanpl e#Set oi de_produit. =*)

element : me_as_carrier ;

(* From speci es ok__phd_sanpl e#Monoi de_produit. =*)

un : me_as_carrier ;

(* From speci es ok__phd_sanpl e#Set oi de. =)

different : me_as_carrier -> me_as_carrier - > Basics._focty_bool ;

}

| et effective_collection =

let t =
Monoide_produit.collection_create ()
Les_entiers.effective_collection.Les_entiers.un
Les_entiers.effective_collection.Les_entiers._star
Les_entiers.effective_collection.Les_entiers._equal
Les_entiers.effective_collection.Les_entiers.print
Les_entiers.effective_collection.Les_entiers.elemen t
Les_entiers.effective_collection.Les_entiers.un
Les_entiers.effective_collection.Les_entiers._star
Les_entiers.effective_collection.Les_entiers._equal
Les_entiers.effective_collection.Les_entiers.print
Les_entiers.effective_collection.Les_ entlers elemen t in

{ creer = t.Monoide_produit.creer ;
parse = t.Monoide_produit.parse ;
print = t.Monoide_produit.print ;
_star_ = t.Monoide_produit._star_ ;
_equal_ = t.Monoide_produit._equal_ ;
element = t.Monoide_produit.element ;
un = t.Monoide_produit.un ;
different = t.Monoide_produit.different ;

}

end ;;

The Coq code follows exactly the same scheme. It appears to be mokg &nd bigger for 2 reasons: first logical
methods are in the model, second the record access notatimnch more complex i6oq that it is inOCaml (where
one just need to sayal.field ).

In effect in Cog to access a field of a value of type record, one must provideoafse the value and the
field name, but also all the effective arguments that werevigeal when the type record was created from the
mk_record that represents the species. For instance, our colleG@mple d_entiers “implements” a
Monoide_produit . Looking at the record type dflonoide_produit , we see:

Record Monoide_produit (C_T . Set) (D_T : Set) : Type :=
mk_record {
f T :> Set ;
(* From speci es ok__phd_sanpl e#Set oi de_produit. =*)
rf_creer : CT->D.T->rT ;

that is we have 2 parameters that are the carriers of thectioleparameters. When we want to pick values from
the fields of the value returned by the collection generdten¢e from the one dflonoide_produit ), we will need
to make explicit by what these parameters were instantiatezh we used the generator. And here, we instantiated
twice with the carrier of.es_entiers . Then, accessing the fiettl creer  (corresponding to the methadeer
of the speciedlonoide_produit ) of the valuev returned by the collection generator:

let t :=
Monoide_produit.collection_create
Les_entiers.effective_collection.(Les_entiers.rf_T)
Les_entiers.effective_collection.(Les_entiers.rf_T)

28



. in

will look like:

t.(Monoide_produit.rf_creer
Les_entiers.effective_collection.(Les_entiers.rf_T)
Les_entiers.effective_collection.(Les_entiers.rf_T) )

So the full generate@oq code will be:

Coq code for collections

Modul e Les_entiers.

Record Les_entiers : Type : =
mk_record {
f. T :> Set ;
(*» From speci es ok__phd_sanpl e#Enti ers_concrets. =*)
rf_parse : basics.string__t -> T
(* From speci es ok__phd_sanpl e#Enti ers_concrets. =*)
rf_print : T -> basics.string__t ;
(* From speci es ok__phd_sanpl e#Enti ers_concrets. =*)
rfun T ;
(* From speci es ok__phd_sanpl e#Enti ers_concrets. =*)
rf__star_ T > T -> AT
(* From speci es ok__phd_sanpl e#Enti ers_concrets. =*)
rf__equal_ o rf. T ->1rf.T -> basics.bool_t ;
(* From speci es ok__phd_sanpl e#Monoi de. =)
rf_element ST
(* From speci es ok__phd_sanpl e#Set oi de. *)
rf_different T ->rf. T -> basics.bool__t ;
(* From speci es ok__phd_sanpl e#Enti ers_concrets. =*)
rf_refl o forall x : rf T, Is_true ((rf__equal_ x X)) ;
(*» From speci es ok__phd_sanpl e#Enti ers_concrets. =*)
rf_symm
forall x vy : rfT,
Is_true ((rf__equal_ x y)) -> Is_true ((rf__equal_ y x))
}

Let effective_collection 1=
let t =
Entiers_concrets.collection_create in

mk_record t.(Entiers_concrets.rf_T) t.(Entiers_concre ts.rf_parse)
t.(Entiers_concrets.rf_print) t.(Entiers_concrets.rf _un)
t.(Entiers_concrets.rf__star ) t.(Entiers_concrets.r f_equal)
t.(Entiers_concrets.rf_element) t.(Entiers_concrets. rf_different)
t.(Entiers_concrets.rf_refl) t.(Entiers_concrets.rf_ symm).

End Les_entiers.

Modul e Couple_d_entiers.

Record Couple_d_entiers : Type : =
mk_record {
f T :> Set ;
(* From speci es ok__phd_sanpl e#Set oi de_produit. =*)
rf_creer . Les_entiers.effective_collection.(Les_entiers.rf_T) ->

Les_entiers.effective_collection.(Les_entiers.rf_T)
(* From speci es basi cs#Basi c_obj ect. x)

rf_parse . basics.string__t ->rf T

(* From speci es ok__phd_sanpl e#Set oi de_produit. =*)
rf_print . . T -> basics.string__t ;

(* From speci es ok__phd_sanpl e#Monoi de_produit. =*)
rf__star_ T > T o -> T

(* From speci es ok__phd_sanpl e#Set oi de_produit. =*)
rf__equal_ T ->rf.T -> basics.bool__t ;

(* From speci es ok__phd_sanpl e#Set oi de_produit. =*)
rf_element T

29

->rf T




(* From species ok__|

rfun o T

(* From species ok__|
rf_different ot T
(* From species ok__|
rf_refl o forall x :
(* From species ok__|
rf_symm

forall x y : rf_T,
Is_true ((rf__equal_

Let effective_collection
let t :=

phd_sanpl e#Monoi de_produi t.

phd_sanpl e#Set oi de. *)
->rf. T -> basics.bool_t ;
phd_sanpl e#Set oi de_produi t.
rf_ T, Is_true ((rf__equal_ x x))
phd_sanpl e#Set oi de_produi t.

*)

*)
*)

X Y)) -> Is_true ((rf__equal_ y x))

Monoide_produit.collection_create
Les_entiers.effective_collection.(Les_entiers.rf_T)
Les_entiers.effective_collection.(Les_entiers.rf_T)
Les_entiers.effective_collection.(Les_entiers.rf_un
Les_entiers.effective_collection.(Les_entiers.rf_s
Les_entiers.effective_collection.(Les_entiers.rf_e
Les_entiers.effective_collection.(Les_entiers.rf_pr
Les_entiers.effective_collection.(Les_entiers.rf_el
Les_entiers.effective_collection.(Les_entiers.rf_un
Les_entiers.effective_collection.(Les_entiers.rf_s
Les_entiers.effective_collection.(Les_entiers.rf__e
Les_entiers.effective_collection.(Les_entiers.rf_pr
Les_entiers.effective_collection.(Les_entiers.rf_el

mk_record

t.(Monoide_produit.rf_T
Les_entiers.effective_collection.(Les_entiers.rf_T)
Les_entiers.effective_collection.(Les_entiers.rf_T)
t.(Monoide_produit.rf_creer
Les_entiers.effective_collection.(Les_entiers.rf_T)
Les_entiers.effective_collection.(Les_entiers.rf_T)
t.(Monoide_produit.rf_parse
Les_entiers.effective_collection.(Les_entiers.rf_T)
Les_entiers.effective_collection.(Les_entiers.rf_T)
t.(Monoide_produit.rf_print
Les_entiers.effective_collection.(Les_entiers.rf_T)
Les_entiers.effective_collection.(Les_entiers.rf_T)
t.(Monoide_produit.rf__star_
Les_entiers.effective_collection.(Les_entiers.rf_T)
Les_entiers.effective_collection.(Les_entiers.rf_T)
t.(Monoide_produit.rf__equal_
Les_entiers.effective_collection.(Les_entiers.rf_T)
Les_entiers.effective_collection.(Les_entiers.rf_T)
t.(Monoide_produit.rf_element
Les_entiers.effective_collection.(Les_entiers.rf_T)
Les_entiers.effective_collection.(Les_entiers.rf_T)
t.(Monoide_produit.rf_un
Les_entiers.effective_collection.(Les_entiers.rf_T)
Les_entiers.effective_collection.(Les_entiers.rf_T)
t.(Monoide_produit.rf_different
Les_entiers.effective_collection.(Les_entiers.rf_T)
Les_entiers.effective_collection.(Les_entiers.rf_T)
t.(Monoide_produit.rf_refl
Les_entiers.effective_collection.(Les_entiers.rf_T)
Les_entiers.effective_collection.(Les_entiers.rf_T)
t.(Monoide_produit.rf_symm
Les_entiers.effective_collection.(Les_entiers.rf_T)
Les_entiers.effective_collection.(Les_entiers.rf_T)

End Couple_d_entiers.

)

tar_)
qual_)

int)
ement)

)

tar_)
qual_)

int)
ement) in

30




2.3 Toplevel values

At toplevel, since we are not in a species, there is no passidbpendencies on species parameters (since there is no
parameter) and no possible dependencies on meth&isfof (since there is no notion &elf ). For this reason, we
do not have to wonder about how naming methodSell and of species parameters.

Hence, code generation for toplevel value definitions @ittonstants or functions) is a simple translation into the
target language with no particular analysis to do beforedhd@he name of the generated definition is simply the name
given in theFoCalLize source file and the definition is generated at toplevel.

Hence, we are in the case where there is no more problemgtbsaintrinsic to the target language. For instance,
in Coqg, we will have to be careful with polymorphic identifiers anahnidle the explicit polymorphism by providing
extra type arguments like seenin 2.1.3.

For instance:

FoCal.ize toplevel value definition

let x =42 ;;
let fst (x) =
match x with
[ v, ) ->v
GeneratedDCaml toplevel value definition
let x =42 ;;
let snd (x : 'a * 'b) =
match x with
I v ->
(begin
v
end)

In the Coq code, we see again here a hack to speak of the type of tupledfett, we must explicitly telCoq
that thex used in the type expressign var a * _ var_b) isthex dealing withtypes That’s the reason of
the presence of thitype notation post-fixing the type expression of the tuple.

Generatedoq toplevel value definition

Let x : basics.int__t 1= 42,
Let snd (_vara : Set) (_varb : Set) (x : ((_wvar_a * __var_b)% type))
_var b :=
mat ch x with
I v =
v
end.

2.4 Toplevel theorems

Toplevel theorems, like toplevel values do not have any degecies since they are not in a species. Hence they are
generated like other theorems, with tBection mechanism for the proof part (if the proof is doneHoCal Proof

Language), but with na-lifting stuff.
For instance:

FoCal.ize toplevel theorem definition

‘ t heor em beg_trans

31



all xyzinax=y ->y=2z ->Xx=12
proof = assumed {* Import trusted external code. =*} ;;

GeneratedCoq toplevel theorem definition

Theor em beg_trans
forall __vara : Set, forall x y z : _ var a,
Is_true ((_equal_ _ x vy)) ->
Is_true ((_equal_ _ vy 2)) -> Is_true ((_equal_ _ x 2)).
(* Proof assuned because " Inport trusted external code. ". x)
apply coq_builtins.magic_prove.
Qed.

2.5 Type definitions

Type definitions always appear at toplevel, i.e. outsideexigg. For a given type definition nameahyty ” in
FoCalLize, the corresponding generated names are historically a ifésvetht in OCaml and inCoq. In OCaml the
generated type will be named “tt _focty "mitty . In Coq, the generated type will be nametdty +“_t "

We have 4 kinds of type definitions:

e Alias : the definition doesn't create a new type (i.e. a newo$efalues inhabiting a type) but is a shortcut
for naming a (complex ?) type expression. For instangge t = alias (int » char = int) ;; The type
constructott is only an alias for the type of tuples with 3 components wHoseand third components are an
integer and second one is a character. In particulaill be unifiable with any occurrence of its alias.

e Union : the definition create a new sum type and gives its vadunstructors. This new type will be compatible
with only itself. Forinstancetype t = |A |B (int = char) ;; The type constructdr denotes the type whose
2 value constructors ar®andB. The constructoB is parametrised by a pair of an integer and a character.

e Record: the definition create a new record type and giveseldsfinames and types. This new type will be

compatible with only itself. For instanceype t = { name :sting ;bith :int } ;; The type constructor
t denotes the record type whose 2 fields are nanaade andbirth  and types are respectivetyring  and
int .

e External : the definition establishes the link between a tyfpan external language and its representation in
FoCalize. Because they are quite complex, they will be studied in ndeteils in a next dedicated section (
see 2.6.1).

2.5.1 Type alias

As stated before, such tgpe definition introduces a new type name (i.e. type constructor) to repteatype
expression Fortunately, bottDCaml and Coq have the notion of type alias. Hence, we simply need to taasl
the FoCalize type expression in the corresponding target type expnes3$iois doesn’t pose any particular problem.
The only thing to remind is that since @oq polymorphism is explicit, if a type definition is paramegisby a type
variable, then one must explicitly give this variable thpdpet . In OCaml there is no need to give the type of this
variable, the syntax only requires to bind this variable aamthe type definition’s name (i.e.
type 'at = .. i)

Below follow a few simple alias type definitions exampleshitieir corresponding generated source codedq
andOCaml.

GeneratedCoq type definition

open "basics"

type t = alias int ;
type u = alias (t * (char = bool = string))

32



type poly_pair (a) = alias (a * 'a)
type inv_prod ('a, 'b) = alias (b * 'a)

GeneratedCoq type definition

type _focty t = Basics._focty_int
type _focty u =

Basics._focty _int *
(Basics._focty_char * Basics._focty_bool * Basics._focty_string)
type 'a _focty_poly pair = 'a * 'a
type (a, 'b) _focty_inv_prod = b * 'a

GeneratedCoq type definition

Requi r e basics.
Definition t_t = basics.int__t.
Definition u_t :=

((basics.int__t

* (((basics.char__t * basics.bool__t * basics.string__t)% type)))% type).

Definition poly pair_t (_ var a : Set) := ((_var_a * _ var_a)% type).
Definition inv_prod_t (_ var_b : Set) (_var_c : Set) =

((C_wvar_c * _ var b)% type).

The only technical thing is to make sure that type variablescarrectly identified all along the unifications to be
sure that they are properly link between their declaratwith(the type name) and their usage. This is illustrated by
theinv_prod definition where we want to have variables inverted betwherbtnding order and their usage order.

Be careful that the aliases we made heretaptes. They use the type constructer(star) to creat®ne type
expression that is a tuple compound of several type (sutrgesions. This will not have to be confused with the
problem of parametrising sum type value constructors witk tuple of several components or several values as
explained later in 2.5.2.

2.5.2 Type union (sum type)

As stated before, such a sum type definition introduces a yppa/riame (i.e. type constructor) with its value con-
structors. Again fortunately, botBCaml and Coq have the notion of sum type. Hence, we do not need to encode
sums, we need to translate them into the correspondingroeisin the target languages. Each value constructor in
FoCalLize will lead to a value constructor in the target languages.

In OCaml the return type of a constructor doesn’t need to be expl@itnversely, inCoq it needs to be. Hence
for the simple sum type definition:

Simple sum type ifFoCal.ize

type t =

| B

we get the followingDCaml code where only the value constructors naesdB are emitted:

Simple sum type generated @Cami

type _focty t =
| A
| B

Whereas irCoq, in addition to the constructors names, one must explistly that they are values of this type:

33



Simple sum type generated@oq

Inductive t_t : Set :=

| A (LY
| B: (1.

Parametrised value constructors are a bit more complex. rdldarfiroduce the simplest case, where value con-
structors have one parameter. In this cas€@@aml code, we have the quite obvious translation that taifs™the
argument’s type. II€oqg the constructor will simply be considered to have a funaldype whose argument is the
type of the value constructor's argument and whose retyre ty the defined type itself. Hence, even for recursive
and/or parametrised type definitions, we easily generatedde of the example:

Sum types with simply parametrised value constructors

type t poly (a) =
| None
| Some (‘a)

type trec =
| TR1 (int)
| TR2 (t_rec)

type t_poly rec (a) =
| TPR1 (a)
| TPR2 (t_poly_rec (‘a))

in OCaml to get:

Sum type generated @Caml

type 'a _focty_t poly =
| None
| Some of (a)

type _focty t rec =
| TR1 of (Basics._focty_int)
| TR2 of (_focty_t rec)

t;/‘pe 'a _focty_t_poly rec =
| TPR1 of (a)
| TPR2 of ('a _focty t poly rec)

and inCoq to get:

Sum type generated i@oq

I nductive t poly t (_var a : Set) : Set :=
| None : (t_poly_t _ var a)
| Some: (_vara -> (t_poly t _ var a)).

I nductive trec_t : Set :=
| TR1 : (basics.int__t -> t_rec__t)
| TR2 : (trec_t -> trec_t).
I nductive t poly rec_t (_ var b : Set) : Set :=
| TPR1: (_var b -> (t_poly rec_t _ var b))
| TPR2 : ((t_poly_rec__t _ var_b) -> (t_poly_rec__t _ var_b)).

in both of which see see that the generated type constractame is consistently the same between the code of the
name of the definition and the generated type expressionse@asive) where this type constructor's name appears.

34



The translation of sum type is quite complete, but we stilcheo deal with a choice of representation to do about
value constructors that “look having” several parametées,in

Value constructor parameterised by “several” arguments

type t_prm_val_cstr =
| C (nt * int =* int)

In such a case, is the value construc@qrarametrised bthree integers or byonetuple of 3 integers ? This makes
a particular difference it€oq because value constructors are curried. €og unless an explicit tuple is stated,
the value constructor for the above example must have theifumal typeint -> int -> int -> int ->
t prm_val_cstr

Of course, it would be possible to always group the arguniatidsone unique tuple,but making proofs using such
a value constructor would not be tractable (dixit RenaunDCaml, since we do not have this concern of proof, this
choice would not be a real problem.

In fact, in the syntaxi-oCal.ize propose two value constructor argument expressions eifteone for “several”
parameters and one for 1 tuple parameter of “several” coemusn Hence, translation into the target languages are
not ambiguous. In a sum type definition, for a value constnyetrguments separated by(“comma”) are considered
as “several arguments”, and arguments separated(tstar”) are considered as grouped inside one unique argume
that is a tuple. Hence, for the followirfgpCal.ize example:

Value constructor parameterised by “several” arguments (2

type t_prm_val_cstr =
| C (int = int * int)
| D (int, int, int)

we get the generatgdCaml code that follows, where we do make any difference betweernaoil several argu-
ments: all is every considered as a tuple

Value constructor parameterised by “several” argumen@Gaml (2)

type _focty t prm_val_cstr =
| C of ((Basics._focty _int * Basics._focty_int * Basics._focty_int))
| D of (Basics._focty_int * Basics._focty_int * Basics._focty_int)

and the generatedoq code where the types @andD are clearly different:

Value constructor parameterised by “several” argumen@oq (2)

I nductive t_prm_val_cstr__t . Set :=
| C:
((((basics.int__t * basics.int__t * basics.int__t)% type)) ->
t_prm_val_cstr__t)
| D:
(basics.int__t -> basics.int__t -> basics.int__t -> t_prm_val_cstr__t).

2.5.3 Record type

As stated before, such a record type definition introducesnatype name (i.e. type constructor) with its fields labels
and types. Again fortunately, bo@Caml andCoqg have the notion of record type. Hence, we do not need to encode
record, we need to translate them into the correspondingtiears in the target languages. Each fieldr@Calize
will lead to a field in the record generated in the target |aggps.

The translation process is simple since it map a each field titheFoCal.ize definition onto a field label of the
same name in the target language: The type of the field is gekelike any type expression in the target language.

35



Record type definitions iRoCalize

type r0 = { X0 = int ; y0 = float }
type rl (a) = { x1 = 'a } s

Generated record type definitions@Caml

type _focty r0 = {
x0 : Basics._focty_int
y0 : Basics._focty float

oo

type 'a _focty_rl = {
x1 : 'a ;

Yoo

The only difference foCoq is (like already encountered when dealing with the recope tyepresenting species
and collections, in 2.1.3 and 2.2) that a record type defimitequires a “record constructor”. By convention, it will
always be named bynik_” + the record type’s name +“ t .

Generated record type definitionsQoq

Record r0__t : Type :=

mk_ro__t {
X0 : basics.int__t

y0 : basics.float__t
1

Record r1_t (_ var c : Set) : Type :=
mk_rl_t {
X1 @ __varc

3

2.6 External definitions

External definitions are intended to make the interface betwcode imported from foreign target languages to be able
to use it onFoCalLize’s side. There are 2 kinds of external definitions: type défins and value definitions.

Type definitions are used either to import basic types andleas FoCalizeto map its internal types on them
(for instancejnt , bool , etc that are built-in type ifoCaLize and that must be mapped onto th@i€aml andCoq
counterparts), or to specify the type of values developdsidei-oCalize and that we want to use froFoCal.ize.

Value definitions are used to provide support (i.e. priregito manipulate) and inhabitants to external types or to
provide values of a type known FFoCalLize but whose construction was done outsideRb€alize source code.

Any external definition contains 2 aspects: its “internalw that says how the defined entity must be seen by
FoCaLize(during its analyses) and its “external” view that says hbis &ntity must be mapped onto target languages
(during code generation) when it is used iR@Calize source code.

2.6.1 External type definitions

An external type definition starts like a regular type deifimf i.e. by the type constructor’s name and possibly
parameterst ype (‘a, 'b)t = ). The body of the definition shows that it is an external byihgthe following
shape:

type t =
i nternal
ext er nal

and ...

and ...

Attention: Be careful thatthend ... arenot other type definitions: they are optional and belong to thear
external type definition. We will see later the meaning.

36



The internal clause

For a type definition, thaternal clause shows at whichoCal.ize type definition the body of the external def-
inition corresponds. In fact this is equivalent to estdbhs alias between the structure of the external type and the
structure of the type definition insideCalize.

However, since we do not always want to really have this dli@s an equivalence between the internal and
external representations), this clause can be empty. $nctige, the created type constructor will be fully abstract
on FoCal.ize's side and the only way to make and manipulate values of yipis Wwill have to be provided via other
external (values) definitions or via built-ins of the corepil

So, when thenternal clause is not empty, we said that is represented a type definilence this clause can
have 3 shapes: an alias, a sum or a record (the 3 kinds of tyjmitidas in FoCalize). For example (with the first
case representing a fully abstract type as described above)

External type definitions

type int =
internal (* Internal #int x)

type foc_diag (a) =
internal alias (a * 'a)

type list (a) =
i nternal

| 0
| ( :: ) (a list (&)

type foc_record (‘a, 'b) =
internal { hcode = int ; contents = (b * 'a) }

The first definition creates a typet that is fully abstract. Obviously, this one will be used ntadly by the
internals of the compiler, so no need to have external defitsitto manipulate its representation, this will be built-i
in the compiler. Consult 2.6.1 for a discussion about thislmaism.

The second definition creates a parametrised fgpediag that will internally be compatible with a pair of
elements of the same type.

The third definition creates a parametrised tlipe that is made of 2 value constructof$: with no argument
and:: with 2 arguments (not a tuple). Hence this corresponds tatamnal representation of a sum type. We
can see here how to define the lists like they ar€ay and OCaml to directly map them onto those @foq and
OCaml, without making any internal hack inside the compiler. Walddhave defined our custom lists by a regular
type definition like

type list (a) =
| 0O
.| ( :: ) (a, list ()

but we wouldn’t have been able to make so that constructoesttii map onto their counterparts ®oq and
OcCaml (in effect, these constructors being non-regular idemsifitney would have been “stringified” like we saw in
??).

The fourth and last definition creates a parametrisedfiyperecord  thatis a record type with 2 fieldsicode
andcontents

37



So, a question but why to use external definitions to create such types IRoltilsl be possible to define these sum
and record types by a regular definition ! The answer, partgaven about thdist  example is that this allows to
control manually and explicitly the mapping of the type afd®components (fields and value constructors) into the
target languages. We will see a clear example once we haegl¢hd case dbc_diag

To summarise, thmternal clause controls how the type is seenkmCal.ize’s side.

The external  clause

The external clause tells how tiyge constructor (not it's components like fields, value constructors : thi ke
done by the extrand ... clauses described below in 2.6.1 ) mustdadined into the target languages. In other
words, what to emit to define the type constructor in the tdegguages.

Like in anyexternal clause , we have an enumeration of mapping “languagexternal code”: we call this
an “external expression”. Languages can syntacticallgdzp, caml or a string for other languages not internally
handled by thé-oCaLize compiler. External code is an arbitrary string enclosed byand+} that will be emitted
verbatim at code generation pass when the type construdtdrawve to be defined.

At code generation time, the shape of the definitio@aml will look like: type followed by the enumeration
of polymorphic type variables ‘focty " + type’s name= followed by the verbatim copy of the external code.
The polymorphic type variables are named as usu@@aml. If there are several then they comma-separated and
enclosed between parentheses. Their name &e, then, 'b ,then, 'c and if there are more than 26, it goes on
with 'aa ,’ab etc.... Infactitis like printing their numbers in base 26ing lowercase letters as digits.

In Coq, it will look like: Definition followed the the type’s name + t ” followed by the enumeration of the
polymorphic type variables= followed by the verbatim copy of the external code. The payphic type variables
are named by * var_ "+ “a”, then “b”, then “c”. Like for OCaml the suffix is the variable’s number written in base
26. Hence the name of the 2Aariable will be__var_ab . In Coq we must explicitly annotate variables with the
typeSet .

Hence, with the definitions we started in our example, thenmgg of the generated code dCaml andCoq
will look like:

OCaml code for external definitions

type _focty int = ...

type 'a _focty foc_diag = ...

type 'a _focty_list = ...

type (‘a, 'b) _focty foc_record = ...

Coq code for external definitions

Definition foc_diag_t (_ var a : Set) = ..
Definition list_t (_ var_a © Set) = ..
Definition foc_record_t (_ var_a : Set) (_var b : Set) =

Continuing our previous example, we state Bwal ize external type definitions:

External type definitions (2)

coq_require "coq_stubs"

type int =
internal (* Internal #int *)
ext ernal
| cam -> {* int =}
| coq -> {* Z *}

type foc_diag (a) =
internal alias (a * ’a)
ext ernal
| camt -> {+ (a =* 'a) =}

38



| cog -> {* ((_var_a * __var_a)% type) =}

type list (a) =
i nternal
|0
| ( :: ) (a list (&)
ext ernal
| cam -> {* ’a list *}

| cog -> {* (list __var_a) *} (*» Fromthe List nodule. *)

type foc_record (‘a, 'b) =

internal { hcode = int ; contents = (b * 'a) }
ext er nal
| cam -> {* (b, 'a) MI_stubs.bbt record *}

| coq -> {* coq_stubs.foc_record ['b, 'a] *}

In the first definition we see that to define the type constructorin OCaml, we will emit “int” and in Coq, we
will emit “Z”. That's because we want that type constructor to be mapped onto these existing types of the target
languages.

The second definition shows that we wént_diag to be defined as a pair @Camland inCoq.

In the third definition, we say that lists are implemente®i@aml by its native lists and if€Coq, by an existing
data-type (the one provided n§og’s module “List”).

Finally, in the last definition, we want to say that the tfpe record is implemented by a user-defined type.
For instance, a record type in baiCaml andCoq. Due to the way the code is emitted we can’t write directlyhia t
external code a record definition in each of the target laggsiait would be syntactically incorrect. So, instead, we
say that the typéoc_record is implemented by a type name given in a other source file (dméofi OCaml and
one forCoq). We must remember that the generated definition in the ttéagguages will correspond to an alias (i.e.
of the formtype name= external-code if©Caml, andDefinition name:= external-code irCoq), so we must
put in the external code only things that will comply the &rginguage’s syntax. For instance, specifying forGog
language a definition like:

type foc_diag (a) =
internal alias (a * ’'a)
ext ernal
| caml -> {* (a =* 'a) x}
| cog -> {* Record : Type :=
mk_foc_diag (alpha : Set) {
fst : alpha
snd : alpha } =*}

would lead to a syntactically incorrect garbage rejecte€oy like:

Definition foc_diag_t (_ var_a : Set) =
Record : Type : =
mk_foc_diag (alpha : Set) {
fst : alpha ;
snd : alpha } .

Attention: In the sample code iRFoCalize we are studying, when we extended it, we added a first line that
readscoq_r equi re "cog_stubs" ;; This is needed to make g0oq can see definitions of the source file
Coq_stubs.v  in which we wrote our stubs fo€oq. Since theFoCalize compiler doesn’'t analyse inside the
external code, it can't see that there is a dependencgdoionto this source file, hence can't add itself in the gener-
atedCoq file theRequire directive. By adding thisoq_require  directive in theFoCalize source code, we tell
the compiler to add the correspondiRgquire directive in the generatedoq code.

39



Finally, one may note in this last definition thataCalize foc_record (‘a, 'b) is implemented by a
(b, 'a) MI_stubs.bbt _record . We inverted the parameters ! This means that so they wilhtled gener-
ated definition (have a look in the sample generated codevipélo

We now continue to inspect the generated code in BElamlandCoq:

OCaml code for external definitions (2)

type _focty int = int ;

type ’'a _focty_foc_diag = (a * 'a)

type 'a _focty list = ’'a list o

type (a, 'b) _focty foc_record = (b, 'a) MI_stubs.bbt_record

and:

Coq code for external definitions (2)

Requi re coq_stubs.

Definition int_t := Z

Definition foc_diag_t (_ var a : Set) := ((_wvara * _ var_a)% type) .
Definition list_t (_ var_ a : Set) := (list __var_a) .

Definition foc_record_t (_ var a : Set) (_var b : Set) =

coq_stubs.foc_record __var_ b _ var_a .

To fully understand the mapping mechanism, we must now sesttlbs written for each target language.

Stub file ml_stubs.ml

type ('c, 'd) bbt record = {
bbt_hashing_code ©oint
bbt_contents : (c o+ d)
oo
Stub file coq_stubs.v
Requi re Export ZArith. (* To have type Z. )
Recor d foc_record (param_a : Set) (param_b : Set) : Type :=
mk_foc_record {
hc : Z
conts : ((param_a * param_b)%type)
1.
The extraand ... clauses

Finally, there are still two things to describe. .. We knowtbe type constructor must be seen internally, how it must
be mapped onto target languages but we don’'t know yet on whatp the sum value constructors and the record
fields names !

The extraand directive are here for this purpose and will be used only seaaf sum or record type definitions.
We now complete our external definitions:

External type definitions (3)

type list (a) =
i nternal
|0
| ( :: ) (a list (&)
ext ernal
| cam -> {* ’a list *}
| cog -> {* (list __var_a) *} (*» Fromthe List nodule. *)

40



| cam -> {+ [] *}
| coqg -> {* Listnil *}

and ( :: )

| cam ->{+ ( 1) *}
| cog -> {* List.cons *}

type foc_record (a, 'b) =

internal { hcode = int ; contents = (b * 'a) }

ext ernal

| cam -> {* (b, 'a) MI_stubs.bbt_record *}

| cog -> {* cog_stubs.foc_record __var_ b _ var_a *}
and hcode =

| cam -> {* MI_stubs.bbt hashing_code *}

| coq -> {* cog_stubs.hc  *}

and contents =
| cam -> {* MI_stubs.bbt_contents *}
| cog -> {* cog_stubs.conts  *}

We must note that fofoc_record , we mapped the record fields onto the related fields presemtrirstubs
source files. Obviously, an external type definition mustststently map the type constructor, its field label or value
constructor to a definition existing in the target langudge.instance, if we mappddc_record  to a typetl , and
its field labels to labels of a typ2 or to field names that do not exist in the target language, therompilation
of the generated code would faltis important to see that the compilation proces§o€alize’s side wouldn't point
out any error: howeve€oq or/andOCaml would complain.

This last set of clauses, since they are involved in how to wadye constructors and record fieldben they are
encountereddo not lead to any code when the type definition is emitted. 8daevnot have any more generated code
related to the type definition to examine.

External type definitions and built-in types.

As stated before, external type definition are also usedtpsbe basic types internally known by the compileat :,

unit , string , bool andchar . These definitions are in the fiktdlib/basics.fcl . We could have fully
hidden these definition by directly hard-coding these tygrastheir components (value constructordoit ) in the
pervasive environments. But this would have been doing lalgna job the compiler knows how to make. So, instead,
we used these external definitions. They magically work withinner of the compiler because this one is made so
that when it has to infer the type of an integer value, it widhgrate a type whose name is ... justly “int” ... exactly
the name we gave in our external type definition. This meaatsitternally, the compiler knows that an integer value
has type "int”, even if it doesn’t know what is an integer. Jlispecially means that if no external definition is given
for int , the compiler is still able to infer the type of integer exgsiens. However, is the user writes “int”, then he
will be rejected because the scoper won't find any definitiothis type constructor.

The case otinit is slightly different since the external definition also&gvthe (only) value inhabiting this type.
So, the compiler doesn’t have built-in mechanism to synsieea typeunit : to get this type, the only ways are
either the user wrote “unit” or he wrote “()” and looking-up the environment for the value constructor’s type we
will normally getunit . The difference with the case oft is really that inunit , the definition gives the values
of the type although iint , they are not given by the definition but rather “hard-wiréd'the compiler (it knows
syntactically what is an integer).

Hence, considering this difference poiimt, , char andstring are handled the same way, andt andbool
are handled the same way.

41



2.6.2 External value definitions

External value definitions follow the same idea than typesy have arinternal and anexternal  clause. The
internal clause deals with how the compiler must consider the valumglits analyses: it deals with the value’s
type. Theexternal clause deals with how the compiler must map this value at gederation time in the target
languages.

Hence, an external definition is compound of theernal clause followed by a type expression and tne
external  clause followed by an “external expression”. For instance:

External value definitions

l et int_max =
internal int ->int -> int
ext er nal
| cam -> {* MI_builtins.bi__int_max *}
| coq -> {* coq_builtins.bi__int_max *}

let (|1 )=

internal bool -> bool -> bool

ext ernal
| cam -> {* MI_builtins.bi__or_b *}
| coq -> {* coq_builtins.bi__or_b *}
| et physical_equal =
internal 'a ->’a -> bool
ext ernal
| cam -> {* MI_builtins.bi__physical_equal *}
| coq -> {* coq_builtins.bi__syntactic_equal _ var_a *}

(* Wong, but don’t know how to do better. =*)

Such a definition is simply compiled into a definition haviihg tsame name in the target language thakRan
Calize (except in case where stringification is required likd|in) whose body is the verbatim copy of the external
expression corresponding to the target languag@Gaml, we do not need to make the type of the definition explicit.
In Coqg, we need to and also, as usual, need to handle the expligihpobhism with the extra arguments of typet
to represent the polymorphic type variables (likgphysical_equal ).

For the abové-oCalize sample code, we then simply get the generated code:

OCaml code for external value definitions

I et int_max = MI_builtins.bi__int_max .
let _bar_bar_ = MI_builtins.bi__or_b -
| et physical_equal = MI_builtins.bi__physical_equal

and:

Coqcode for external value definitions

Let intmax : int_t ->int_t ->int_t := coq_builtins.bi__int_max.
Let _bar_bar_ : bool_t -> bool_t -> bool_t := cog_builtins.bi__or_b.
Let physical_equal (_ var_a : Set) : _vara ->_vara -> bool_t :=

coq_builtins.bi__syntactic_equal __ var_a .

Hence, with this code generation model, since the identifieind to an external definition receives, in the gener-
ated code, an effective definition, we do not need to replach eccurrence of this identifier of ti®@Calize source
code by its related external expression in the generatedts@ode. This makes the code generation simpler since
when we “see” the identifier in thEoCalize source code, we generate exactly the same identifier in therged
source code. Otherwise we should have reminded for eachifidewhether it is bound to an external stuff to see by

what to replace its occurrence. Too heavy, and may be coatbitteincorrect syntactic forms in the generated source
!

42



Chapter 3

Compiler sources architecture

3.1

focalizec source tree

The compiler source tree is split into several directoried fles described below. The root of the compiler sources
is located infocalize/focalizec . All directories and files given below are relative to thistroln some of the
directories is a sub-directory calledloc . It can be safely ignored and is only used when invoking verake doc+

to store thedocamldoc output (HTML documentation extracted from the source cddeo€al.ize). In the below enu-
meration (d x) stands for "directory” whose content is atesting level of the root (i.e. dbcalize/focalizec )

and (f) stands for "file".

Makefile  (f) : The toplevel Makefile building the compiler, the stardiéibrary, the extra libraries, the doc-
umentation generator, tifeoCalize documentations and the contributions. This Makefile indeiggder the
build process in all the deeper directories.

Makefile.common  (f) : Defines once for all the implicit rules and suffixes thall e used in deeper Make-
files.

.config_var (f) : File generated during the “configure” process (invokgdhe fileconfigure  below and
that records the various things among installation patistailed commands and tools, ...

Makefile.config (f) : Defines once for all the commands according to the infdiom the “configure”
process recorded. It especially include tbenfig_var file that kept trace of what the “configure” process
defined.

TAGS(f) : Documentation file where developers are invited to radt¢he tags added to the development tree
under CVS, with a description of the status of the develogriree when the tag was set (or the reason why to
put a tag).

TODQ({) : More or less describes points that are still pending.

configure  (f) : Script used to detect available commands and toolsskdlse user where to instd&bCalize
components, ... Parts of its output is stored in the abovecfilefig_var

doc_src (d 1): The directory containing all the documentations atidation of the users.

— Makefile (f) : Makefile triggering the documentations build.
— html (d 2) : TheFoCaLize WEB site in HML format.

x Includes (d 3)
- aftertitle-eng.html )
- aprestitre-fra.html ()

43



- avanttitre-fra.html 0)
- basdepage-fra.html ()

- beforetitle-eng.html 4)
- bottomofpage-eng.html 4)
- copyright-eng.html ()

- copyright-fra.html ®

- doctype (f)

- endofpage-eng.html ()

- findepage-fra.htmi ®

- hautdepage-fra.html ®
- htmlc-version.html ()

- maquette-eng.htmi ®

- maquette-fra.html ®

- powered_by_caml.html )

* Ma
* Ma

topofpage-eng.html ®
kefile ()
kefile.html f)

x images (d 3): Directory containing images for the WEB site.

- focal_picture.jpg (f) : A niiiice 3D picture done with Povrap.
— man(d 2) : Directory containing the “man” manual.
Makefile  (f)
focalizec.env 0]

EE S

focalizec.man (f) : “man” for focalizec.
focalizedep.man (f) : “man” for focalizedep.

— tex (d 2): Documentations ihaTeX format.

* Ma

kefile ()
x refman (d 3) : Directory containing the reference manual.
- Makefile  (f)
- basic_concepts.tex ®
- bibli.bib (f) : Contains bibliography references.
- building_species.tex )
- compiler_err_msgs.tex (f) : About thefocalizec compiler error messages.
- compiler_opts.tex (f) : About thefocalizec compiler command line options.
- constructs_syntax.tex 4)

- doc_gen.tex (f): About theFoCalize automated documentation generation (opfaoalize-doc

of focalizec).

- fullpage.sty ()
- glimpse.tex (f) : Short presentation of the language to give a first andréqmte.

- header_html_snapshot.ps 4]
- introduction.tex ()
- lexical_conventions.tex () : About FoCalLize lexical conventions, description of the

tokens and syntax.

- macros.hva (f)
- macros.tex (f) : LaTeXmacros used in the reference manual.
- mathml_snapshot.ps )

44



- more_on_meths.tex  (f)

- motivations.tex U]
- output.tex (f) : About what thefocalizec compiler generates.
- pres_requir.tex 0]

- proofs.tex 4)

- refman.html  (f)

- refman.hva  (f)

- refman.pdf  (f)

- refman.tex  (f) : Entry point of the reference manual.
- syntaxdef.hva )

- syntaxdef.sty ()

e src (d1): Root of the sources dbcalizec andfocalizedep.

— attic

*

*

(d) : Contains miscellaneous interesting parts of codettaa¢ been written one day, that are not
used anymore, but that we didn’t want to trash in case it ceette in the future.
astmli ,lib_pp.ml ,lib_pp.mli ,misc.ml ,new2old.ml ,new2old.mli ,oldsourcify.ml
oldsourcify.mli , printer.m| , printtree.ml ,
string_search_stuff.ml
May be more. ..

— basement (d 2) : Contains the early basic bricks of the compiler.

*

*

EE R

Makefile  (f) : Trigger build in this directory.

configuration.ml (f) : Manages version number (and by side effectielp option output
text) and the command line options flags.
configuration.mli 4]

files.ml (f) : Contains primitives dealing with files, taking into aemt search path, files suffixes,
read/write object files, ...

files.mli U]
handy.ml (f) : Various general functions, on lists, pretty-printeiant setting. . .
handy.mli  (f)

installation.ml (f) : File automatically generated by the “configure” prazesd record as
OCaml source, the various installation paths and commanddoitedizec compiler need to know
when dealing withH-oCal.ize source files.

location.ml (f) : Defines the type of “locations”, i.e. point in a source fidnd gives primitives to
work with them.
location.mli ()

miscHelpers.ml  (f) : Mostly contains 1 function used during several pasedsrid formal names
to their types from a type scheme and a list of formal namesy béacould somewhere else to save
one file. ..

miscHelpers.mli 4)

parsetree.mli (f) : The description of the AST.
parsetree_utils.ml (f) : General utilities to process the AST.
parsetree_utils.mli 4]

types.ml  (f) : The description of the types structure and operationsdrk with them. Because
types are a complex structure with invariants, they are #ggdas opaque to prevent breaking these
invariants. Hence, any function dealing with the intimapresentation of a type must be in this file
since his is the only location where this representatiorisible.

types.mli  (f):

45



— ccodegen (d) : Dedicated to the C code generation back-end. MaintiaiiyeJulien Blond and is not
currently included irfFoCalize.

*

... hot stable.

— commoncodegen (d 2) : Contains processing common to all target languagasishperformed in any
case before emitting the target code.

*

*

L B

L I

Makefile  (f):

abstractions.ml (f : Performs the synthesis of-lifted things, summarising def and decl-
dependencies and dependencies on collection paramettiedse It especially performs the final
(complete) computation of dependencies on collectionrpaters, applying the various completion
rules on the dependencies found previously by the rules H¥d [BODY].

abstractions.mli ()

context.mli (f) : The structure of the “context”, i.e. the structure iotlvely passed to each
function during this pass and that group into one singlenctgoe all the information needed by the
various functions. This a handy way to prevent from havingnaerous parameters to pass each time
to the functions.

externals_generation_errs.ml (f) : Exceptions that can be raised when generating code
for “external” definitions, i.e. definitions that are not tten in nativeFoCalizelanguage and used to
interface with other programming languages.

externals_generation_errs.mli ()

minEnv.ml (f) : Compute the Cogminimal typing environment”.

minEnv.mli  (f)

misc_common.ml (f) : Various type definitions and functions used in sevewhts during this
pass.

misc_common.mli  (f)

recursion.ml (f) : Deals the the recursive functions processing.

recursion.mli )

visUniverse.ml (f) : Compute the “visible universe”.

visUniverse.mli ()

— contribs  (d 2) : Contains contribution source codes written by useas are not developers of the
compiler and its framework.

*

*

*

*

Makefile  (f)
automata (d 3) : Hierarchical automata. Maintained by Philippe Ajtau
- Makefile  (f)
- gen_def.fcl 4)
- main.fcl  (f)
- request.fcl 4)
- switch_automata.fcl ®
- switch_recovery_automata.fcl ®
- switch_recovery_normal_automata.fcl )
- switch_recovery_reverse_automata.fcl 4]
utils  (d 3) : Various utilities. Maintained by Philippe Ayrault.
- Makefile (f)
- pair.fcl ®
- peano.fcl ()
voter (d 3) : Model of a generic voter. Maintained by Philippe Ayitau
- Makefile (f)

46



- etat_vote.fcl )
- main.fcl  (f)

- num_capteur.fcl ®
- value.fcl 0]
- vote.fcl ®

— cogcodegen (d 2): ContaingCoq code generation back-end.
x FOCAL_COQ_MAPPINGS : Short (incomplete) description of holRoCalLize names are mapped
ontoCoq names in the generated source code.
x Makefile  (f)
* main_coq_generation.ml () : Entry point of Coq code generation. Start code generation for

a compilation unit, deals with toplevel entitidst( , theorems, expressions and type definitions) and
triggers processing of species, collections.

x rec_let_gen.ml (f) : Manages parts of the code generation for recursivetfons with stuff ded-
icated toCog.. Especially, generates the termination lemmas and wamsfarguments of a recursive
into a tuple.

x rec_let_gen.mli 4)

* species_coq_generation.ml (f) : Main part of code generation for species and colletion

* species_coq_generation.mli 4]

x species_record_type_generation.ml (f) : Deals with the generation of the record type

representing species and collections. Also generatesfoodgpressions.
x species_record_type_generation.mli ()
x type_coq_generation.ml (f) : Deals with code generation for (toplevel) type defiorits.
x type_coq_generation.mli ()

— devdocs (d 2) : The current documentation explaining the compilarhitecture and mechanisms.

x foc2ocaml.tex , pending.txt (f) : Oldies. Should disappear.

x legacy.tex  (f) : The mainLaTeXfile. Compile it to get the current documentation.

x macros.tex (f) : Miscellaneous macros to make life easier

* mathpartir.sty : Inference rules package.

x phd_changes.tex : Things we changed, corrected, enhanced since VirgileoBte's PhD Thesis.

— docgen (d 2) : Source fofocalizec automated documentation generatiefiogalize-doc option of

the compiler) as XML files.

x Makefile  (f):

x doc_lexer.mll . Lexer to scan “@"-markups in@oCalize source code.

x env_docgen.ml : Contains the documentation environment mechanisms. ertvisonment maps

methods names onto some optional MathML and LaTeX code.

x env_docgen.mli  (f)

x focdoc.css  (f) : FoCaLizeDoc-XML style sheet.

x focdoc.dtd  (f):

x focdoc.rnc () :

x focdoc.xsd  (f):

x focdocz2html.xsl : Transforms somE&oCalLizeDoc-XML into HTML + MathML.

x focdoc2tex.xsl (f) : Transforms somé&oCalizeDoc-XML into LaTeX.

x main_docgen.ml  (f) : Engine extracting information from BoCalize source code to produce

FoCaLizeDoc-XML.
x main_docgen.mli ()

47



x mmictop2_0.xsl  (f) : Transforms HTML + MathML into HTML.

x proposition.xsl (f) : : Processing of logical expressions fragfoCalizeDoc-XML to HTML
+ MathML.

x proposition2tex.xsl (f) : Processing of logical expressions frégfaCaLizeDoc-XML to La-
TeX.

x utils_docgen.ml (f) : Various helpers used for XML production.

* utils_docgen.mli 4)

— extlib  (d 2): Libraries higher level than the basic standard lpr&specially contains formal calculus
structures.

+x Makefile (f)

% access_control (d 3) : Access control policies. Maintained by Lionel Habitgdathieu Jaume.
- Makefile  (f)
- access_control.fcl ®
- ensembles_finis.fcl U)
- hrufcl  (f)
- rbac.fcl ()
- ticket.fcl )
- tm (d 4)

graph.ml ()
trust_management.fcl 0]

- unix.fcl 4]

x algebra (d 3) : Formal calculus library. Maintained by Renaud Rioboo
- Makefile  (f)
- additive_law.fcl )
- arrays.fcl 4)
- arrays_externals.v Q)
- big_integers.fcl ®
- constants.fcl ()
- integers.fcl )
- iterators.fcl )]
- multiplicative_law.fcl )]
- parse_poly.fcl )
- polys_abstract.fcl ®
- product_structures.fcl 4]
- quotient_structures.fcl ()
- randoms.fcl  (f)
- randoms_externals.ml )]
- randoms_externals.v ®
- rings_fields.fcl ®
- small_integers.fcl Q)
- weak_structures.fcl )
- weak_structures_externals.ml ()
- weak_structures_externals.v )

— focalizedep (d 2) : The dependencies generator to create Makefiles.
«x Makefile (f)

48



*

*

directive_lexer.mll (f) : Lexer to scaropen anduse directives in aFoCalize source.
make_depend.ml (f) : Source of the generator.

— micodegen (d 2): ContaingDCaml code generation back-end.

*

FOCAL_ML_MAPPINGS) : Short (incomplete) description of holkoCalize names are mapped
ontoOCaml names in the generated source code.

Makefile  (f)

base exprs_ml_generation.ml 4]
base_exprs_ml_generation.mli Q)
main_ml_generation.ml ()
main_ml_generation.mli ()
misc_ml_generation.ml )
misc_ml_generation.mli )
species_ml_generation.ml ®
species_ml_generation.mli ()
type_ml_generation.ml ®
type_ml_generation.mli ®

— parser (d 2): Contains the lexical and syntactic analysers to m®sieeCalize source code.

Makefile ()

dump_ptree.ml  (f) : Dumps the AST structure of a file in raw text mode. Useddebugging
purpose.

dump_ptree.mli ()

lex_file.ml (f) : Initial attempt to have a small “main” to check the beilwar of the lexer on a
file at the early stages of development. This is not used arggmo
lexer.mll (f) : The lexer description imcamllex.

lexer.spec  (f) : Trace of thoughts we had all along the time. Initiallyntained ideas about the
language syntax, (at lexical level) to make it smooth.

parse_file.ml (f) : Initial attempt to have a small “main” to check the betwaw of the parser on
a file at the early stages of development. This is not used arg/m
parse_file.mli 4)

parser.mly  (f) : The parser description iocamlyacc.

parser.spec  (f) : Trace of thoughts we had all along the time. Initiallyntained ideas about the
language syntax, (at syntactic level) to make it smooth.tdther ideas were added, beyond syntax,
more oriented toward the AST structure.

sourcify.ml (f) : Dumps the AST structure of a file iRoCalize syntax. Gives back a source
code from a parsed code. This is mostly useful for debuggimggse. May be used bu customers to
pretty-print their source, but | don’t recommand. This mspecially serves to report pieces of code
in a good-looking form in error messages. Each time we negelltthe user something involving a
piece of code, we pretty-print it with functions providedde

sourcify.mli ®

sourcify _token.ml () : Not used anymore. Was used to test the lexer at the etatyes of
development. It was used to print the found token.

test (d 3): Oldies originally used to test the lexer/parser inghdy times. No used anymore.

- sets_orders.fcl () : First translation of a file of the standard library usetkst the lexer/-
parser. Not used anymore.

— scoper (d2): Old stuff. Was discarded a long time ago. The directegmpty by the way.

49



—stdlib  (d 2): The standard library. Most of these sources are nmagdeby Renaud Rioboo. A few
ones (basics and built-ins) are low-level code close to dmpiler and maintained by the core compiler
development team.

*

*

*

Makefile  (f)

basics.fcl (f) : Basic bricks and internal-related stuff. Contains phienitive type definitions and
some very basic functions féioCal.ize.

coqg_builtins.v (f) : Basic bricks and internal-related stuff especiallgidated toCoq code.

generic_proof_cases.v (f) : Contains built-in stuff forCoq about built-in lists and some
tactics.

lattices.fcl ®

ml_builtins.ml (f) : Basic bricks and internal-related stuff especiallgidated toOCaml code.
orders.fcl 4]

orders_and_lattices.fcl )

products.fcl ()

quotients.fcl U]

sets.fcl )

sets_externals.ml (f) : External definitions to link fo©OCaml related tosets.fcl
sets_orders.fcl ()

sets_orders_externals.ml (f) : External definitions to link foOCaml related tcsets_orders.fcl
strict_orders.fcl ()

sums.fcl  (f)

wellfounded.fcl (f) : Define well foundation, termination orders for recuesfunction defini-
tions forCoq.

wellfounded_externals.v (f) : External definitions to link foOCaml related tavellfounded.fcl

— toplevel (d 2)

*

*

*

*

*

Makefile  (f)

exc_wrapper.ml  (f) : Firewall designed to recover all the exceptions that ba raised during a
source compilation and issues the related error messageghRo this code wraps the main call to
the compilation engine.

focalizec.ml () : The compiler entry point.
focalizec.mli )
fodump.ml (f) : For debug only, dumps (partially) the content df@Cal.ize object file (“.fo” file).

— typing (d 2) : Performs the type-checking of the language, normahfof species, checks well-
formation of species, compute def and decl-dependenciggté computation of dependencies on col-
lection parameters’ methods, resolves inheritance.

*

*

Makefile  (f)

ast_equal.ml (fH : Implements equality test between logical expressif@ndeed, between ex-
pressions since logical statements fully embed expression

ast_equal.mli )
depGraphData.mli (f) : Defines the structure of the dependencies graph usednpuate well-
formation from def and decl-dependencies.

dep_analysis.ml () : Handles the dependencies analyses on metho@eléf , i.e. def and
decl-dependencies.
dep_analysis.mli )

50



x env.ml (f) : Structure of the environments used all along the coatigih. Contains a generic envi-
ronment structure, the specialised scoping environmensplecialised typing environment, the spe-
cialisedOCaml code generation environment and the specialideq code generation environment.
All these environments are instantiations of the genendgrenment structure. Also contains data-
structures used from type-checking up to code generatiordord the various information about
analysed species, collections, methods, types, ... Sortteesé data-structures will appear in later
passes, picked-up from these environments.

x env.mli  (f)

x infer.ml . Core engine performing type-checking, inheritance rgsmh, normal form of species,
check of well-formation, def and decl-dependencies coatmrt and triggers the initial computation
of dependencies on collection parameters’ methods.

x infer.mli ()

x param_dep_analysis.ml (f) : Handles the initial computation of dependencies orecbion
parameters’ methods. The computed dependencies will bdwe tcompleted later in the next pass.

x param_dep_analysis.mli ()

x scoping.ml  (f) : Performs scoping analysis.

x scoping.mli

* substColl.ml (f) : Performs substitution of a collection (name/carriey)another one ogelf
in an AST.

x substColl.mli 0]

x substExpr.ml  (f) : Performs substitution of an expression (iRarsetree.expr ) by another
in an AST.

x substExpr.mli U]

e tests (d 1) : Various little tests we wrote to shake the compilercoensure that some particular features/pro-
cessing required by the compiler were really working. Thidesis most of the time meaningless and only
design to target a particular point of the compilation psscel he naming scheme is: a source file name starting
by “ko__ " must lead to an error (an error message, not a faitdithe compiler), a source file name starting by
“ok__" must be accepted by the compiler and lead to effectode.

— Makefile (f)

— ko__bad_self use.fcl )
— ko__param_toy.fcl ®

— ko__test_error.fcl 4)

— ko__test rec.fcl 4]

ok__baby_toy.fcl (f) : A bit of everything, without any order.

ok__baby toy externals.ml : External code to link foOCaml related taok___baby_toy.fcl

ok__caveat.fcl (f) : Nlustrates the pitfall of sum type constructors thatbl argument that is a tuple
or severalarguments but are hardly different from the syntax pointiefw

— ok__coll_outside.fcl (f) : Example showing how now use a collection defined outtigecurrent
one (i.e. the used one not a parameter) in a collection or@espe

— ok__definition_72_rule_PRM.fcl (f) : lllustrates the need for rule PRM in definition 72 page
153 in Virgile Prevosto’s PhD.

— ok__in_example.fcl (f) : Example showing how now use tlire parameter without allowing their
type to be anymore a “ml type”.

— ok__in_example2.fcl (f) : Same purpose than fak__in_example.fcl

51



— ok__list.fcl (f) : Example showing how to make lists as specieBdaCaLize. It also illustrates the
need for the extra unit argument to the collection generatoliection_create " in case it has no
arguments, what would preve®Caml from generalising the type of this generator. This examplistm
pass inOCaml but is not yet accepted i@oq.

— ok__multiple_inherit.fcl (f) : Used to track the provenance of methods in case of meltip
inheritance.

— ok__need_inspect_self.fcl (f) : Example showing how now use the need to inspect thetstreic
of representation while computing the
“used_species_parameters_ty " in the case where a method has a def-dependen&eth .

— ok__need_re_ordering.fcl (f) : Example showing the need of the final re-organisatiomethods

due to the collapsing procedure of properties prabf of s.

— ok__odd_even.fcl () : Example showing simple mutually recursive methodg tinaist pass for
OCaml code generation. Note th@bq code generation does not yet handle mutual recursion.

— ok__phd_def_deps.fcl (f) : Example of Virgile Prevosto’s Phd, section 3.9.6, pa&ge lllustrates
the need for the erasing procedure.

— ok__phd_meths_gen.fcl (f) : Example from Virgile Prevosto’s Phd, section 6.4.3ged 15.
— ok__phd_sample.fcl (f) : The initial example given in Virgile Prevosto’s Phdcsien 2.2.2 starting

page 14.

— ok__scoping_tricky.fcl (f) : Example showing scoping occurrences of a same namese ca
where this name is not recursively defined. Combines théwttf late-binding.

— ok__term_measure.fcl (f) : Is designed to be a successful use of termination pradsfdl doesn’t
pass.

— ok__toplevel_odd_even.fcl (f) : Example showing simple mutually recursive topleveidtions
that must pass fobCaml code generation. Note th&oq code generation does not yet handle mutual
recursion.

— ok __torture_params.fcl (f) : Example showing how to torture parametrised speciesxhibits

various non-trivial cases that must pass and lead to efle€@CamlCoq code. These examples make
heavy use oin ,is parameters and inheritance to shake the compiler’s insiéo of parameters during
inheritance.

3.2 Othertools

Asidefocalizec itself and its library, 2 others tools explicitly dedicatiecthe FoCal.ize packages exist.

3.2.1 zenon

Maintained by Damien Doliger, he is the man in the place taides©.

3.2.2 zvtov

Maintained by Damien Doliger, he is the man in the place teides®.

3.3 Passes and directories
Each directory described above roughly corresponds to aseqf the compiler except the directsrg/basement

which contains basic stuff used a bit everywhere. The ortigreotasks performed at compile-time can be mapped on
the source directories as follows:

52



1. src/toplevel : Entry point of the compiler, performing I/O and adminisiva tasks to initiate the compila-
tion process.

2. src/parser : Lex and parse the source code

3. srcltyping : Scopes the parsed source (i.e. the primary AST, hencenlgadia “scoped” AST), then
type-check the scoped AST (hence leading to a “typed” ASd9olves inheritance, compute def and decl-
dependencies, ensure well-formation and performs a firstapaomputation of dependencies on collection
parameters’ methods.

4. src/commoncodegen : Compute final abstractions (i.e\-liftings) due to def and decl-dependencies and
dependencies on collection parameters’ methods. Thigpsads in fact done once f@Caml code generation
and once foCoq code generation (obviously if code generation for eachuagg is enabled via the command
line options of the compiler). ThH®Caml code production is done first is ti@oq one is also requested.

5. src/mlcodegen  : Emits theOCaml code if requested.
6. src/commoncodegen : As describe above but f@@oq code generation if requested.
7. src/coqcodegen  : Emits theCoq code if requested.

Libraries, standardsfc/stdlib ) and other librariessfc/extlib ) are compiled once, when the compiler
is built. Then they get installed according to the user’sfigamation and not touched anymore. However, when
compiling aFoCal.ize program, they will be used if references are done to entitieg host.

During the compilation of th&oCalize source, only object files of the libraries are need&Caml and Coq
files of the libraries will be used ondecalizec has output the generated code, in order to produce the V@©&m|
executable o€oq model.

53



54



Chapter 4

Lexing / parsing

4.1 Lexing

The lexing process is performed as usual, by a lexer cregted¢dimllex. The description of the lexer is located in
src/parser/lexer.mll . The structure of this file is like any regular lexer for a r&tid language.

The keywords of the language is stored in a hash-table teptékie automaton from being too big. Each time a
stream of alpha-numeric characters that can be either atifideor a keyword is found, we lookup in this hash-table.
If the word make of this stream of characters belongs to tisb{table, then we return the corresponding token, else
we return an identifier based on the form of the word (cagiealior not).

As any lexer, each time it is called (by the lexer), it retuong and only one lexem.

4.2 Parsing

The lexing process is performed as usual, by a lexer cregteddmmlyacc. The description of the parser is located
in src/parser/parser.mly . The structure of this file is like any regular parser for distia language. The
parser doesn'’t try to implements recovery on error, hencegscribes the syntax of the language without any addition
(conversely tdDCaml or gccs parsers).

The important rule applied in the parser is that at each ASIeribcreates, it record the corresponding location
(extend) in the source file and the corresponding (optiathatumentation (i.e. special comments kept in the AST).
This mechanism is performed by a set of basic functions watines derivated froomk (mk_loc , mk_doc_elem ,
mk_doc, mk_local_ident , mk; ...). This especially means that one never must create dhndfle by hand.
Any created AST node must be created via these basic fuisction

The parser, returns a complete AST corresponding to thes drthe whole submited source file. It currently
doesn’t have an entry rule returning only an AST for one diéfini This especially means that the result of the
parsing is always an AST node of the foRarsetree.file

55



56



Chapter 5

The environments structure

All along the compilation pass, we need to keep trace of uarinformation about compiled entities (methods, types,
identifiers, ...). This is done by a kind of association lisgpping a name of entity onto an information.

Depending on the compilation passe, the nature of the redardormation is different. However, the basis of
name mapping is always the same. For this reason, insteadldinlyg several times the name mapping system, we
decided to create a structure of generic environments wdaahbe instantiated by specific information to record for
each compilation pass.

Environments implementation is located in the ite/typing/env.ml

5.1 The generic environment

5.1.1 Environment “recording” structure

As previously stated, the core of an environment is to mapasaonto information. IffoCalize names can designate
several types of entities:

e Sum type value constructors (eNone, Some).

Record type field labels.

Types constructors (e.gqut , option ).

Values.

Species.

To ensure there is no conflicts between these different tgpentities, i.e. to be allowed to give a same name to
a record types field and to a type constructor or a value ifienten environment will keep separate name-spaces for
each type of entity.

As we stated before, an environment maps a namek@keonto an information (th@alue). Hence, thekey of
an environment being a name, it will be mapped onRaesetree.vname . Since we want environments to record
different values (to be polymorphic in fact), thalue will be a different type variable for each name-space.

Hence, the generic environments have type:

To create a module system, we need to wrap this core struagio® a module providing access to this structure,
i.e. search thealue bound to &ey: find and add binding of &ey to avalue : add. Obviously, we need these 2
functions for each name-space.

57



type (a, 'b, 'c, 'd, 'e) generic_env = {
constructors . (Parsetree.constructor_name * ’'a binding_origin) list
labels : (Parsetree.vname * 'b binding_origin) list ;
types : (Parsetree.vname * 'c binding_origin) list
values : (Parsetree.vname * 'd binding_origin) list
species : (Parsetree.vname * ‘e binding_origin) list
}

5.1.2 Principle of making an environment

We would like to directly create a functor taking as argunegemtodule whose signature implements the types of bound
information in each name-space for an environment and ¢igek a module providing the functiofiad andadd

for each name-space, in this environment. The idea is thappty this functor to a set of various modules to get the
scoping environment, the typing environment, @@aml and theCoq code generation environments.

This simplistic view fails because of the notion of “modtilése. in FoCalize compilation units.

In effect, since compilation units host definitions, they t@ seen as modules. Hence we need an extra function
to search inside “modules”. This will especially serve tokaip names qualified by the #-notation . For example the
identifier basics!int is bound in the modulbasics by the nament . Thisfind_module function doesn'’t
need to be visible in our generic environments since it oBlyes for internal purpose. It must conceptual take a
module name, an environment and return the “sub”-envirerim@mposed of all the definitions hosted by the module.
Thisfind_module function is then dependant of the type of the the name-spaehich to look-up in the managed
environment. On must havefihd_module  for when we look-up for values, one for when we look-up foragp
one for sum type constructors, one for record field labets, eThe problem is that “creating” the "sub”-environment
from the in formations contained in a module depend on thectire of information recorded in the environment.
This means that we can’t consider these in formations as arg/polymorphic since we know to know their structure
to build the "sub”-environment.

For this reason, we proceed in two steps, i.e. two functorse, BMAccess), will provide the “way to access”
the information kept agaluesin the environment. The seconiliéke) will take a module produced by the previous
one and glue the structure of the environment (i.e. in fazsociation list) with the access primitives provided.

5.1.3 EMAccess : accessing functions for an environment

module is required to have the signature:

The fields type definitionsonstructor_bound_data ,label_bound_data ,type_bound_data ,value_bound_data
andspecies_bound_data respectively represent the information the environmersranto names of sum type
value constructors, record field labels, type construct@isies and species.

Next come thdind_module function that looks for a “module” name (tAg/pes.fname option , we will
see later the reason of tlogption ) in the current environment and returns the environmentpomad of all the
definitions present in this module (compilation unit). Fectinical reason, some extra arguments are passed to this
function and we will explain their presence later.

Next come thepervasives  value that is the initial (may non-empty) environment camitey built-in bindings
that are needed. Note that this environment may be the empiypeament (i.e. containing no binding) is nothing has
to exist in a built-in way.

Next come a the functiomake value_env_from_species_methods whose purpose can be understood
once the module system is understood. Basically, this iomehust create an environment, populating the values
name-space with information extracted from the methodsspiezies.

Finally, the functiorpost_process_method_value_binding can also be understood via the module sys-
tem mechanism. This function takes a collection hame, anmdtion bound to a value and is applied on this infor-
mation. This function is called bijnd_value  to post-process the information bound to a value name ifeded

58



nmodul e type EnvModuleAccessSig =
type constructor_bound_data
type label_bound_data
type type_bound_data
type value_bound_data
type species_bound_data
val find_module
loc : Location.t -> current_unit . Types.fname -> Types.fname option ->
(constructor_bound_data, label_bound_data, type_bound _data,
value_bound_data, species_bound_data)
generic_env = ->
(constructor_bound_data, label_bound_data, type_bound _data,
value_bound_data, species_bound_data)
generic_env
val pervasives ©ounit ->
(constructor_bound_data, label_bound_data, type_bound _data,
value_bound_data, species_bound_data)
generic_env
val make_value_env_from_species_methods
Parsetree.qualified_vname - > species_bound_data ->
(constructor_bound_data, label_bound_data, type_ bound _data,
value_bound_data, species_bound_data)
generic_env
val post_process_method_value_binding :
Parsetree.qualified_vname -> value_bound_data -> value_bound_data
end

Table 5.1: Sample code for EMAccess signature

For sake of simplicity, we decide to group the types defingioepresenting information bound for each name-
space of an environment in a module. This is not mandatorgllmws a better structure of the code.

5.1.4 Make-ing the environment

This functor finally create the final environment structlirging the access functions provided by its argument (ef in
terfaceEMAccess) and the basic structure of generic environméat, ('b, 'c, 'd, 'e) generic_env ).

This functor must create a module whose signature contaiafstract type representing the environment, an ab-
stract value representing the empty environment (i.e. mgthinding), an abstract value representing the “pervasive
environment and finally, for each name-space a search &matid an extension function (i.e. a function that adds a
binding to an environment, then returning this environmeiti the binding “in front”). This means that an environ-
ment (dedicated to a “Blabla” processing) will have a sigratike (forget the noisy arguments we spoke about, like
loc , current_unit , we will check them in detail later) :

We address now some remarks aboutMake functor. This functor provides the environment accesstfans
that do not depends on the structure of data stored in theommuent. However, it uses the functions that depends on
that are provided by its argument module.

As a general scheme, for each name-spage, we have 3 functions:

e add_xxx : Adds a binding to the environment (exported function).
e find_xxx : Entry point to find the information bound to an identifier gexted function).
e find_xxx_vname : Find the information bound to Rarsetree.vname  (not exported). This function

is just an internal used bfind_xxx_vhame  once it decomposed the initially looked-up identifier into a
primitive Parsetree.vhame

59



nodul e BlablaEnv

sig
type t
val empty : unit ->t
val pervasives Dounit ->t

val add_value

Parsetree.vname - > Blablalnformation.value_binding_info ->t ->t
val find_value
loc : Location.t - > current_unit . Types.fname ->
current_species_name : string option - > Parsetree.expr_ident ->t ->

Blablalnformation.value_binding_info

val add_constructor . Parsetree.constructor_name -> Types.fnrame ->1t ->t
val find_constructor
loc : Location.t - > current_unit : Types.fname  ->
Parsetree.constructor_ident ->t -> Types.fname
val add_label : Parsetree.vname -> Types.fname ->1t ->t
val find_label
loc : Location.t - > current_unit . Types.fname -> Parsetree.label_ident ->

t -> Types.fname

val add_type
loc : Location.t - > Parsetree.vname ->
Blablalnformation.type_binding_info ->
t ->1t
val find_type
loc : Location.t - > current_unit . Types.fname -> Parsetree.ident ->t ->

Blablalnformation.type_binding_info

val add_species

loc : Location.t - > Parsetree.vname ->
Blablalnformation.species_binding_info ->t ->t
val find_species
loc : Location.t - > current_unit . Types.fname -> Parsetree.ident ->

t -> BlablaInformation.species_binding_info
end

Adding a binding

All the environment extension functionadd_xxx ) are quite simple, they just add a binding to the associdison

in field of the environment related to the right name-spacae @ay note that an added binding is always tagged
BO_absolute . This means that the binding comes in the environment frarcthirent compilation unit, opposite
as the tad30_opened that serves to identify bindings present in the environnaeretto aropen directive.

Looking for a binding (except for values)

Look-up functions are more complex, especially the oneilugplfor values. We now describe the general look-up
mechanism that is exactly the one usedffiod _label , find_constructor andfind_type

The first and simplest case is when the looked-up identifiesd® have any qualification. In this case, it must
trivially be searched in the related association list ofdhirent environment.

The second case involves a qualified identifier and is morgt®aThe principle is to split the looked-up name
into a scope specifier (a qualification) and a simple nameinstancefoo has no scope specifier and a simple name
equal to “foo”. Conversel\hasics#bar has the scope specifier “basics” and the simple name “baen;Tihom the
scope specifier (i.e. in fact an “module” name), we try to ldal(“sub”)-environment of this module. If the specifier
is None, then we will get back the current environment. It is in thsieonment that we will perform the search (like
in the first case described above since the obtained idemtdasn’t have anymore qualification) . Now, the point is to

60



check if we are allowed to accept to find a binding induced bggen directive. This is usually the case except if the
identifier has an explicit qualification equalone or Some (file)  wherefile is the current compilation unit.

The first point allows to recover an identifier defined in¢hierent compilation unit even if some opened modules
imported identifiers wearing the same name. This featuresigly relies on the fact that the parsmust parse
qualified identifiers like#foo as aglobal one withNone as qualifier. In other words, such an identifier means “the
related definition being at toplevel in the current complaunit”.

The second point simply states that if we are looking for dified identifier being in the current compilation unit,
then is must not be searched among identifiers imported bysabeodules.

Based on this information, we simply look-up in the assaaialist to find the related binding.

(* EE R R R R R R R R R R R R R R R R R *)

(** {b Descr} : Looks-up for an [ident] inside the types environnment.

{b Ren} : Exported outside this nodule. *)
(* khkkkkhkkhhkhhhhhhkhkhkhkhkhkhkhkhkhkhkhkhhhhhhhhhhhhhhhhhhhdddhddddddddhhhhhhhhhhxx *)
I et rec find_type ~loc ~current_unit type_ident (env 1) =
mat ch type_ident.Parsetree.ast_desc with
| Parsetree.l_local vname ->
(» No explicit scoping information was provided, hence *)
(* opened nodul es bi ndings are acceptabl e. *)
find_type_vname ~loc ~allow_opened . true vhame env
| Parsetree.l_global gvname ->
| et (opt_scope, vname) = opt_scope_vname gvname in
| et env’ = EMAccess.find_module ~loc ~current_unit opt_scope env in
(* Check if the | ookup can return sonething *)
(*» coming froman opened nodul e. *)
| et allow_opened = allow_opened_p current_unit opt_scope in
find_type_vname ~loc ~allow_opened vname env’

(* khkkkkhkkhhkhhhhhhhkhhkhhkhhkhhhhhhhhhkhhhhk bk hhkhhhhhkhhkhkhkhkkhkhkkhkkkkkkkk* *)

(** {b Descr} : Looks-up for a [vnane] inside the types environnent.

{b Rent : Not exported outside this nodule. *)

(* khkkhkkhkhkhkhkhkhhkhkhhkhhkhdhhhhhhkdhhkhdhhdhhhdhhhhdrhdhrhhhdhrdrhdrhdrhrdhhhxdxxx *)
and find_type_vname ~loc ~allow_opened vname (env ) =
try env_list_assoc ~allow_opened vhame env.types with

| Not_found -> raise (Unbound_type (vname, loc))

Table 5.2: Sample code for simple look-up function

Looking for a binding for values

This case is more subtle since it involves more kinds of ifiens, especially because of the “I-notation”. Processing
for local and global identifiersRarsetree.l_local andParsetree.l_global ) are the same as previously
described.

We must then address the case of finding a binding for a methtbdive “!”-notation (i.e.Parsetree.El_method ).
There are two different cases.

1. There is no species qualification before the !, or the §ipelcspecies iSelf . In this case then the searched
identifier must belong to the inheritance®dIf . First, this means that opened stuff is forbidden. Nextabee
thevalues bucket is so that inherited methods and our methods beloitgwe just have to search for the
vhame inside the current environment.

2. There remain the case where these is an explicit specadifiequdifferent ofSelf . We still have two cases.

61



(a) The specified species is the current species$etit , the real name of the current species). This may
arise because of substitution performed during typechedki species signatures. In this case, the search
is obviously the same than the previous case since it i/riedl the case where the qualifier$elf .

(b) In the other cases, we must recover the environment imevioesearch (i.e. the environment compound
of the definitions present in the species), according to éf $pecies is qualified by a module name.
Note that in this environment, all the imported bindings taggedBO_absolute . This tag allows
to make the difference between bindings introduced by tHimitdens of the current compilation unit
and those brought by opened modules. So if the species ischosta module (i.e. compilation unit),
we first get this module’s environment otherwise we keep timeenit environment. Then we look for
the species/collection definition. We transform all its digifbns into an environment via the function
EMAccess.make_value_env_from_species_methods . Finally in this environment, we look
for the binding of the method name.

This should be sufficient, but in case of scoping environmeststill have to modify the value bound to
our identifier. For this reason, we have an extra functiowidex by theEMAccess module that will be
finally applied on the obtained value. Currently, in the othrevironments, this function is the identity (do
nothing on the argument) since we only found a job to do in cdgbe scoping environment. We will
describe what this function really does in the case of thpisgoenvironment in its dedicated section.

5.2 Scoping environment

The scoping environment provides information required dmpute the scope of an identifier. In other words, it
enables to state the extend in the program where an idengifisible. The aim is to prevent name confusion and to
ensure that names are identified by (i.e. related to) onlydefieition.

5.2.1 TheScopelnformation module

We first look at the information bound to each name in the thffié name-spaces.

Sum type value constructors
Since these identifiers are always introduced by type digisitthat are at toplevel, we only need to remind in which
compilation unit they were introduced, hence hosted. Theorestructor will be bound in the environment to a
compilation unit name.
Record type field names
For the same reason than for the sum type value construBecsyd type field names are bound to a compilation unit
name.
Values
Information bound to value identifiers is more complex siiteeust depict the different cases of identifiers.

e SBI_file  The identifier is at toplevel of a file (including the currem¢¥i We record the file name.

e SBI_method_of self The identifier is a method implicitly ddelf .

e SBI_method_of coll The identifier is a method explicitly of a collection. We red¢ahe fully qualified
name of the collection.
Attention: while inserting a method at its definition point in the eoviment, it must always be tagged with
SBI_method_of_self . The tagSBI_method_of coll can only be returned by
find_value  who may perform a change on the fly if required.

e SBI_local The identifier is locally bounddt or function parameter).

62



Types
Type constructors may be separated in two categories:

e TBI_builtin_or_var The type identifier is either a type variable narige or instance) or a built-in type.
In these two cases, the constructor is not hosted in a typaititwfiin a particular compilation unit. In effect,
type variables arise during the type-checking process amahat attached to a particular type definition. In
fact, a type variablés not a type constructor and only this justifies the fact is doelalbng to a particular
compilation unit.
On the other side, we allow the possibility to have builtyipeé constructors in thEoCalize language. This
means that we can have type constructors related to no tyfmétide written asFoCalLize. In this case, the
compiler must deal internally with this type constructour@ntly this feature is not used since even basic types
constructors likent , bool , char , ...have a regulafoCalize (external) definition.

e TBI_defined_in The identifier is a type constructor name defined at topleyel type definition in a file.
We record the hosting compilation unit.

Species

Data recorded for species is the most complex. It must defiiet scope of the species name itself, but also give
information about the methods and parameters availabtridgfr this species. For this reason, we have a record
grouping several things.

First, (spbi_methods records the list o&ll the methods names owned by the spedieduding those added
by inheritance. Methods however appear only once and are ordered from tlsenexent ancestor are in head of the
list. In case of multiple inheritance, we consider that @taes are older from left to right.

Next, we record information about the species’s paramdsgisi params_kind ). For each parameter we
simple record if it is a collectiongPK _is ) or entity (SPK_in ) parameter.

Finally (spbi_scope ), we record if the current species is defined at toplevel immagilation unit SPBI_file )
or is a collection parameter of another speciBBEI_parameter ).

5.2.2 TheScopingEMAccess module

This module provides the functions we previously statedelp the generic environment module to access the infor-
mation stored in the environment. We have 2 functions toansp

The functionmake_value_env_from_species_methods simply takes the list of the method names of the
species and add them as methtafsthe species” passed as argument (usageS&l_method_of coll ) in the
valuesname-space. Here the insertion explicitly shows that thihaaks inserted in the environment are those of a
particular species, not &elf . Moreover, the methods are tagged®3 absolute to say that by default they do
not come from an “opened” module since we consider that mahdspecies comes from an “opened” module, but
not its methods who are hostedthe species.

The functionpost_process_method_value_binding is important for the scoping environment (and in
fact, currently we have such a function in the interfac&edfAccess only because we need to make a special job
in the case of the scoping environment). Its job consistshenging the tag of the methods of the species from
SBI_method_of_self to SBI_method_of_coll . In effect when we create a species, its methods are tagged
as being “ofSelf ”. But when we load the methods of this species in an envirariwe must say that these methods
are not belonging to the currently processed species bbedwaging to the species from which we loaded the methods
in our environment.

For example, let's examine the following source code: Wherargescoping in the Speci&€sthe methodnethl
we encounter the expression (identifi¥Ymeth2 . To scope this identifier we need to get the list (i.e. a “sub”-
environment) containing the methodskiin order to search for the nameeth2 among them. WheR was “created”

(in fact when it was scoped) we inserted in its scoping dpsori the fact that it had a methadeth?2 ... of Self
(yep, insideP, meth2 is really a method o$elf ). So it was tagged wit8BIl_method_of_self . Soif we insert

63



species S (P is ..) =
l et methl (x) = ... Plmeth2 ...
end ;;

}

straight-line this information in our environment, whileoping our specieS we will see that there exists a method
meth2 ...ofSelf ,i.e. of Swhich is wrong. For this reason, we must change the tageth2 before inserting the
binding in our environment.

5.3 Typing environment

The typing environment provides information required tpeicheck the program, i.e. to infer types where they are
not written, to check that explicitly written types are amtrand to annotate the AST with the type found type of each
AST node. Moreover-oCal.ize requires more than type-checking “a la” ML. We will also regtinformation about
dependencies.

5.3.1 TheTypelnformation module

We first look at the information bound to each name in the déffi€ name-spaces. We will speak herdygfe and
type scheme The different between them will be exposed later while enéisg the type-checking process. Let's
intuitively say that aype schemé a “template” from which one can extractypeby “instanciation” of the scheme.
So inexpressionsonly typesare presentype schemeare bound talefinitions.

Sum type value constructors

A sum type value constructor is considered as a functiom¢pkis many parameters as they have arguments and
returning a value whose type is the one hosting the consir(ict. the current type definition). For example: leads

type t =
| A
| B of (int * bool)
| C of (int, bool)

to 3 value constructors of typeg: t ,B : (int  * bool) ->t andC: int -> bool -> t . Note the
difference betweeB andC: the first one take 1 argument that is a pair, the second takgulnents.

So, for each constructor of a sum type, we record its typemsehiestr_scheme ) and if it has arguments or not
(cstr_arity , that can beCA_zero or CA_some).

Later, to type-checking an expression using a construgpliedd to some arguments, we will simply simulate a
regular function application and type-check this appiaatike any other one. That the reason why we also need to
know if the constructor has argument(s) or not since if itiaise, there is no application to simulate: the constructor
in not a function but a value with the right type directly.

Record type field names

In the same idea than for sum type value constructors, addgpe field label will be considered as a function taking
1 argument whose type is the type of the field an returning @evehlue whose type is the one hosting the field label
(i.e. the current type definition). For example: leads tolRedield labels of typedbll: int -> t andlbl2

string -> t

64



type t = {
Ibll : int
Ibl2 : string }

So, for each field label, we simply record its type schefied scheme ). We also record if the field is
mutable or notfield_mut ) but this features is not used (for extension purpose) dhugeal ize doesn’t handle
mutability (i.e references).

Values

Values are simply bound to their type scheme.

Types

Type constructors must be bound to more complex informatioce they must exhibit the kind of definition they are
introduced by. We have 4 kinds of definitions:

e TK_abstract The constructor represents an abstract definition, i.ep@awhose values are not introduced
by the definition itself. For instanc@t is abstract since its values do not appear in the type definithey
are built-in in the compiler. Type abbreviations are alsodied this way. This means that definitype t =
(int * string) create atypé thatis abstract. Since there is no value and no structuoeni#tion in the
definition, we do not need to record anything special.

e TK external The constructor represents a type whose representatiomplisity provided for external
languages. In other words, we importkioCalize types from (an)other language(s). We record on what this
constructor must be mapped in the various foreign langyaigesalue constructors or field labels if some exist
that can be used dfoCalize’s side and on what to map them in the various foreign langsiage

e TK variant The constructor represents a sum type definition. Henceesalre given in the definition’s
structure itself. Hence we record the list of value constmunames with for each its arity and its type scheme
(in fact these 2 things are the same than recorded for eagh wahstructor in the related name-space).

e TK record The constructor represents arecord type definition. Hdiste Jabels are given in the definition’s
structure itself. Hence we record the list of these fieldsesmwith their type scheme and their mutability (like
for sum types value constructors, these 2 things are thoeeded for each field label in the related name-space).

Species

The structure of information recorded about species igypoeimplex since it must depict the complete species struc-
ture, most importantly the parameters and all the methad§ but some other additional things used during type-
checking stage.

e spe_kind Describes if the species is a toplevel collecti®CK_toplevel_collection ), a toplevel
species $CK_toplevel species ) or a collection parameteBCK_species_parameter ).

e spe_is_closed This boolean tells if the species if fully defined (even if twned into a collection). This
information will be useful to known when collection generatmust be created.

e Spe_sig_params The list of descriptions of the parameters the species hdsyed the same way they
appear in the species definition (i.e. the left-most in hefatth® list). We will examine the structure of this
information a bit later.

65



e spe_sig_methods The list of description of all the methods of the species. Weexamine the structure
of this information a bit later. One may note that like for gz information, all the methods are present, i.e.
the inherited also, once and in the inheritance resolutrolero This way, the methods represent the “normal
form” of the species as described in the theory.

e spe_dep_graph We record here the dependency graph of the species’ metltteisce, this deals with
methods “ofSelf " and represents def and decl-dependencies. This doeshitlimdependencies on collection
parameters !

Species parameter information SinceFoCalize provides 2 kinds of parameters we have 2 types of information
record:

e For entity parameter§SPAR_in, we keep the parameter's name, the collection represeitsirigpe and the
flag telling if this collection is a parameter, a toplevel dlilee for the fieldspe_kind of a species description
seen above).

For examplespecies S (Nat is ..., n in Nat) will record forn that its name isih ", its type is
Nat and that this type is from a collection that is a collectiongpaeter (i.e.SCK_species_parameter )
and not a toplevel one.

e For collection parameter§PAR _is we record more information, especially things that haveaaly be com-
puted about the species the parameteisis’in order to have a quick access to information instead offmating
it each time we encounter a collection parameter of a ceftgie”. To base our presentation let’s take the case
of the species taken just above for the entity parameters.

— We record the name of the parameter with its compilation maibhe. In fact, this will be the “type” of the
collection this parameter makes available in the hostiregigs. In our examplé\at is both the name
of the parameter and the type that uniquely represents fleetion is bring. In effect, to use methods of
this parameter, we will usdat!xxx . By adding the compilation unit name, we exactly build a &yqf
species” like we use anywhere else in the compiler.

— Like for entity parameters we record the flag telling if theses the parameter iss"” a parameter, a
toplevel collection or a toplevel species. In our exampdepaning thalNat is a species defined somewhere
else, we would have8CK _toplevel species

— Next come the list of all the methods descriptions the patantes. This list is exactly of the same type
than the list that describes a species methods (whosews&weill be examined just after). Itis in fact the
normalised form of the species methods the parameter has.

— Since a collection parameter “is” a species expressionpnigta simple identifier (for example2 and
P3inspecies S (Pl is ..., P2 is T (P1), P3 is U (P1, P2)) = ... who
are built by applying arguments to parametrised speciesnust record the complete species expression
denoting what “is” the parameter. Instead of directly relong the AST part representing the expression,
we translate it into a custom type.

In effect, in the AST, expressions used to represent speg@®ssions are general expressions for sake
of parsing technical issues. But in fact, due to the strectithe syntax, only a few kinds of AST nodes
can be created. In particular, expressions coming out frenparser have restricted forms (invariants due
to the syntax). Hence, instead of always assuming theseiamts hold in the expressions representing
species expressions, we prefer to convert them in a dedisatecture, more restricted than the general
expressions, to enforce these invariants to hold diregtlyhke type of the structure. For this reason, we
record the species expression under the form of a

Parsetree_utils.simple_species_expr

66



Method information Depending on the kind of the methods we have different stures to record. In any case,
we always record the history of the method, i.e. where it weisydd and from where and how it was inherited until it
arrives in the current species (structén@m_history ) and its name. The kinds of method are basically sumarised
by the typespe_sig_methods and can be:

e SF _sig represents a signature. since we do not have anything memeattype for this method, we keep it as
a type scheme.

e SF let represents ¢t definition, either “computational” or “logical”’. We recottthe list of parameter
names of the definition (if it's a constant, then this listispy), the type scheme of the definition, its the body
(“computational” or “logical”), a termination proof if itdss some, a structure telling if during type-checking we
detected def and decl-dependencies on the carrierefmmesentation ) and finally the flags found in the
AST telling if the definition wadogical  and was recursive.

e SF_let rec Here is a list of information identical to what we store 8 _let , one for each recursively
defined functions (i.e. only 1 element in the list if there @mutually recursive functions).

e SF_theorem represents a theorem definition. We record the mapping efigpiables found in thiorall
andexists " in the property’s logical expression onto their name. Tikia technical point. In fact, theorems
and properties do not have a type scheme. Their “type” is thgical statement. However, it is possible to
have universally quantified type variables appearing ireartdim statement. Without a type scheme we are not
able to technically instanciate these variables in a ctergisvay. To we patch this leak of scheme by recording
for each universally quantified type variables, what identin the statement has this type. Next, we record
the logical statement of the theorem, its proof, and likeSbr let , information on dependencies found on the
carrier.

e SF_property represents a property definition. We record the same infilom#han for a theorem, except
the proof since a property doesn'’t have any proof.

5.3.2 TheTypingEMAccess module

The access module for the typing environments is quitestrivihe functiormake_value_env_from_species_methods
works simply inserting the methods of a species in the valigkét like it's done for the scoping environments. The
only point is that since theorems and properties no do haypeadcheme, we insert them with a trivial type scheme
whose body (core type) is simpprop .

The functionpost_process_method_value_binding is trivial and is the identity. In effect, we do not
need any post-processing like we needed for scoping emaeats.

5.4 OCaml code generation environment

TheOCaml code generation environment provides information reguioegenerate the targé€tCaml source code.

5.4.1 TheMIGenlInformation module

We first look at the information bound to each name in the diffié name-spaces.

Sum type value constructors

In this bucket, we only record on which string a sum type valuestructor that has been introduced by a type definition
involving an external representation must be translatedOCaml.

For instance, iOCaml, Nil will be mapped ontg] andConsto( :: ) . It may be clearly noticed that for
OCaml, only constructors coming froraxternal sum types are entered in the generation environment. Héree,
constructor is not found, then this means that it comes froegalarFoCalize type definition, not dealing with any
external material, hence must be simply translated@@aml using the name given iRoCalize side.

67



Record type field names

FoCalize's records are generated as real records in the target lgagublence, we only need to remind the name on
which to map each record field name of #f@Calize type definition. Conversely to the sum type value constisgto
all the record field labels are recorded in the environment.

Values

For OCaml code generation, we do not need any information about valdesce, the type of the bound values is
trivially unit . But in fact, we will never enter values not look for valuesirch an environment.

Types

Types also do not need any information to be generated. Hémaeare handled like values above in term of environ-
ment.

Species

For species (and collections) we must find a way to know thathods and other information coming from the
dependency computation. All this is recorded in $pecies_binding_info structure below:

e The list of parameters (collection and entity) of the speeigh their kind. This information is the same than
the one stored in the type-checking environment.

e The list of methods the species has. This information is #raesthan the one stored in the type-checking
environment. Remember that is represents the methodsnpiagbe normal form of the species, i.e. with not
double, with inheritance resolved and in the right ordeipf@vent dependency issues).

e An optionalcollection_generator_info describing, if available, the structure of the speciedemion
generator. This generator is optional because speciesatbaton fully defined do not have any collection
generator although they are entered in the environmente@tr data is used to prevent computing several
times (in case where several collections are built from aesaesed species) and contains:

— The list of species parameters names and kinds the specisewhbllection generator belongs to has. This
list is positional, i.e. that the first name of the list is tteme of the first species parameter and so on. The
kind of a parameter is the same thing than the one recordée iscoping environment.

— The list mapping for each parameter name, the set of methedsollection generator depends on, hence
must be provided an instance to be used. Note that the list iguaranteed to be ordered according to the
order of the species parameters names (that’s why we haueftimenation about this order given in the
first component of thepecies_binding_info structure we are globally describing).

e Finally, aflag telling if this information is bound to a spesiCOS_species oracollection COS_collection ).

5.4.2 TheMIGenEMAccess module

The access module for tl@Caml code generation environments is really trivial. The fumecthake value_env_from_species_meth
has no meaning fadCaml code generation environments because we do not providignehwalue  function and
that’s this function that requiresake_value_env_from_species_methods
The functionpost_process_method_value_binding is trivial and is the identity. In effect, we do not
need any post-processing like we needed for scoping emagars.

68



5.5 Coq code generation environment

The Coqg code generation environment provides information regutcegenerate the targ€oq source code. Its
structure will be pretty close to tHteCaml environment. Most of the differences are induced by theiexplolymor-
phism inCoq (that imposes to keep trace of polymorphic type variablad)lay the presence of logical methods (i.e.
theorems, that were discarded@Caml).

5.5.1 TheCoqgGeninformation = module

We first look at the information bound to each name in the diffié name-spaces.

Sum type value constructors

The idea behind information bound to sum type value congirsds about the same than @Caml. We want to
know if needed on what string to map a constructor name ifrit&®from an external type definition. But we always
need another information to handle polymorphic constmscto

In effect, inCoq a polymorphic function (because constructors are funstinrfact) must be provided one extra
argument for each polymorphic type variable appearingertype of the function. This argument must have tggé
and be provided at application-time, like the other remmgjr(regular) explicit arguments of the function definition.
In fact, Coq can infer the value of these arguments and we can simply us@uaderscore) in place of these extra
arguments at application-time. However, we need to know hmmy s must be generated (i.e. how many extra
arguments the constructor has due to its polymorphism).ifstance, the typé defined inCoq by: introduces 1

Inductive t (alpha : Set) : Set :=
| A: (alpha -> (t alpha)).

value constructoA with not 1 argument, but 2 ! If we want to creaté aalue parametrised by the intedier

Cog < Check (A 1).

Toplevel input, characters 9-10:

> Check (A 1).

> N

Error. The term "1" has type "nat" while it is expected to have type "Set".

To have a valid application, we must add onbefore ourl, like in:

Coq < Check (A _ 1).
A nat 1
: t nat

We could be more explicit by directly providing the value loéffirst argument that is in our casat :

Coq < Check (A nat 1).
A nat 1
©t nat

but sinceCoq knows to infer it, we prefer le€oq doing the work (type-checking get simpler BaCal.izes side).

For this reason any sum type value constructor is recordéatianvironment with an optional mapping to a name
on Coq side and the number of extra arguments it must be apply toaltettype generalised variables appearing in
its type.

Record type field names

Record type field names are handled like&d@aml.

69



Values

In the same order of idea than for sum type value construetereeed to record the number of extra arguments to
apply (when the value is functional) due to polymorphic typgables present in the value’s type.

Moreover, for technical reasons duedenon, we also need to remind if the value is a toplevel propér§ (toplevel_property
with its logical expression body), a toplevel let-boundueal(VB_toplevel let bound ) or something else
(VB_non_toplevel ).

Types

Like in OCaml, types also do not need any information to be generated.

Species

Species are bound to exactly the same information than tieeiyp ®@ Caml code generation environments.

5.5.2 TheCogGenEMAccess module

The access module for t@Caml code generation environments is pretty simple and workstkyxbke for type-
checking environments.

70



Chapter 6
Scoping

The scoping process aims to link each identifier occurremds telated definition according to the rules that drive the
visibility of identifiers. It avoids name confusion and eresthat each occurrence of identifier refers to one and one

unique effective definition.
Ideally, once scoped, a program should have unique namesdbridentifier (i.e. a name plus a stamp that ensure
the unicity). For example in the following piece of code:

let y =0 ;;
let x =
let x =1 1in
let x =x+1 in
let y =x+ x in
y + X in

y + X 53

scoping rules allow to uniquely identify identifiers by remiag them in:

o

This way, each occurrence has a clearly identified defingiooe if two identifiers have the same name then they
refer to the same definition. Moreover, this ensure thahalldccurrences have one and one unique related definition,
hence preventing unbound identifiers.

Moreover, since compilation unit can bepgen -ed”, some identifiers can be used without explicit qualtfara
then looking like belonging to the current compilation ualthough they belong to another one. Scoping also allow to
“rename” identifiers belonging to amfen -ed” unit to make their hosting unit clear by adding a quaifion.

In FoCalize, we do not rename the identifiers with indices. Instead, wkenthey qualification explicit. The
case where two identifiers with the same qualification aregureis handled by the environment mechanism that will
hide the oldest identifier definition by the newest accordmtheir order in the source code. In fact, in the case of
toplevel definitions in a same compilation unit and methods $ame species, the environment mechanism refuses to
have several times the same names. This is not a technidadeprpthis is only a choice to prevent the programmer
from masking these fundamental kind of definitions.

Hence the output of the scoping pass is an AST where all thifeies occurrences received a qualification if
they are not locally bound. This means that by default, thregramust parse identifiers that are not qualified (i.e.
with no #-notation and/or no !-notation) kxcal identifiers (i.e. asParsetree.l_local ). This means that during
scoping, onlyParsetree.l_local identifiers will be affected by the scoping transformatidmcal identifiers
will be looked-up to determine whether they are really lamaére method names or toplevel (of a file) names. The

71



transformation is not performed in place. Instead, we resufresh AST (still possibly having sharing with the oridina
one) that will be suitable for the typechecking phase.

For identifiers already disambiguated by the parser, thex@ &ases: “#-ed” and “!-ed” identifiers. The scoper
will still work by ensuring that these identifiers are reakyated to an existing definition.

e For “#-ed” identifiers, the look-up is performed and they algays explicitly replaced with the name of the
hosting file where they are bound. Hence in a current conipilainit “Kikoo™, then #test ()  will be
replaced byKikoo#test () if the functiontest was really found inside this unit. If it was not found, then
an exception is raised.

e For “l-ed” identifiers, the look-up is performed but no charig done. If it is like!test() , then it isnot
changed t&elfltest Il Only a verification is done that the method existSelf . Ifitis like Collltest
then also only a verification is done that the method exis@&alh .

The scoping heavily uses the “scoping environment” stmectlescribed in 5.2. Scoping is performed on each
phrase of the source text, in the order of apparition of thpsases. Hence we have to scope phrases among doc-
umentation titleuse directive,open directive,coq_require  directive, species definition, collection definition,
type definition, toplevel value definition, toplevel thearédefinition and toplevel expression. For each scoped phrase
thenew environmentmade of the initially received one extended by the new scaoeéiditions is returned. We don’t

return only a delta: we return a complete usable new enviesim o . _
Most of the scoping functions use a parameter named a “ctinixs structure is intended to group into 1 unique
parameter various values (that would otherwise be as manayrders) the scoping functions will mostly always use.

type scoping_context = {
(** The nanme of the currently analysed conpilation unit. *)

current_unit . Types.fname

(** The optional nanme of the currently anal ysed species. *)

current_species . string option

(** The list of "use"-d (or open-ed since "open" inplies "use") nodul es.
Not file with paths and extension : just nodul e nanme (ex: "basics"). *)

used_modules : Types.fname list

6.0.3 Scoping aruse directive

Scoping ause directive returns an unchanged environment. It simply atlds‘used” module to the list modules
allowed to be used of the current context and return a newegbwith this extended list. The point is only to mention
for the rest of the scoping passe that qualified identifietk this module as qualification is now allowed.

6.0.4 Scoping aropen directive

This directive has no to be really scoped. Instead, it haswact on the scoping process and more accurately on the
scoping environment. In load in the environment the scopifgrmation of the identifiers contained in the opened
compilation unit, tagging then &0_opened like seen in 5.1.4. Hence all the imported identifiers willkmewn as
possible definitions to use as “origin” of an identifier oagemce, according to the scoping rules.

6.0.5 Scoping a species definitiors¢ope_species_def )

Before scoping a species, the first thing is to pass a modi@ietegt in which we record that we are inside this species
(field current_species on the context.

The scoping environment of a species will be gradually edgenas long as we process its components: we
must first add the parameters of collection and entity inrtbeder of apparition then import the bindings from the
inheritance tree, and finally local bindings will be addedile/lscoping the species’ body (fields). When scoping
involves searches in the environment, searches must bemdmefollowing order:

1. Try to find the identifier in local environment.

72



. Check if it's a parameter of entityif ) or collection (“is ).

2
3. Try to find the identifier throughout the hierarchy.
4. Try to find if the identifier is a global identifier..

5. “Else”...not found!

So the order in which the identifiers are inserted into thérenment used to scope the species must respect extensions
in the reverse order in order to find the most recently addedigs first.

Hence we first scope the species parameters. Once they aedseee get an environment where they are bound
to their scoping information.

Using this new environment, we now scope thieerits  clause, i.e. the inheritance. In addition to the scoped
inheritance expression, this will give us bake the namebh®fitethods we inherits. This is especially useful because
we must add them into our environment before scoping the adsttiefined in this species. Indeed, the bodies of these
defined methods may make reference to identifiers correspptmlinherited methods.

Once these inherited methods are added to the current emart, we can scope the defined methods in this new
environment. Each scoped method is added to the envirorusedtto scope the remaining methods.

Once all is scoped, we create the scoping information foispeeies itself and add it to our initial environment
(not to the one where we gradually added parameters, me#tiodsince they do not need to be visible outside the
species). And finally, in the type bucket of this environmeve add the type corresponding the the species carrier.

We then return the scoped species definition and the newosmuant where the species and it carrier are bound.
This new environment is not a delta, it is a complete "albime” environment suitable to scope the remaining phrases
of the source file.

Scoping the species parameters¢ope_species_params_types )

The species parameters (i.e. collection and entity paexs)edre scoped in their apparition order, adding the sgopin
information of each one to scope the next ones. We have tvesadgparameters.

e Entity parametea in C(...) : we must scope the collection express©f)..)  the parametea is “in ”.
To do so, we use the current scoping environment. Once tHextion expression is scoped, we must insert in
the environment the name of the parameter (hAr&ince it is avalue (whose type will be the carrier of the
collection expression), we add it in the values bucket ofetindronment.

e Collection parameteP is C(...) we must scope the collection expressiof..) . This gives back
the scoping information (with methods names list) of thipression. Because collections and species are not
first-class values, the environment extension will not bieedio the values bucket. Instead, we must extend the
environment with a “locally defined” collection having thense methods than those coming from the collection
expressionC(...) . So from the obtained scoping information (with method$) l&f this expression, we
create a fresh species scoping information that we bindég#rameter name in the environment. Then,
because a species induces a type by its carrier, we insés type bucket of the environment a type constructor
representing the carrier of the parameter (here aB®pe

The scoping of a parameter returns the extended enviroraneinthe scoped version of the list of parameters.

Scoping the inheritance clauseqcope_inheritance )

Scoping the inheritance is done by scoping each collectpnession in their order of apparition. Like we saw for
species parameters scoping, scoping a collection expressiurns the scoped expression and the list of the methods
names this expression has. Hence, for each parent, wetdbkegbtained scoped methods. They will be later inserted
in the environment to scope the remaining of the speciese tat we don’t need to add the methods found of a parent
to scope the next parent in the inheritance list. When alkticefiected will have to be inserted in the environment, we
must take care to insert first those of the “left-most” paiertheinherits clause, going on from left to right. This
ensure searches in the environment will comply the inhecgaesolution order dfoCalize. During insertion in the

73



environment, because these methods are inherited, theyaremethods of ourselves, hence methodSealf and

they must be inserted &Bl_method_of _self I The change needed to say that one of these methods is a method
of the “current collection™s name, i.e. toggling the flag3&I_method_of_coll will be done during accesses in

the environment (bfind_value ).

Scoping the defined methodsscope_species_fields )

To scope all the defined methods of the species, we scope e&tinfits order of apparition, then add the obtained
information about it in the environment used to scope theairing methods.

Scoping a method is done by scoping its bodPéasetree.expression ) then returning this scoped method
and the scoping environment extended by a binding betweemigthod and the computed scoping information. One
must note that depending on if the method is recursive, weansest its name in the scoping environment before
scoping its body or not. If the method is recursive, we pseity otherwise no.

Scoping in general, scoping other constructs

For each used “identifier” occurrences (i.e. structuresrfaresent identifiers since we have several kind<i@al -
ize), we look-up in the scoping environment for information abthis identifier.

Depending on the form of the identifier, we either re-builgleitly a scoped identifier with explicit qualification
(case ofParsetree.expr_ident ) or we simply check that the identifier is really bound (casieentifiers where
qualification is already built-in in its structure).

Depending on the class of the identifier (value, type, refield. . .) we look-up in the related bucket in the scoping
environment to get the required information.

The interesting function in scoping$soped_expr_ident_desc_from_value_binding_info thatin
fact re-build arexpr_ident_desc from the inner simple name (i.&name) found in anexpr_ident  and the
scoping information bound to this name in the scoping emnvirent.

74



Chapter 7
Type-checking

The type-checking pass performs in fact several importsks. It obviously infer the type of each expression and
construct, but it also performs inheritance resolutionnpate dependencies on methodsSaff (def and decl-
dependencies), ensure that the species are well-formesioahthe methods in order they are properly ordered. Once
the type-checking pass is ended, a processed species geisnial form, i.e. with all its methods present once,
inherited and defined ones having been consistently putitege

This especially means that at each inheritance step, amyespissued by the type-checker has all its methods:
the inheritance disappears from the species structureioGdly, the still have means to know about the inheritance
history somewhere, but all the methods, inherited, defided|ared are always all together in a species in normal
form.

In other words, considering only the bunch of methods a ggedeas, there is no difference between a species
having them via inheritance and a species having them imitsaurrent body with no inheritance.

This point is especially important since it allows to induely be sure that if one inherits of a species, then in just
one shot we know which methods we have inherited: there iseied to walk again along all the inheritance steps.
Then, we can says that we inductively build the normal forrepecies all along the inheritance tree. This point allows
faster searches and prevent from having information digsged in several place which would be more difficult to
maintain.

In fact, the scoping pass already used a similar way to ph¢eeping for each species the list of all the methods
it had, either in its own body or by arbitrary inheritance.

The output of the typing pass islafer.please_compile_me structure in which we have both the AST
of the definitions and information computed during typindhisTstructure will then be passed to the “abstraction”
stuff (directorysrc/commoncodegen ) to compute extra dependency information and group all g#peddencies
together and factorise some computations required by cedergtion (more especially, what to lambda-lift and to
instanciate). This “abstraction” pass is called beforéirmathe code generation by each code generator back-end (in
fact, called by each target code generator).

We will now examine various points of this typing pass.

7.1 Type inference

7.1.1 Where to record type information in the AST ?

Type inference is the process of guessing the type of eadlessipn, each definition of the source code. In fact, in
FoCalize, types are partly inferred, partly given by the programnfignatures are a way to make types explicit
by giving annotations. However, at each node of the AST,dypast be infer-ed to finally label the node. In effect,

the first output of the type-checking pass it a “typed ASTE, ithe initial AST with each node now having its type

recorded in the node itself.

75



As defined in the source filsasement/parsetree.mli , an AST node is a generic data-structure containing
a specific description:

Generic AST node

type ’'a ast = {
(** The location in the source of the AST node. x)
ast loc : Location.t
(** The description of the node. *)
ast desc : 'a;
(** The support for documentation. x)
ast_doc : documentation
(** The type of the node. )
mutable ast_type : ast_node_type_information
}

Hence, a node containing an expression (hence ofRPgrsetree.expr ) will be built by something like:

An “expression” AST node

type expr_desc =
| E_self
| E_const of constant
| E_fun of vname list * expr
|

type expr = expr_desc ast

In the generic data-structure of the node, the fagdtl type is used to record the type inferred for this node.
Since we want to keep the same AST structure all along the itatiop process, we use a mutable field for the type

because initially, after lexing/parsing and scoping, thpetis not yet known. So, the type-checking pass will modify
the value contained in this field for each node of the AST.

According to the source filbasement/parsetree.mli , values for this field can be:

An “expression” AST node

type ast_node_type_information =

| ANTI_non_relevant (** The node has no neaningful type information.
However, it was processed by the type-checker. x)
| ANTI_none (** The node was not yet processed by the type-checker.

Clearly, after the type-checking pass, no AST node
should remain with this tag in the [ast_type] field of
the node ! x)

| ANTI_type of Types.type_simple (** The type infornmation is a type. Mstly
used to | abel expressions. x)
| ANTI_scheme of Types.type_scheme (** The type information is a type schene.

Mostly used to | abel definitions. =)

Before type-checking is done, all the node of the AST have tet_type field worthingANTI_none . Once
the type-checking pass is done, no AST node should remamtki tag. If some do, then is must be considered as a
bug (node forgotten during processing) of the compiler.east, when a node does not require a type information (for
instance, the AST node ofapen directive), it must however be traversed by the type-cheakd must be updated
with the ANTI_non_relevant  value.

7.1.2 Types and type schemes

Like in regular ML-like type-checkers, expressions areigaesd “types” although definitions are assigned “type
schemes”. The difference is due to the ability for definisido be polymorphic and to be instantiated differently
at each usage occurrence. In effect, an expression exigtgyirone point. So it has ortgpe, that's all. A definition
leads to a “template” of types, where polymorphic type \alga car be instantiated as wished each time the identifier
bound by the definition is used. For this reason, a definisdround to a “model” of types, a “family” of type, that is
usually called @aype scheme

76



Then atype scheme is in fact a list of polymorphic type vdeisland a body that is a type expression. For instance,
the ML-like type scheme (possibly bound thist.map function)(a -> 'b) -> ’a list -> ’'b list
will be represented by the list of it's 2 type variables and’b and its body that is the expressifa -> ’b)
-> 'a list -> b list . Infact, in a type scheme all the polymorphic type variallesmplicitly quantified
universally. The “implicitly” is the reason why itis so difficult for therpgrammer to really see the difference between
a type and a type scheme. For the above type scheme, we skowldrb explicit and better write:

V'a,'b . (a ->'b) -> 'a list -> 'b list

If we now have a look at the following expressiohistmap (fun x -> x + 1) , then the expression
(i.e. the identifier nodelist.map  will have thetype ('t -> 'u) -> 't list -> 'u list (in which
we intentionally changed the names of the types variabletdov that they araot the samethat those of the type
scheme). This type expression contains 2 variattlesnd’u that will be unified during the type-checking of the
whole application expression (unified witht in the current example).

In FoCalize, type schemes are compound of the list of the polymorphie tgsiables that are its parameters and
the type expression that is its body:

An “expression” AST node

type type_scheme = {
ts_vars : type_variable list ; (** Paraneters in the schenme. x)
ts_body : type_simple (** Body of the schene where generalized types
have a |l evel equal to [generic_level]. *)

7.1.3 Working “in place” with substitutions

The type-checking algorithm of ML-like languages is oftéataed using the notion of MGU and using substitutions.
In FoCal.ize, the effective inference algorithm uses techniques mdigegit in practice than regular substitutions to
manually apply and combine on the type terms. Instead, wé& tomplace”, by taking benefits of sharing between
type sub-terms to simulate the substitutions by direct jglaysnodifications inside the terms.

The full description of this technique is outside the scopie present document, but a clear and efficient expla-
nation can be found in “Le langage Caml” written by Pierre $\&aid Xavier Leroy.

The idea is to represent the types by terms that can be pHyssbared, with type variables that can be directly
assign a value. Hence, as described in the sourckedgdement/type.ml , our type algebra is:

An “expression” AST node

type type_simple =

| ST_var of type_variable (*+ Type variable. x)

| ST _arrow of (type_simple * type_simple) (** Functional type. *)

| ST_ tuple of type_simple list (** Tuple type. *)

| ST_sum_arguments of type_simple list (*+ Type of sumtype val ue

constructor’s argunents. To
prevent them from bei ng
confused with tuples. =)
| ST_construct of
(*+* Type constructor, possibly with argunments. Enconpass the types
related to records and sums. Any value of these types are typed as
a [ST_construct] whose nane is the nanme of the record (or sum

type. *)
(type_name =+ type_simple list)
| ST_self_rep (*+ Carrier type of the currently anal ysed species. *)

| ST_species_rep of
(*+ Carrier type of a collection hosted in the specified nodule. *)
(fnrame * collection_name)

and type_variable = {
(** Binding |evel of the type. =)

77



mutable tv_level ©oint
(** Value of the type variable. *)
mutable tv_value . type_variable_value

}

and type_variable_value =
| TVV_unknown
| TVV_known of type_simple

The algebra describes the built-in type constructors ane interestingly for our explanation, tiygpe variables
We can see that in the type algebra, all the variables lodkypsgucturally the same: the construc®Ff_var and a
type_variable containing a few information. Hence, for instance 2 vagahihose value are unknown will look
exactly the same. To make the difference, we must considesiqdi equality. Hence, if 2 variables are physically
equal, “they aréhe same” variable(s?), otherwise they are really differemte @im of this mechanism is to share the
same physical data to represent all the occurrences of ablaiin a term, so that when we want to assign it a value,
we just need to modify it in place and all the shared occuesndll be updated for free.

A type variable is initially an unknown of the unification exdion induced by the type-checking process. Hence it
starts with its fieldv_value  worthingTVV_unknown. If during unification, a variable needs to be assigned aevalu
(i.e. a constraint was found on this variable), thertvtsvalue  that is mutable will be assignetivV_known “of
something”. This “something” is itself a type and this alkbindeed to instantiate a type variable by a type expression.

Obviously, this mechanism to represent instantiation$ avédate “strings” of links between variables and their
effective value. To be sure that the value of a variable isakfegual to something” or really unknown, we must
use a mechanism that returns the canonical representdtatype. For instance, let’s imagine that in our inference
problem, we arrived to have 4 variabless3, v andd, with « = 3, 5 = int, 6 = v andv = (3. Hence, we have the
following picture:

a — [ — int

T
6 —
representing the system: whese= ST var (TVV_known (...) where... representsb and has the structure
ST var (TVV_known (ST_construct (“int”, []))) . We have the same kind of thing féand-~y, with v worthing

TVV_known (...)  with .. representing the structure 8f In fact, despite all the variables we see above, all arelequa
and are instantiated bgt . This means than must not trust the first value constructar & a type to know what it
is equal to. One must “follow” the links.

Moreover, to avoid the loss of efficiency induced by walkirgle time along these “strings” of links, the opera-
tion of getting the canonical representation of a type wsk the “path compression” operation in order to suppress
indirections a soon as they are encountered a first time.

The operation returning the canonical representationdsgtimrdian of the correct structure of the typdgiy
operation working / relying / walking on the type structure must call this operation to be sure that the structural
view of the type is has is really the canonical view of the type This operation calledepr is located in the
basement/types.ml source file of the compiler. The presence of such a strongianais the reason why the
types are exported abstract. This ensures that outside the module manipulating thedigebra, nobody will forget
to get the canonical representation of a type.

Basically, this function receives a type. If this type is aotariable, then it returns it directly. This means that
the type constructor is already known to be something else #éhvariable for which we should investigate further.
On the other side, if the received type is a variable whos&&/ai.e. fieldtv_value is “known to be equal to
something” (i.e. isTVV_known (...) , then we will ask to get the canonical representation of ‘thignething”.
This is typically a recursive call on this “something”. Thigy, if this “something” is itself a variable “known to
be equal to something else”, then we will inductively knoveleatep of indirection. So, once we get our canonical
representation of our “somethingthis is in fact the canonical representation of our type, since & wavariable
“known to be equal tahis something”. By the way, before returning, since now we knbat the variable is in fact
“pointing” onto a type (i.e. is not anymore a variable, wastamtiated), we take benefit to cut the string of indirection
by directly establishing a link between the variable andcén@onical representation we obtained. Hence, next time we
will access this variable via a type sub-term shared somexdise, we won't have anymore to walk along the whole

78



©CoOo~NOUhWNEO

“string” of links to know the variable’s value. Then, thepr function simply looks like:

Getting the canonical representation of a type

let rec repr = function
| ST_var ({ tv_value = TVV_known tyl } as var) ->
I et val of tyl = repr tyl in
var.tv_value <- TVV_known val_of tyl
val_of_tyl
|ty ->ty

7.1.4 Unification

The computation of the most general type of an expressidledcype inference, strongly rely on unification of type
terms. We will say that 2 terms and, can beunifiedif there exists a substitutios so that¢(71) = ¢(2). The
substitution¢ is then calledunifier. of the termsr; andr,. Hence, two terms can be unified if it is possible to
instantiate all or part of their variables by a same sulstity so that they become structurally equal.

Based on the representation of our types, since the undictgnds to return a substitution to apply on the 2 unified
types in order to make them equal, instead of getting thistgukion to later apply it to each type (and combine this
substitution with the other substitutions the types mayuigext to), we will directly make the type terms equal by
instantiating their type variables. The “instanciation”then made in place, by changing in place the mutable field
tv_value of the unknown variables fromVV_unknown to TVV_known “of” the type required to have equality.

This is especially fast since all the occurrences of a vigiabare the same physical location. Hence, changing
the value of the fieldv_value at this location is equivalent to simultaneously instaetgll the occurrences of this
variable (past and future) in type terms.

Hence, ideally unification doesn’t return any result and esathe 2 unified type equal by side effect or fails
because there exist no unifier for the 2 types. And then, inythe-checking algorithm, instead of using one of the
type on which we apply its related substitution, we can diyacse any one of the 2 types once unified since they are
now equal.

In fact, in our case this is not completely the case since we ha additional problem that forces us to return a
type. This is due to the fact that when unifying a type &etf , FoCalize’s rules require to havBelf as unification
result rather than any of one the two types. This is a problémanithe unification used the known representation of
Self to achieve finding the mgu. In effect, in this case, one of thg2 isSelf and this other is a type expression
that is compatible wittSelf s representation. And in this fact, choosing any of the Z2#/ps result is wrong: the
result must always chose (pref&@glf . Hence our unification routine returns the preferred unifieddition to make
the physical modifications in place when required. We thereeaunification function described in the compiler’s
source filebasement/types.ml looking like (explanations follow):

The unification algorithm

I et unify ~loc ~self_manifest typel type2 =
I et rec rec_unify tyl ty2 =
let tyl = repr tyl in
let ty2 = repr ty2 in
if tyl == ty2 then tyl else
mat ch (tyl, ty2) with
| (ST_var var, ) ->
(*» BE CAREFUL: [occur_check] perfornms the setting of decl-dependencies
on the carrier ! In effect, if [ty2] involved Self then we have a
dependency on the carrier and that nust be taken into account !
The interest to make [occur_check] doing this work is that it
wal k all along the type so it’s a good idea to take benefit of this
wal k to avoid one nore wal k. *)
occur_check ~loc var ty2
lowerize_levels var.tv_level ty2
var.tv_value <- TVV_known ty2
ty2
| (L, ST_var var) ->

79



(» BE CAREFUL: Sane remark than above for [occur_check]. x)

occur_check ~loc var tyl ;

lowerize_levels var.tv_level tyl

var.tv_value <- TVV_known tyl ;

tyl

((ST_arrow (argl, resl)), (ST_arrow (arg2, res2))) ->

| et arg3 = rec_unify argl arg2 in

| et res3 = rec_unify resl res2 in

ST_arrow (arg3, res3)

((ST_sum_arguments tysl), (ST_sum_arguments tys2)) ->
let tys3 =
(try List.map2 rec_unify tysl tys2 with
| Invalid_argument "List.map2" ->
(» I'n fact, that’s an arity nmismatch on the types. There is a

strange case appearing when using a sumtype constructor that
requires argunents w thout arguments. The type of the
constructor’s argunents is an anpty list. Then the conflict is
reported as "Types and ... are not conpatible". Hence one of
the type is printed as nothing (c.f. bub report #180).
In this case, we generate a special error nessage. *)

i f (Listlength tysl) = O || (Listlength tys2) = 0O t hen
rai se (Arity_mismatch_unexpected_args (loc))
el se rai se (Conflict (tyl, ty2, loc))) in

ST_sum_arguments tys3
((ST_sum_arguments _), (ST_tuple _))
((ST_tuple _), (ST_sum_arguments _)) ->
(* Special cases to handl e confusion between sumtype val ue
constructor’s that take SEVERAL argunments and not 1 argunent that
is atuple. x)
rai se (Arity_mismatch_unexpected_args (loc))

((ST_tuple tysl), (ST_tuple tys2)) ->
let tys3 =
(try Listmap2 rec_unify tysl tys2 with
| Invalid_argument "List. map2" ->
(» I'n fact, that’'s an arity nmismatch on the tuple. x)
rai se (Conflict (tyl, ty2, loc))) in
ST_tuple tys3
(ST_construct (name, args), ST_construct (name’, args’)) ->
(if name <> name’ then raise (Conflict (tyl, ty2, loc))) ;
let args” =
(try Listmap2 rec_unify args args’ with
| Invalid_argument "List.map2" ->
(* In fact, that’'s an arity msmatch. x)
rai se
(Arity_mismatch
(name, (List.length args), (List.length args’), loc))) in
ST_construct (name, args”)
(ST_self_rep, ST_self_rep) ->
(begin

(* Trivial, but anyway, proceed as everywhere el se. *)
set_decl_dep_on_rep () ;

ST _self_rep
end)
(ST_self_rep, ) ->
(begin
mat ch self_manifest with
| None -> raise (Conflict (tyl, ty2, loc))
| Some self_is_that ->

ignore (rec_unify self_is_that ty2) ;
set_def_dep_on_rep () ;
(* Always prefer Self ! =*)
ST_self_rep
end)
(_, ST_self_rep) ->
(begin

80




O©CoOo~NOUhWNEO

B R R R
WN = O

14

mat ch self_manifest with
| None -> raise (Conflict (tyl, ty2, loc))
| Some self_is_that ->
ignore (rec_unify self_is_that tyl)
set_def_dep_on_rep ()

(* Always prefer Self ! =*)
ST_self_rep
end)
| ((ST_species_rep cl), (ST_species_rep c2)) ->
if clL =c2 then tyl else raise (Conflict (tyl, ty2, loc))
| (, ) -> raise (Conflict (tyl, ty2, loc)) in
(* kkkkkkkkkkkokkkkkkx *)
(* Now, let’s work... =)

rec_unify typel type2

First of all, we see that as previously said, since we intendidrk on the structure of the types, we start by
computing their canonical representation by calliegr (lines 2 and 3).

If the 2 types are already the same (physically, note theausbg= and not=), then there is nothing more to to
and we can return any one of the 2 types as unifier. We can megdilyn any one since they are really equal and the
problem of preferringself doesn’t apply here: either the 2 types are Iieé#if or they are both something else.

Then the algorithm considers all the cases of two types. Wheria variable (lines 6 and 17), we assign to the
variable the other type hence telling that the variable tsamymore unknown (lines 15 and 21).

Before assigning the variable, we perform an “occur chetike$ 13 and 19). This ensures that the variable we
assign doesn’t appear in the type is it assigned. This isgeepit types from being cyclic. In effect, if we try to unify
a with o — «, we get in the following situation:

o —
T !
—
with the arrow on the same line than ths represent the functional type constructor and the arr@@abthe link
the unification creates between variables and types. Hérhbe,unification falls in this case, an error is raised tali
that the type of the expression leads to cyclic types andhimexpression is rejected. Below is the code of the occur
check in which the line 12 and 13 can be skipped (they will kegired in 7.3.7).

Occur check routine

| et occur_check ~loc var ty =
let rec test t =
let t = reprt in
match t with
| ST_var var ->
if var == var then raise (Circularity (t, ty, loc))
ST arrow (tyl, ty2) -> test tyl ; test ty2
ST _sum_arguments tys  -> List.iter test tys
ST_tuple tys - > List.iter test tys
ST_construct (_, args) -> List.iter test args
ST_species_rep _  -> ()
ST_self_rep ->
(* There is a dependency on the carrier. Note it ! =)
set_decl_dep_on_rep () in

test ty

Let's go back to our unification routine. For the moment, thed 14 and 20 (and the comment lines 7-12) can be
forgotten since they will be explained when we will be degilivith polymorphism.

When unifying with one type being a variable, the returneatigoalways the type assigned to the variable (lines
16 and 22). We could also choose to return the variable bsitvtbuld be less efficient since mepr is yet applied
since we assigned it a value, then to use this variable as tygepr will immediately be required. Choosing to
return the other type that has beerpr -ed” we can save one call. This may seems a tiny advantaganifigation
in place is efficient for several tiny advantages put togelti#e this one is part of them.

81



In term of difficulty, we now have the unification 8elf and a type. The simplest case (line 65) is the unification
of Self and itself. Trivially, the unification succeed. Forget tmeI66 for the moment. There remain 2 symmetric
cases: unifyingself and another type that is n8elf and not a variable (lines 71 and 81). In these cases, we are
in the rules Belfl ] and [Self2 ] of Virgile Prevosto’s PhD, page 27, definition 9. These aedases where, if the
structure of the carrier (i.e. of threpresentation method) is visible then an occurrenceS#lf is allowed to
be unified with a type having a structure compatible with the given by theepresentation method.

To be able to make so, in the typing context, we record if thecsire of the carrier is known of not. This
information if passed to the unification function via the graeter~self _manifest . This parameter has type
simple_type option . If the value isNone, this means that the structure of the carrier is not visiblen¢e
Self can only be unified wittgelf ). If the value isSome ... , then this means that we know that the carrier was
defined as the type “...” (hence unifyi@elf with a type expression compatible with “..." must be sucfidss

So, when unifyingSelf with a type, if ~self_manifest is None we raise an error because the carrier is
abstract. If~self _manifest isSome (1), then we must ensure thatan be unified (and if so, the possible side
effects induced by this unification must be done) with theeotlipe (lines 76 and 96): it is then simply a recursive
call. Since if the unification succeed we want to ret8eif as unifier, we throw the result an retusi_self rep
meaning the typeSelf .

Attention: With this mechanism, we directly unify the type that rejergs the structure of the carrier. This means
that we directly apply modification in place on it. This esp#ig means that, because this is not a type scheme but a
type, there is a cumulative effect of all the unificationd i@ made betweeBelf and other types. Hopefully, this
is not a problem since methods are not allowed to be polyniorgind representation , defining the structure
of Self is a method. So it can't be polymorphic. This especially nsethat the structure ddelf will never have
remaining variables that could be instantiated by a unibioatHence, there is no risk that a unification pollutes the
type used as reference for the structur&eff by instantiating a type variable by a type that would be inpatible
for a later unification of this variable by another type. Soomahis means thatself _manifest is a type and not
a type scheme because we don’t have polymorphism on mettiegshad some, we would need another mechanism
to “preferSelf " during unification (problem of specialisation, generafisn, putting the right binding level, and so
on...).

The other cases of unification are simpler and structurag. rtification can now only be successful if the 2 types
have the same constructor. So we check the types 2 by 2 withteae the same constructor and if the matching is
right, we recurse structurally on the types structures.

Finally remains the all cases where the 2 types do not havsaime constructor (line 93). This leads to a type-
checking error by raising an exception.

7.1.5 Polymorphism

Like introduced in 7.1.2, type schemes are used to implerienpolymorphism in type inference. They act as
“models” of types. But the question is how to make such “mstiahd how extract types from such “models”. The
first point is handled by thgeneralize  function and the second by tispecialize function of the source file
basement/types.ml

We must start our explanation by introducing the notiorbofding level. The aim is to keep trace of type
variables introduced in let-definitions that are deepen thar level. The binding level counts the number of nested
let-definitions. Hence, the current level must be incremeémachbefore every potentially generalisable definition.
This increase will enable the generalisation once we wilhgok to a lower level. And it must be decreased at the end

of this definition. To increase the current binding leveg thnctionbegin_definition must be used; to decrease
it the functionend_definition must be used.

We said “potentially generalisable” definition since athtiefinitions can’t be generalised (non-expansivity prob-
lem).

There remains a little problem with the level of variableheThigher the level, the closest is the definition that
introduced this type variable. When a variable is put in confiee. unified) with a type containing variables with a
lower level (i.e. created in outer let-definitions), hencattmay not be generalisable when we will leave the current
definition, we must reflect this onto our variable ! In effaatjfication means equality. So if our variable is “equal”

82



to a variable than can be generalised, so it must be for oiablar Hence, when unifying a variable with a type, we
must hunt in this type for variables that have a lower level ifiwe find some, we must lower the level of our variable
to this found level. That's what the functidowerize_levels does. And in effect, this function is called when
unifying a type variable with something (lines 14 and 20 iauhify function listed above).

So, the generalisation process consists in consideringasrglisable, all the variables having a level strictly
greater than the current binding level. We then search fohalgeneralisable variables, and remind them in a list. By
the way, we change in place the letellevel  field) of the found variables by setting a level meaning “gafised”
(technically, we choose a value to big, that there is no ohémat anybody nests so many let-definitions to reach this
level). Finally, to build the type scheme, we simply creatgpe scheme structure with the list of found variables
and the type itself as body.

Now, taking an instance of a type scheme is done by the fumepecialize that simply create a fresh type
variable for each generalised variable of the type schenes, topies the body of the type scheme, replacing each
generalised variable by the corresponding fresh one.

7.1.6 Type inference among other typing things to do

The type inference we spoke about deals with expressionsl@iindtions. Hence it is only one part of the analyses
performed during the “typing pass”. More accurately, ithe ffirst analysis carried out after the scoping. Each
expression of a program must be type-checked anyway whappéars, in entity parameters, in methods, in toplevel
definitions. Some other constructs of theCalize language require some other kinds of type-checking: thies
case of species, collections, collection parametersyitaimee species expressions. However, during these oities k

of type-checking, we use the type-checking of expressiomaake the “glue” ensuring consistency. Rules given in
Virgile’ PhD in figure 3.2, page 43, section 3.8 are examplihizfidea (these rules deal with with species parameters).

Aside this notion of type-checking, we also have other as&dyto ensure a program is sound and also to extract
the basic shape of a species by resolving inheritance ambileding. All these things are performed during the typing
pass, the type-checking being the first step.

The typing pass is driven by the source fifping/infer.ml and more especially by the entry point function
typecheck file . This function triggers the type-checking of each phrage®tompilation unit. Be aware that in
the source of the compiler, “type-check” is widely overledd@nd denotes the process of inferring type for entities and
then ensuring they are well-formed and building the firstegeof information that will ease the code generation. In
particular, the fact that each species is given a normal fmmtaining all its methods is handy to recover the methods
of parameters or inheritance species expressions sineeitheo need to walk along all the inheritance level (point
already mentioned in the introduction of this chapter, at 7)

7.2 Environment and structures for the typing pass

The structure of the environment used during the typing pasdeen presented in 5.3 and is coded in typing/env.ml.

The only other structure used during this pass is the typomjext that group various information to pass to the
functions instead of having to pass them individually hepieventing from having tons of arguments for each call.
This structure, shown below is local to thging/infer.ml and passed to each function under the parameter
namectx .

Typing context

type typing_context = {
(** The name of the currently analysed conpilation unit (i.e. the nane
of the file without extension and not capitalized). =*)

current_unit . Types.fname

(** The name of the current species if relevant. *)
current_species . Parsetree.qualified_species option

(** Optional type Self is known to be equal to. *)
self_manifest . Types.type_simple option

83



(** Mappi ng between 'variables [vnane]s and the [sinple_type] they are
bound to. Used when creating a polynorphic type definition. x)
tyvars_mapping . (Parsetree.vname * Types.type_simple) list

7.3 Typing a species definition

The process of typing a species will be now examined stepdgylsy step. This is done by typing its parameters,
resolving inheritance, type-checking the methods, merpioperties and proofs, normalising the species, comgutin
its dependencies graph and then inserting it in the enviesmA few other administrative tasks are performed and
will be detailed below.

7.3.1 Dealing with the species parameters

For each parameter, this process builds the species tygee gfarameter and get the list of methods it has. Each
parameter will be inserted in the environment as speciesyged(the type representing the carrier of this parameter).

There are 2 cases: entity and collection parameters. Batheofi lead to a “parameter description” that will be
recorded in th&nv.Typelnformation.species_param that will appear in the hosting specig®e_sig_params
field.

7.3.2 Typing a species expression

A species expression is either a simple species/collet@mtifier like Setoid or an application of a species/collec-
tion identifier to one or morspecies/collection identifiersThis means that we have no expressionsAkB(C))

The first thing is to find in the environment the name of the ‘maipecies (i.e. the unique only if there is
no application, or the name in “applicative” position if thdés an application). From this search, we get a species
description of a previously existing species.

The aim is to finally get (among other things, but this is theshabvious result we want) the list of methods this
species expression has. If there is no parameter, therstha linethods is trivially the one obtained in the structure
found in the environment. The most interesting point is wienexpression is an application. We then must apply the
species to its effective argument(s) before being able tovikhe methods it has. In effect, let's imagine we have:

species A (B is Setoid) =
let eq (x in B,y in B) = Blbla (x, y) && BIbli (y, X) ...

species Cinherits A (D) ...

C inherits eq but not with the bodyiet eq (x in B,y in B)= Blbla (x, y)  &Blbli (y, X)... but with the
bodylet eq (x in D,y in D)= Dbla (x, y) &Dbli (y, X)... whereB was replaced byp. This is done by
apply_species_arguments that returns the correct (substituted) list of methods kad the list of these sub-
stitutions and the list of species typ8slf must be compatible with. This is used in case of a specieesgjun
parametrised used applied$elf (this pointis a bit more detailed in the following sectio3.B).

The most tricky point is to build and use this list of subgtdans during typing. In effect, we obviously build it
while applying the argumentbut we also use it(in fact, the substitutions already existing in the list@oalator at
the point we process an effective argument). In effect, ltbiscontains the substitutions to apply to each effective
parameter before processing it. This is the way to reprebenfact that in rule COLL-INST, page 43, figure 3.2,
section 3.8 in Virgile Prevosto’s Phd, the substitutjeh <« C5] is performed ort, i.e. in it's methods typebut
also in the remaining effective species parameter§ep, indeed, the, signature of a species contains both the
methods and the parameters). Because these parametebg Vielaluated” after the current one, we need to delay
the substitution until they are really processed. Be cétbht by construction, this list contains the substitusiam
reverseorder of the application order. This means that the firstiregusubstitution is in tail !

84



Hence, for each species parameter, when we encounter etimyilparameter, we type the expression iigs *and
we then must apply the already seen substitutions to thesttypnsure that it is transformed if required to collections
of possible previousi$ ” parameters. For instance, let’s take the following code:

speci es Me (Naturals is Intmodel, n i n Naturals) = ...
col | ecti on Concretelnt i npl enent s Intmodel
col lection Foo inplenents Me (Concretelnt, Concretelntlun)

while typechecking th€oncretelnt!un , we get atypéNaturals . But since in thé=o0 collection,Naturals

is instantiated by the effectiv@oncretelnt , Naturals appears to be incompatible wi@oncretelnt . How-
ever, inFoo, with the first instanciation, we said th&taturals is a Concretelnt , and we substituted ev-
erywhereNaturals by Concretelnt . So idem must we do in the type inferred for the effective argnt
Concretelnt!un

7.3.3 Inheritance resolution

The expected result of inheritance resolution is to loadrtherited methods in the environment and get their sigeatur
and methods information. Hence, combined with the definetthoas, we will be able to know all the methods of the
species. We also want to get a possibly new context wherattetfatSelf is now manifest is updated, in case we
inherited arepresentation method.

By the way, since in the inheritance clause, we can have mreed collection applied t8elf as effective
argument, we remind all the species type thalf must be compatible with (calleself_must_be in the source
code). In effect, since we are building the current spetiesspecies type @elf (i.e. the currently built species) is
not yet known. Then to ensure consistency we must checknaftds, i.e. once we got all the methods of the species
if it compliant with all the species types expected as effecairgument of the used collections on which we applied
Self . Note that currently the test is not performed and to remind we have to do this, the
compiler emits a warning.

When processing each inherited species expression, wettifmwe did for the collection parameters. This gives
us the list of methods the species has (hence the list of metie current species inherits via the processed species
expression), the list of species types tBatif must be compatible with, and finally the substitutions agaplon
the formal parameters of parametrised species used inhieeits clause. Such substitutions are those replacing
formal parameters by effective collection expressionsmthe species expression used inititeerits clause uses
application. This information will be recorded in the histinformation of the inherited methods for later use.

For instance, considering tl®Calize sample code:

speci es FooO (AO is SpO) inherits .. = let v=1end ;;
species Fool (Al is Spl) inherits FooO (Al) = let v =2 end ;;
speci es Foo2 (A2 is Spl) inherits Fool (A2) = end ;;

species Foo3 (A3 is Spl, A4 is A3) inherits Foo2 (A4) = end ;;

we will remind that inFoo3, we inherited fromFoo2 applied toA4 and that inFoo2, we inherited fromFool
applied toA2.

As described above in 7.3.2, these substitutions will be tseepresent the fact that in rulEQLL-INST], page
43, figure 3.2, section 3.8 in Virgile Prevosto’s PhD, thestitbition [C; < C5] is performed ori.

7.3.4 Type-checking methods

This is done bytypecheck_species_fields . This function infers the types of the species fields comtziim
the list of methods definitions. The typing environment ir@mentally extended with the found methods and used to
type-check the next methods.

The function returns a 5-uplet whose 3 first components dtelde to be inserted in the structure of a species’s
type, and the last ones are tpeoof of andtermination proof of fields that have been found among
the fields. Thesgroof of ’s must be collapsed with their related propelyt at the inheritance level where the
proof is found (not at the one where the property was statedgad to a theorem before the formalisation process

85



starts. Theermination proof of 's must be collapsed with their relatéet rec  definitions also before the
normalisation process starts.

Type-checking of methods need some comments in some fiedd tamses.

The first one is for the signaturepresentation . Oncerepresentation is found, the typing context
will be modified by setting the fieldelf _manifest to Someof the type expression. Then we first type-check the
provided type expression for the carrier. But we can'’t dlyeset the inferred type inteelf _manifest . We must
make a copy of the inferred type in order to keep the origynaflerred type aside any further modifications that could
arise while unifying anywher8elf with “its known representation”. In effect, unification itepge would establish
a link by side effect from the representation to the t¥ypes.ST_self rep , hence fooling the explicit structure
of what is initially representation . This first would prevent us from being able to generate cau#lyi relying
on the representation oépresentation . Furthermore, because of hdwpes.unify ~ handles unification with
Types.ST_self rep to prevent cycles, unification of thirangledrepresentation would succeed with any types,
even those incompatible with the origiradrrect representation afepresentation 's type.

Next, we need to add a bit of explanation about type-chechingerties and theorems. For the same reason that
in external definition, type variables present in a type eggion in a property or a theorem are implicitly considered
as universally quantified. In effect, there no syntax to mak@icit the quantification. Then we first create a variable
mapping from the type expression to prevent variables fremd “unbound”. We must increase the binding level
because when processiRg forall andPr_exists , the functiortypecheck_logical_expr needs to store
the type scheme of the identifiers introduced. And since igdisation if done intypecheck_logical_expr
with a binding level of + 1 compared to our current one, gelisation could not be done otherwise.

Dependencies on the carrier

We have a special case for computing dependencies on ther@&etf introduced by using the type introduced by

representation .

In effect, we have a decl-dependency on the carrier if the tffa method contains a referenceSelf (i.e. ifa
type sub-term isSelf ). One could only perform this check for each field as soon amfeered its type. However,
v;/]ithout any type annotation, the type of a method could hidefact that it refers t&elf . For instance, let’s have
the case:

species A =
representation = int
sig m: Self

end ;;

species B inherits A =
let m =5
end ;;

inferring the type ofmin B would simply lead tant , hence telling that there is no decl-dependencyseti . In

fact, after the species is put in normal form, it appearsitidgged there was since the typerofs notint  but rather
Self . For this reason, the detection of this dependency is aldorpeed at “fields fusion” stage, when building the
normal form of the species. More accurately, the take bertbfit at fusion stage, we will make a unification. Hence,
during unification, we take care of the 3 cases where suchendepcy can appear: unifyirgelf andSelf (line

68) and the cases where we unify a type variable with somg{limes 6 and 17) : in these 2 last cases, we know that
wee need to make an occur check that will walk all along the stpucture. So to avoid one more complete descent
on this structure and because the occur check is calledsrcéisie, we made so it set itself a global hidden flag telling
if there is or not a decl-dependency 8elf by calling if needed the functioset_decl_dep_on_rep in case it
encounters the type construc®f_self rep  (see line 12-13 in occur check routine in 7.1.4).

On the other side, we have a def-dependency on the carter itites SELF1] or [SELF2] of the section 3.3, def-
inition 9, page 27 in Virgile Prevosto’s PdD are used. To dgtds, in the functiorunify  we examined before (7.1.4)
in lines 77 and 87, since we detect we are using the knowntateiof the carrier, we caflet_def dep_on_rep
that is a function recording in a global hidden flag that a digfendency was found. In fact for similar reason that
for decl-dependency, the effective recording of preseifitki® dependency is also done at “fields fusion” stage. And

86



hopefully, at this stage, we make a unification between eltypes of the found occurrences of a same-name method
!

As previously stated, in fact, the recording of these depraigs is also done as soon as we typed a field since
doing it only at the fusion stage can be non sufficient in soaseince at fusion we do not descent on the whole
expressions of methods.

Hence, these global flags reminding the presence of dea&jgndencies must obviously be reset before address-
ing a new method. That's done by callingset_deps_on_rep

7.3.5 Proof collapsing

Since itis possible to provide the proof of an existing proypefter this property, we must transform properties hgvin
a proof collapsing the two into one theorem. In effegby@of field alone is not a correct field in the normal form of
a species: it must be related to a property. This processriedaut by the functiorrollapse_proofs_of This
function tries to find among the list of methods it receives@giment, property fields whose proofs are separately
given in the list of proofs also passed as argument.

Each time the search succeeds, the property and the reledetl gre merged in a new theorem field, hence
discarding the property fields. Because this process i®peed before the normalisation pass, we still require to
have 2 separate lists of methods:

e the inherited ones,
e those defined at the current inheritance level.

For this reason, the search will be done first on the methdiitsadkat the current inheritance level (in order to find
the “most recent”) and only if the search failed, we will ttyagain on the inherited methods.

Attention: Such a merge now requires a re-ordering of the final list tdgieln effect, by moving theroof of
field when merging it as &F_theorem located where the initigbF_property  field was, if the proof (that was
originally “later”) uses stuff defined between t8& property and the original location of the proof, then this stuff
will now appear “after” the proof itself. And this is not wedtbrmed. The example file found in
focalizec/tests/ok___need_re_ordering.fcl illustrates this need. This re-ordering will be done after
the normal form of the species is computed.

A question on the fly. While writing the document, | wonder if this collapsing pess wouldn'’t be carried out in
the fusion algorithm used to create the normal form, exdikywhen we pair signatures atet -definitions. ..

7.3.6  Normal form

The normalisation is done imormalize_species , applying the algorithm described in Virgile Prevosto’<Fh
Section 3.7.1, page 36 plus its extension to propertiestaatéms in Section 3.9.7, page 57. Type “equality” test is
performed as usual using the unification, with no unificagaior meaning “true” and error meaning “false”.

The only thing is that we make clearly explicit the “silentigscribed” notion of conflict detection mentioned in
Virgile Prevosto’s PhD page 57 line 6.

In effect, if a field is inherited several times via th@meparent, erasing must not be performed ! That's like if we
did as if there was no erasing to do ! Such a situation can dr&sepeciesB andC inherit from a species (with a
methodm) and another specid€sinherits from fromB andC. The methodnthen appears twice iD, once fromA via
B, once fromA via C. And this is not a conflict that requires erasement: in efféare is no “redefinition”. For this
reason, before erasing a field, we check with the funatimm conflicting_fields_p

During normalisation, an operation of “fusion” is used. 38 mostly the once described in Virgile Prevosto’s
PhD in section 3.6, page 35 and completed in Section 3.9gk pé, definition 35. The only difference is that we
made explicit the notion of “to be equal”, “to have the sameety’ for 2 properties or 2 theorems. In effect, the type
of a logical method is its logical statement. Hence, it is goression of thé-oCalize language. This means that we
must compare 2 AST structures. A simple structural equdbigsn’t have any sense since at least the 2 structures will

87



differ by their source location, hence always returningf&tent”. So, the comparison we adopt here is performed
thank to thetyping/ast_equal.ml module. Hence we implement a custom structural equalityeterdhine if

2 expressions have the same form modwloonversion of the bound identifiers. In particular, we amby anterested

in comparing only thé’arsetree.ast_desc field. We also try to consider that parentheses are non signifis
case arE_paren is found not equal to another expression. Currently, thepaoison is done on the skeleton of the
expression without tricky heuristic like considering thats- B = C'is equivalenttd A A B) = C and so on....

During this fusion operation, when we “fusion” a signaturel@let -definition, if the unification succeeds, then
we keep the type given by the signaturdo assign it to the method. We don't keep the type inferedHerrhethod.

In effect, the inference algorithm may find a type that is eral than the signature, or may leave some type
occurrences expanded althgough they are in fact occusesicgelf (obviously because there was previously de
definition ofrepresentation equal to type. For instance, if we have:

species A0 =
sig f : Self ->Self ;
end ;;
species Al inherits A0 =
let f(x) =x
end ;;

, the inference algorithm will find ik\1 thatf has typeva.ac — « since this is the most general unifier. And because
polymorphic methods are not allowed, if we do not perforrmatgre matching fof , then first, we won't see that

it must be considered to &e1f — Self, then second we will reject the method. Hence this point shthat
verification that methods are not polymorphic must be difter the definitions are assigned the type of their possible
signatures.

Another example, that doesn’t involve polymorphism woudd b

species BO =
representati on = int
sig f : int -> Self ;

end ;;

species Bl inherits BO =
let f(x) =x+ 1

end ;;

Since nowhere in the definition 6fin B1 Self appears, the type inference algorithm will see thditas type
int ,that+ astypeint — int — int and then will deduce théthas typeint — int. Unfortunately, the developer
wanted to seé has a function injecting an integer into the species dgta;thence wanted to consider it with type
int — Self. So if we don't keep the type of the signature to assign it edhfinition, we forget this constraint
information.

7.3.7 Computing def/decl-dependencies

As previously stated, def and decl-dependencies refleartlmcies of methods of the species on methods of this
species. In other words, they are related to dependenciegtifods ofSelf on methods ofSelf . We already
examined how to compute theses dependencies for the partase of the carrier (the methoebresentation )

in . We now address this problem for all the other methodsadn, fdependencies computation is done in two passes.
The first one is to create a simple dependency graph and isrpeél at typing stage. The second will be to exploit
this graph to compute for each method @#lf , the set of methods dbelf that must be abstracted because of
dependencies. This will be done via the “minimal coq typ@ag environment” in a next stage.

So, for the moment, we concentrate on building the deperydgraph of each field. In effect, eadleld will have
its own dependency graph (note, a field can contain sevaratifuns like in the case of mutually recursive methods).
The graph of each method is built sharing node informatidwéen methods. In other words, like any graph, we have
nodes, if a same node is required to build the grapmbandm?2 then these 2 graphs will physically share the node.
Again, in other words, the dependency graph of each spexgsub-graph of a global graph.

The data-structure for such graphs can be found in the sdiledgping/depGraphData.mli

88



In this graph, a node is a method an edge between 2 ngd&sdn. is a direct dependency relation telling that
depends omy. Henceymeth oo — methy,, means thatneth ¢,, depends omethy,,. Each edge is tagged with in-
formation telling if the dependency is a deBI_decl ) or a def DK_def ) dependency. In case of decl-dependency,
we have a tag telling if this dependency comes from the te®K from_type , the body DcDK_from_body ) or
the termination prooflcDK_from_term_proof) of the field. In case of def-dependency, we have a tag indigati
if this dependency comes from a termination pr@f¥K_from_term_proof ) ornot OfDK_not_from_term_proof

The methodepresentation on which we can have dependencies via dependenci&elfn as previously
see, is handled like the other methods by the graph buildgagithm. The only difference is that because we recording
at type-checking stage directly if a method has dependsmi&elf and recorded this information in flags of the
methods, we will have hard-wired cases to check for a depmmyden the carrier since this information is obtained
just consulting the flags in opposition with others methotiere we need now to inspect their code.

A few things to remark:

e Signatures can't introduce decl or def-dependencies.

let methods can only introduce decl-dependencies via theipatational body.

Properties can only introduce decl-dependencies via libgital statement (i.e. their type in fact).

e Theorems can introduce both kinds of dependencies: detidiygtatement (i.e. type in fact) and decl/def by
their proof (i.e. body in fact).

The basic process to build the graph is to process each fiélotnn Each name defined in the field will lead to a
node in the graph (i.e. “somebody” that may depend on “sohgletse” or “somebody” on which “somebody else”
may depend on). Hence, each time we need to create a nodeevwaegmecial function that first look among the
already created nodes, if it find a node having a right nanretutns this node, otherwise it really creates the node.
This ensure that node will be create once and will be shareddes every occurrence of apparition.

The starting point of graph construction is the functiwild_dependencies_graph_for_fields hosted
in the source filayping/dep_analysis.ml . This function contains 2 local function that deal respsstyi with
let -definitions and theorems/properties. They basically belize same way:

1. Checkinthe field’s tag if there is a a decl-dependenagepresentation . If so, manually add an edge from
the current name’s node to the noderepresentation . Note that this edge is always tagged as “coming
from type” (DcDK_from_type ) since even in atheorem, a decl-dependency on the carriemtgcome from
the type because one can't say in the body, i.e. in the ps@ofiefi nition of Self Orby property Self.

2. Find the names of decl and defs dependencies for the turaeme (trivially, forlet-definitions def-
dependencies are trivially always empty). This gives usidimes of methods we decl-depend from our type,
those we decl-depend from our body and those we def-depdrid.cdmputation is a simple descent over the
AST of the method, hunting for calls to methods identifiedetobg to use. Once we got these 3 sets of names,
for each of them, we create a node (create or get if it alreadysd. Finally, for all these nodes (“dependencies
nodes”), we add an edge properly tagged from the current 'samee to each of the dependencies names’
nodes.

3. Only for let -definitions: we process the optional termination proof. By making a deson the AST of the
proof, we get the names of methods we decl-depend and thodefvekepend. Exactly like in the above point,
we create nodes for these names and add edges properly {@gfiigicdg the decl or def tag by the tags telling
“coming from a termination proof”, i.eDcDK_from_term_proof  or DfDK_from_term_proof ).

4. Check inthe field’s tag if there is a a def-dependencyepnesentation . If so, manually add an edge from
the current name’s node to the noderepresentation . Note that this edge is always tagged as “coming
not from a termination proof"fDK_not_from_term_proof ) since properties and theorem do not have
such proof and in the case of recursleé -definitions, anyway if the termination proof refersSelf , then
the parts outside the proof obviously also. Hence, theerawill always need to be lambda-lifted.

89



At the end of this process, we have a dependency graph tétlingach method of the species, which method is

depends on. Such a graph can be exporteity using the optiondot-non-rec-dependencies of focalizec.
ordee_inf_is_transitive inf_substitution_nds
G R_O'KO\
Co
ordre_inf _is_teflexive order_ind_is_infitaurn |nfinghlisuhst|tut|onixu1(‘ {alordnimfilsianusymmtum \ B
%50 © O

\ inf_idernpotent. order_inf inf_is_associative Limf_l:ft_suhstmmnn_mlz inf_comrautes equal_transitive equal_symamnetric
inf equal ep

Attention : However, this does not give us yet what we need-it in term of methods ofSelf ! We still need
to perform some analyses, especially to compute the “@sibiverse of each method to finally get the “minirGalg
typing environment” to have this information. But this isoin another pass.

7.3.8 Miscellaneous

When finally the species is built, after having checked thiahitell-formed, it has no doubles, itis fully defined or not
and so on, we finally add the species description in the emviemt. We also must add in the environment a type that
represents the species’ carrier. However, this must be dolyethe species is really fully defined. In effect, in this
case, it will really have a carrier for the species. This e&dly avoid such things:

species A =
signature f : int
end ;;
species B =
signature b : A-> A
end ;;

for which, if we generate the code for this, @Caml we won’t have any type definition fane_as_carrier  in
A. And in B, g will have the typea.me_as_carrier ->A.me_as_carrier ~ WhereA.me_as_carrier ~ unbound. This is
moral sinceA doesn't have a carrier.

Attention: While writing this note, | wonder if the point that the specimust have a method "representation”
would be in fact sufficient. ..

7.4 Typing a collection definition

Typing a collection definition is pretty close to typing a sjgs. The main difference is that we don’t have inheritance,
hence the normal form of the collection is directly the ndrfoem of the species it “implements”.

We have to ensure that the species expression we “implefrisrftdly defined before being able to accept the
collection.

Type-checking the collection’s fields is in fact just penfiing the abstraction, replacirelf by the collection
name in the fields (i.e. in the bodies and in the types). Thedorhis substitution by applyingubstColl.subst_species_field
on each fields. This gives us the list of fields of the collattidhis list will be later saved as part of the information
bound to a collection in the type-checking environment.

Note that we do not use the dependency graph of the implecheptries: we compute it in a regular way. This
prevent us from having to manage ourselves substitutioestalabstractions all over the graph. Using the regular
process, we get a graph with the right types and so on directly

In effect, creating a collection implies abstracti@glf , i.e. replace it in types and bodies by the carrier of the
collection. If we reused the dependency graph of the spdloeesollection implements, we would have to perform
ourselves the substitutions all over the information ciotad in the graph. Since this information represents a lot of
stuff and involved sharing and cycles, doing this manualhyld be very hard and error prone. So we prefer to let the
regular mechanism working for us.

90



7.5 Typing a type definition

Type-checking a type definition serves to introduce in tipény environment a type constructor and possibly elements
induced by the type, like value constructors in case of supe tyefinition or field labels in case of record type
definition. We basically have 2 kinds of type definitions:duéar” and “external”. Both of them can introduce 3 kinds
of types: aliases, sum types and record types. The maimaliffe between “regular” and “external” definition is in the
way the type and its components are mapped onto the targptdges. In a “regular” definition, mapping is handled
by the compiler model scheme. In an “external” one, the mapjs guided by the user’s annotations. Anyway, both
kinds of definitions can introduce the same kinds of elemierttse typing environment.

Because type definitions are implicitly recursive, befgqgetchecking a type definition, we always pre-insert in
the typing environment the currently typed type constructa this point, anyway its real definition, it is considered
a abstract (i.e. we don't know its body). In particular, ifsita sum or a record we don't insert (know) anything about
its possible value constructors or field labels. In facti'sh@ot a problem since these 2 kinds of information can never
arise inside a definition body. After the type definition iyfuype-checked, we will forget this primary insertion and
prefer the new one coming from the type-checking.

In type definitions, type variables are implicitly univeigajuantified and are bound before the definition’s body.
In a definition liketype t (a)= alias (a ‘'a)*, we see that th&a appears just after the nameand before the
body of the definition. Hence, before type-checking the @élim we previously insert in the environment the bound
variables to that they be known while analysing the body. Mlapping between type variable names and their related
type (in term of type in our algebra) is recorded in the typeaking context in the fielthyvars_mapping

7.5.1 Regular type definitions
Type alias

A type alias simply introduces an equivalence between a n#meetype constructor) and a type expression. For
instance, inype t = alias (nt in)*, the namea becomes compatible witfint  * int) . This means that we
do not create a type having new values: the values are onlg wiagluing existing values. Moreover, this typds

not really new in the sense it is not only compatible withlftbat with any type compatible wit(int ~ * int)

To type-check such a definition, we simply type-check thesalil type expression. This gives us a typgés.type_simple
that is the canonical representation of the type expresdiban we simply bind the new constructor to this type. In
other word, in the environment we bind the new type consbinuctits identity in our algebra.

Since types can be polymorphic (i.e. parametrised by typablas), like for values, we do not really bind the
name to a type but to a type scheme where polymorphic typahles are generalised. Hence, a type constructor can
be seen like a function taking types as arguments and raguaitype. For instance, considering the type of pairs
type t (a)= alias (a ‘a)*, the constructot is considered internally by the compiler like a “functiontgpes”.

For this polymorphic stuff, we find as for values, the usuahsbf binding level and generalisation.

Then, once the body of the definition is type-checked, we igdise it and add the new type constructor bound
to this type scheme in the environment. Hence, each thettyp@l appear in a type expression, we will know its
effective structure via the environment. For instancengishe above typé, if we encounter a type expression
(int) , we will ask for the scheme df, getvVa.ae — t(«), we take an instance of this scheme anddget> (o)
and unify the leftmost’ with int  to simulate an application, and finally we get the typle * int for the initial
expression.

Type sum (A.K.A variant)

In addition to insert in the environment a type construdtalso introduces value constructors. In this sense, such a
definition creates a new type, with new values. This valueg Ibegparametrised by values of existing types, but they
are anywaynew values. InFoCal.ize, a sum type is only compatible with itself. This means thairdrere a value of
this type is expected, the provided expression will havetiuce on one of the values introduced by this type.

The difference with aliases previously examined is that we must type-check, not a type expression, but an
enumeration of constructors expressions as body of theitigfinFor each constructor of a sum type definittgrwe

91



have 2 cases: either it has no argument and is consideregi¢dh®type , or it has arguments and is considered as a
function taking values whose types are those of the enustteaguments and returning a value of typeBe aware
that a value constructor parametrised by several argurigeatsinction takingsveral arguments, not a tuple of all the
arguments ! Hence, on the following type definition:

type t =
| A of int

| B of (int, int)

| Cof (int =+ int)

we will get: A: int ->t B :int -> int -> t and C : (int * int) -> t. One may notice the difference
betweerBthat is parametrised by 2 arguments &ttlat is parametrised by 1 argument that is a tuple of 2 comyene
As usual, in the environment we bind each constructor notyp@but to a type scheme to be able to use polymorphic
constructors with various instantiations.

Hence, to synthesise the type of an expression involvingravalue constructor df, we will get in the environ-
ment its type scheme. If the constructor is used alone (ith.vo expression as argument), then the type of the whole
expression will be by constructidn Note that if the constructor is used alone although it sth@tjlwe wont return a
functional type but an error because the compiler alwayslahthat value constructors are used with the correct arity.

There remains the problem of what to bind the type construot@ In effect, by opposition to alias types, here
we don’'t have any type expression giving the “identity” oé tiype. In fact, a sum type is a new type only compatible
with itself. Hence, we will bind it to a new type whose namehis hame of the constructor. And to make values of
this type, the only way will be to manipulate its value constors.

Once the type scheme of each value constructor is inferred st have to add them into the environment, as well
as the type constructor.

Type record

The principle of type-checking of records is very similaithe one of sum types. The only difference is that instead
of value constructors, we deal with field label. In the samgtgpat value constructors were considered like function
so are field labels. At programming level, a field label hastype. So, internally a field label of a record typds
considered to be a function taking an argument whose tygdeeisype of the label and returning a value of type
Note that to have an effective complete value of typef course we need all the fields to be assigned a value, but at
typing stage, this is not our concern.

Hence, we infer the type of each field of the record and finalbeit them in the environment as well as the type
constructor itself.

7.5.2 External type definitions

Like seen in 2.6.1, external type definitions have two sidies:“internal” and “external”. In fact, the “internal” part
describes exactly the same thing than a regular type definithow the type is seen inside the compiler”. For this
reason, is it type-checked exactly the same way.

The “internal” part, since it contains some external codeobreach ofFoCal.ize, doesn't need any type-checking
analysis: we simply record the various mappings it conteittsthe type definition for further usages.

7.6 All other toplevel constructs

For the remaining constructs, i.e. toplevel expressiguiet@| theorems and toplevielt -definitions, the same prin-
ciples than previously presented apply. The only diffeeeiscthat in the typing context it will be recorded that we
are not inside a species. For toplevel definitions, the tesbn-polymorphism will not be performed since toplevel
definitions can be polymorphic.

Directives don’t need any type-checking. Tdygen directive will act exactly like during the scoping pass, ldea
this time with the typing environment instead of the scopng (c.f. 6.0.4).

92



Chapter 8

Intermediate form

Once type-checking pass is ended, we saw that in additicam®the type of each expression computed and screwed in
each AST node, we put the species and collections in nornmal feaving resolved inheritance and ordering problems
between the methods. More over we computed the dependeaqaly gf each method, hence indicated for each method
which other method oBelf is directly depends on (decl or def, via type, via body or eiatination proof).

However this is not sufficient yet to known exactly what totedst (i.e. \-lift) in our method generators, then
collection generators. We still need to find the completeo$atethods ofSelf a method depends on and the set of
collection parameters’ methods a method depends on.

The first point will be carried out by computing the “visibleiverse” of a method. The second will be by com-
puting the “minimalCoq typing environment”. Once these sets are known, the cupass will create a compact
form of several data useful for code generation, hence ptigefrom having to compute several time the same things
and to ensure that the same structure (in fact, most oftengritier dependencies are abstracted) will be used every
time needed. For instance, if in a methodve \-lifted m2 thenml, extra arguments of this method will appear
and will need to be always used consistently with this order pne must sure that we instantiat@ by a a method
implementing the signature ofi2and idem foom1l Moreover, since this-lifts information will be used at various
points of the code generation, it is better to record it orceafl instead of compute it again and again.

All this work is performed by stuff located in the source ditg src/commoncodegen  whose “entry” point is
mostly the functiortcompute_abstractions_for_fields of the source filsrc/commoncodegen/abstraction.ml
(note that we have a dedicated function to process toplaeeréms because they are not hosted in species although
they may require abstractions).

As explained in 7 The call to this pass is triggered by eadjetarode generator (i.e. once by B€aml code
generation back-end, and once by teq one, obviously only if the code generation is requestedHesé¢ target
languages via the command line options). Conversely toiquepasses, this one does not enrich any environment.
However it takes a code generation environment. Since we Ratarget languages, we have 2 code generation

environments (c.f. 5.4 and 5.5). Hence, the entry point sfralstions computation must be able to work with the 2
kinds of environments. That the reason why the environnsepassed as a sum type

type environment_kind =
| EK_ml of Env.MIGenEnv.t
| EK_coq of Env.CoqGenEnv.t

to allow to have only one set of functions to do this pass awstef duplicating the code and adapting it's behaviour
in the few cases where one are interested in accessing thieranent. The output of this pass is directly used by the
code generation that called it to produce its final outpet (arget language source code).

8.1 *“Computing abstractions”

As stated in introduction the aim is to fully build the set oétimods ofSelf and the set of collection parameters’
methods a method depends on. At the end of this process, wdavget for each definition a structure grouping both

93



the information present in the typing environment and the synthesised about abstractions. Such a structure will
then be suitable to be sent to a code generation back-endaksllike:

type field_abstraction_info =
| FAIl_sig of
(Env.Typelnformation.sig_field_info * abstraction_info)
| FAI_let of
(Env.Typelnformation.let_field_info * abstraction_info)
| FAI_let_rec of
(Env.Typelnformation.let_field_info * abstraction_info) list
| FAI_theorem of
(Env.Typelnformation.theorem_field_info * abstraction_info)
| FAI_property of
(Env.Typelnformation.property_field_info * abstraction_info)
As we said, the second component of each parameters of tisérectors is abstraction_info that sum-

marises all the things we will compute. Nothing very speatabut the constructors of this type: it is clear that we
have one for each kind of method (just note that, as we preddxafore in the type-checking section, there is no more
methodsproof of since they have been collapsed with their respective prpjeto theorems). This structure
groups the results of various abstractions computatiosgsas

type abstraction_info = {
ai_used_species_parameter_tys . Parsetree.vname list ;
(** Dependenci es on species paraneters’ nethods. They are the union of:
- dependencies found via [BODY] of definition 72 page 153 of Virgile
Prevosto’s Phd,
- dependencies found via [ TYPE] of definition 72 page 153 of Virgile
Prevosto’ s Phd,
- other dependenci es found via [ DEF-DEP], [UN VERSE] and [ PRM of
definition 72 page 153 of Virgile Prevosto’'s Phd + those found
by the missing rule in Virgile Prevosto’s Phd that tenporarily
named [ DI DOU]. =)
ai_dependencies_from_params
((** The species paraneter’s nanme and kind. x)

Env.Typelnformation.species_param *
Env.ordered_methods_from_params) (** The set of methods we depend on. =)
list

(* Dependencies used to generate the record type's paraneters. It only
cont ai ns dependenci es obtai ned by [ TYPE] and [DIDAY] . *)
ai_dependencies_from_params_for_record_type
((** The species paraneter’s nane and Ki nd *)

Env.Typelnformation.species_param *
Env.ordered_methods_from_params) (** The set of nethods we depend on
only through types and conpl etion. x)
list
ai_min_cog_env  : MinEnv.min_coqg_env_element list

In effect, knowledge of what ta-lift is acquired along different steps (correspondinguies of definition 72 page
153 in Virgile Prevosto’s PhD + one new rule that didn’t exasid appeared to be mandatory). Hence this structure
reminds the state of computed dependencies at some key Bidpst, before being able to create so a summarising
("®) view of the information, we need to internally remind moeylsteps and use a more detailed structure where
the results of the consecutive steps are not yet collapsed:

type internal_abstraction_info = {
iai_used_species_parameter_tys . Parsetree.vname list ;
(** Dependencies found via [BODY] of definition 72 page 153 of Virgile
Prevosto’s Phd. =)
iai_dependencies_from_params_via_body
((** The species paraneter’s nane and kind. x)

Env.Typelnformation.species_param *
Parsetree_utils.ParamDepSet.t) (*»* The set of methods we depend on. =)
list

(** Dependencies found via [ TYPE] of definition 72 page 153 of Virgile

94



Prevosto’'s Phd. =)
iai_dependencies_from_params_via_type
((** The species paraneter’s nane and ki nd. x)
Env.Typelnformation.species_param *
Parsetree_utils.ParamDepSet.t) (*»* The set of methods we depend on. =)
list
(** Dependencies found via only [PRM. Obviously they are all present in
the set below ([iai_dependenci es_from parans_via_conpl etions]). x)
iai_dependencies_from_params_via_PRM
((** The species paraneter’s nane and kind. x)
Env.Typelnformation.species_param *
Parsetree_utils.ParamDepSet.t)
list ;
(** Other dependencies found via [DEF-DEP], [UN VERSE] and [PRM of definition
72 page 153 of Virgile Prevosto’'s Phd + [DI DOU] applied on the rules
[ DEF- DEP], [UNI VERSE] and [PRM . *)
iai_dependencies_from_params_via_completions :
((** The species paraneter’s nane and ki nd. *)

Env.Typelnformation.species_param *
Parsetree_utils.ParamDepSet.t) (** The set of nmethods we depend on. =)
list

iai_min_coq_env : MinEnv.min_coq_env_element list

As already said, the steps correspond to rules and we wilt &aterr explain how they are implemented. The
rules deal with dependencies on species parameters’ ngetfide only point dealing with dependencies on meth-
ods of Self is the “minimal Coq typing environment stored in the fieidi_min_coq_env (respectively in
ai_min_coq_env ).

At the end of each rule, the compiler will record the state efehdencies on the species parameters for further
usage. Finally, once all the key steps are no more needed engerall the computed dependencies, keeping only the
3 different sets:

e used_species_parameter_tys that records the list of collection parameters’ names tteatiaed by the
species and hence that must be abstracted.

e ai_dependencies_from_params that records the dependencies on species parameters’ daetfneat
need to be abstracted to “write” (emit the code so that it i-typed in the target language) the definition
of the method.

e ai_dependencies_from_params_for_record_type that records the dependencies on species pa-
rameters that impose abstractions when “writing” the rédgpe representing the species. In effect, the record
type doesn’'t mandatorily requires all the dependenciesired by the definition of a method. Note that in
OCaml, since the record type only makes visible types, there i€mndependencies on species parameters’
methods).

e ai_min_cog_env the minimalCoq typing environment that describes the set of method®etff that must
be abstracted because of dependencies in the method.

Hence, the abstractions computation is done in 2 shots. firfeg bne that processes fields and create the internal
abstraction structure (function compute_abstractions_for_fields returning a list ofnternal_field_abstraction_info
We may note that this function is a “fold” since at some poiatrecover the already computed dependencies from
parameters on previous fields since this info will possitdgdito apply rulesDEF-DEF, [UNIVERSE and [PRN|
of definition 72 page 153 from Virgile Prevosto’s Phd. nekg buter one (the only exported outside) that is in fact
a wrapper around the inner one, and that only merge the abstranformationand sort it (that was missing in
Virgile Prevosto’s PhD) to get the “compact” representaiid the abstraction for each method (i.e. it then returns a
field_abstraction_info list ).

Since the core of the computation is hosted in the inner fanctve will investigate its work in detail. The outer
function doesn’t present any special difficulty and will bglkained in a shorter way.

95



8.1.1 The inner computation

The basic process to apply to a method is always the same. siyiigture s are a bit simpler because some
rules do not apply (i.e. trivially lead to empty sets of degrmcies). Hence, we will expose the general case, more
specifically presenting the case of theorems when we neexkanpde (since for them, no rule lead to trivially empty
dependencies sets since theorems can induce both def drtbgeadencies). The function taking care of this job is
Abstractions. _compute_abstractions_for_fields

compute_lambda_liftings_for_field

The first step is to compute the dependencies on species @@m@nappearing in the body of the method. This
is basically the ruleBODY. This process is done by a structural descent on the bodgeofrtethod, looking for
identifiers of the formrC!meth .

By the way, we recover the decl and def-children of the cunmegthod. The idea is simply to split the list of chil-
dren of the node representing the current method in 2 pae®ries whose edge is tagdeebpGraphData.DK_decl
and the ones whose edge is tag@EpGraphData.DK_def . We do this at this stage because these 2 lists will be
useful later and this allows to directly compute the spep@ameters’ carriers appearing in the type of the method.
This could be done in a separate part, but that's simply atohc choice. May be the reason of this history is that
before, dependency computation foCaml and forCoq each used a pretty different algorithm. And in b€aml
code generation, since there was less things to computejdaadidn the same pass. Later, when the compilation
process was better understood, we identified the commonithligoand rules and made to that now abstractions com-
putation is exactly the same for both target languages. Agrd,tthe part dealing with def and decl-dependencies
splitting remained here.

Then we really walk along the AST to find species parameteethods called in the body of the method. This
is done parameter per parameter, we don’t look for methodslldhe parameters in one shot. In fact, we pro-
cess one parameter at time, in the order of apparition of #nampeters. This is very important because this gives
a particular structure (we rely on it everywhere) to our chejgancy on parameters information. This information
is a list of parameters and for each of them the set of methaslepend on. This set structure is described in
basement/parsetree_utils.ml . The parameters appear in the list in the same order theyaappiae species
definition. Hence if a method has no dependency on the speaiameters, the dependency informaticon’t be an
empty list, but a list with all the parameters and for eachrapty set. Not comply this invariant will straight lead to
break the compiler (assert failure will occur in variousgalg). Since we added termination proof, we must also walk
along these proofs to find the dependencies.

During this process, we also hunt types representing sp@aimmetersarriers appearing in the type method.
Note on the fly. | see that for computational methods, | inspect the ML-ligge and for logical ones, | inspect the
logical statement (which is really the “type” of the methd®lit what is a bit strange is that | do this typeswhile
dealing with species parameters’ method®adies The point is not so the fact that | mix “body” and “type”, but
more the fact that | wonder if | also hunt later in the bodiek. .

Once we are done with parameters’ carriers appearing inyfhee @f the method, we do the same thing on the
methods ofSelf we decl-depend on. Note that if we have a decl-dependencgmesentation , then we do
not need to inspect its structure to know if it contains reffees to some species parameter types since this means that
therepresentation is still kept abstract.

We then do the same process for the method3elif we def-depend on. Attention, if we have a def-dependency

on representation , We must inspect its structure to know if it contains refeemto some species parameter
sincerepresentation 's structure will appear in clear, possibly using these mgeparameters carrier types. So,
conversely to just above, we don’t make any difference betwepresentation and other methods of ourselves.

In fact, technically, to get the set of species parametensiars, we get the set of carriers, and afterward, we filter
those that are among our parameters. This is more efficiahtehtign each time before inserting or not a carrier in
the set.

96



Finally, we return the species parameters’ carriers us#iteimethod, the dependencies from parameters found in
the body of the method, the decl-children of the method irdgygendency graph and the def-children of it.

VisUniverse.visible_universe

The next step is to compute the “visible universe” of the mdthrhis is done by calling the function of
commoncodegen/visUniverse.ml . This universe describes which methodsSeff must be-lifted for the
current method, according to the definition 57 page 116@eéti4.4 in Virgile Prevosto’s PhD. The algorithm mostly
implement the rules of the definition, without any specidt&cxomment.

The structure of the universe is simply a map of method namh@sname belongs to the keys of the map, then it
is in the visible universe. The bound key is then the way nbtroived into the visible universe (needed later to be
able toA-lift). A method can arrive in th iniverse either by a decbdadency ando transitive def-dependency (tag
IU_only_decl ), or by at least a transitive def-dependency (tdgtrans_def ) and in this case, no matter if it
also arrives thanks to a decl-dependency.

Completion of the dependency on parameter’s methods

It is now time to apply the rulesl[YPH, [DEF-DEHF, [UNIVERSH and [PRM of the definition 72 page 153 of Virgile
Prevosto’s Phd. They contribute to extend the visibility etlnod must have on those of its parameters. Note that in
term of implementation, wdon'’t return the initial set of dependencies extended by the fiyédshnd one ! We always
return separate sets of dependencies related to each rutet(of rules in the case oDEF-DEF, [UNIVERSH

and PRM that are returned together in one set because we never oelffierentiate their provenance). The rules
are computed in the following orderTYPH, [DEF-DEH, [UNIVERSY and then PRN. This work is done by the
function Abstractions.complete_dependencies_from_params

1. Rule [TYPH. This rule says that we must search for dependencies oriespparameters’ methods among
the “type” of the currently examined method 8€&If . This rule is possible only if a logical expression is
provided. In effect, in a type scheme, species parameteriods can never appear since it is a ML-like type.
Furthermore, even in case of termination proof, we haveingtio do since expressions appearing have ML-like
types and proofs are not considered as “type”. This rule lsinvplk along the “type” of the currently examined
method ofSelf , searching occurrences of identifiers having the fparam!meth .

2. Rule DEF-DEH. This rule is implemented by first recovering all the abstin infos of the methods @elf

we def-depend. Because species are well-formed, there égaie in its dependencies, and because it is in
normal form, the methods we depend on have already be pextessl their abstraction infos are known.
This rule tells if the method def-depends on a metkodnd in the body ot we find a dependency on a
parameter’s method, then this parameter’s method must dkedad the dependencies of the current method.
Instead of implementing this rule this way, we read it likedao the dependencies of the current method all the
dependencies on parameters computed on methods we defellep@en, instead of looking for each method
if there is individually a dependency on each species paexnaenethod to add, we make a big union in one
shot.

By the way we recover all the abstraction infos of the methaidself we directly start reminding the species
parameters’ carriers appearing in the type of the methodsefrdepend. In effect, by definition, the methods we
def-depend belong to our visible universe. And becauseulledUNIVERY just below will deal with methods
of species parameters appearing in “types” of methodSedf belonging to the visible universe, recording
these carriers soon will serve for the next rule.

3. Rule UNIVERS. This rule says that if a methodbelongs to the visible universe of the methodyithas a
dependency on a species parameter meghad the type ofz, then we must add this dependency to the current
method. To make thing faster and simpler, instead of checkithere exists a, we directly do so that for
eachz in the visible universe, we must add it8_dependencies_from_params_via_type (i.e. the
dependencies on species parameters we already computkd foethodt. Since the methods are well-ordered,
we are sure that we will find this information fersince it was mandatorily processed before.

97



By the way, we go on reminding the species parameters’ camgpearing in the type of the methods added in
the dependencies.

4. Rule PRNL This one is really trickier and suffered of small typos amlicit stuff in the original PhD. The
correction is presented in 1.0.10. It deals with the fact éhearamete€’,, using a previous parametef, may
induce dependencies on methods’hfvia its own dependencies on its own parameters (those irestech by
C}). Hence, we are interested in computing dependencies aresgearameters of a species having the shape:

species S(Cp is ...,Cy is S'(C}))

First, we look foris parameters themselves parametrised. We hunt ispkeies_parameters , to get
someEnv.Typelnformation.SPAR_is whosesimple_species_expr has a non empty list
sse_effective_args

Then, we get for each parametrised parameter of the spediésh other parameters it uses as effective argu-
ment in which species and at which position. This is the @@shape already given:

species S(C)p is ...,Cy is S'(C,)) We want to know thaC,, usesC), as first argument for the species S'.
So we want to get the pailC,/, (5',[(Cp,1)])). If C, used anothe€’, as third argument, we would get the
pair: (Cpr, (5, [(Cp, 1); (Cg, 3)]))-

Now, we know that’), is a species parameter built frafit applyingC,, at position 0. We must find the name
of the formal parameter i§” corresponding to the position whef is applied. Let’s call itx. We have now

to find all the dependencies (methagsof K in S” and we must add them to the dependencie§'of This

is done by checking for each affective argument and positiitis an entity or a collection parameter. in the
first case, since an entity doesn’t have “call-able” methedda not have any dependency to add, then we have
nothing to do. In the second case, we have in our hand thetigffeargument used. We then get the name
of the formal parameter((,) of S’ at the position where the effective argument was used. Newalyjthez

in Deps (S, Cp) (that can be found in thstarting_dependencies_from_params ). Now, for all z,

we must search the set of methogspn whichz depends on irb’ via the formal parameter’s name. So, first
we getz’s dependencies informatian In these dependencies, we try to find the one correspondifarmal
name . If none is found in the assoc list that because thereatbaa in the dependencies on this parameter
and then we “add” and empty set of dependencies. If we fountesbefore adding the dependencies, we must
instantiate the formal parameter 8f by the effective argument provided. In the code, this melaaswe must
replaceformal_name by eff _arg_qual _vname in the dependencieg In effect, in the bodies/types of
the methods of’, parameters are those 8f, not our current ones we use to instantiate the formal oné$ bf

To prevent those of S’ to remain in the expressions and beumthave do the instanciation here. And finally,
we add the substituted dependencies in the current depaerdetcumulator.

Extra completion of the dependency on parameter’s methods

Here is a point | identified as missing in Virgile’s PhD. Théated rule is calledDIDOU because | didn’t have any
better idea while | was working on this, and it remained wstdinebody finds a better narge

This rule performs a transitive closure on the species petensi methods appearing in types of methods already
found by the previous completion rules. An open questiomesdhis rule must also compute the fix point taking into
account the methods adds ? In practice | never saw such a need, but. .. a bit ofytlveauldn’t hurt©The important
point here is to understand that for each method of speciesmgders, we will look for it's own dependencies on
methods of “itsSelf ”. Since in the parameter, these methods are “f&etf ”, in effect, in the species declaring the
parameter, they will look as methods of the species paramete

This processing is performed by the function
Abstractions.complete_dependencies_from_params_rule _didou . It starts by making the union
of all the dependencies found by the previous rules. Thawrites a fresh empty set of dependencies that will serve as
dependencies accumulator all along the fix point iteratidihen, for each species parameter, for each method already
found of this parameter, we compute the dependencies theldpendencies coming frothe type of the method of
this species parameter, we must add it as a dependency @p#t®s parameter method. In fact, we only add it if it

98



was not already present, which allows to detect the fix p@athed. But, since we computed the decl-dependencies
of the method (i.e. dependencies related to other methottgso$pecies parameter which are methodSelf in
this parameter), we must replace the occurrenceetff in this method by the species parameter from where this
method comes.

The process iterates until no more method have been addedyaf the species parameters.

Completion of the dependency on parameter’s carriers

This work is done by the functioAbstractions.complete_used_species_parameters_ty . Now, we
complete the species parameters carriers seen by takimgéebunt types of methods obtained by the completion
of the dependencies on parameters achieved by the previtess rThis is simply a scan of the previously built
dependencies. The only hack is that we scan the types anddatflithe species carriers appearing inside. Then
we finally filter to only keep the carriers that are really coghfrom parameters, forgetting those coming from other
toplevel species or collection.

End of the inner computation

Once all the dependencies from the rules, the visible usésethe carriers we depend on are computed, we simply
store them in &bstractions.internal_abstraction_info structure to further create the more compact
form of the dependencies. This compact form is computed seritbed in “The outer computation (wrapper)” (C.f.
8.1.2.

8.1.2 The outer computation (wrapper)

The wrapper is the functioompute_abstractions_for_fields . Basically it's bigList.map on the tem-
porary abstractions info we computed above. Its aim is togse this temporary information to make it more compact
and adjust some things due to inheritance and order of deperes between them and to apply the ridéJOU on
dependencies that will appear in tleeord type of the species.

The first thing to do is to merge all the dependencies foundheytles TYPH and all the completion rules.

Next, we compute the dependencies used to generate thel tgperparameters, i.eTYPH+[PRNH+([DIDOU
on [TYPH +[PRN). This is simply done like previously, using the function
complete_dependencies_from_params_rule_didou but providing it an empty dependency set for the
parameter-via_body , hence, the completion will not take any body dependenayactount.

Once we get the dependencies needed for the method defiaitibfor the record type field definition, we must
order them. In effect, nothing guaranties that the ordedépeendencies are stored in our data-structures are cntsist
with the dependencies of the methods in their own speciasdtle, remind, our species parameters). Then we sort the
methods like we did when we computed dependencies on metfi&edf .

The final process deals with inheritance and instantiatibspecies parameters. If the method is inherited, it con-
sists in mapping the computed dependencies on parametiies current species on the dependencies on parameters
previously computed in the species we inherited the metNade that if the method is not inherited, we do nothing,

returning directly the dependencies on parameters we ctaapuntil now.
We need this process to correctly compile code like:

speci es Couple (S is Simple, T is Simple) =
signature morph: S -> T ;
| et equiv (el, e2) =
| et _to_force_usage = Slequal in
Tlequal (!morph (el), !morph (e2))
end ;;
species Bug (G is Simple) inherits Couple (G, G) = .. end ;;

The formal parameterS and T are instantiated by inheritance both 8yIn Couple , equiv depends on the
typesS andT and on the methodS!equal andT!equal . So, the application of the method generatoeqtiiv

99



in Bug must have twice_p G T and__p_G_equal provided: once for tha-lift of S and once for the one af
in Couple (yep, remember that i@ouple , the methodequiv depends on 2 species parameter tySesnd T and
the methodsSlequal andT!equal ). Unfortunately, when we compute directly the dependenirighe species
Bug, since we work with sets, the 2 occurrences gb_G_T are reduced into 1, and same thing fop_G_equal .
Hence the dependencies information we have for the meghoy  inherited fromCouple in the specie8ug gives
us a wrong number of dependencies (hencg-bifts) compared to those required to use the method gesrerdtich
lies inCouple .

One solution would have to take the dependencies informdir@ctly in the species we inherit (i.€ouple here)
and to perform the substitution replacing the formal patansey the effective arguments provided in thieerits
clause. Technically, because the data-structure regiegelependency information is very complex, involves siar
| didn’t dare to do this to avoid errors, forgetting partstoé tlata-structure and so on, and also to preserve the sharing
In effect, the substitution returns a copy of the term. Heatlehe shared parts in the data-structure would be freshly
copied, then separated of their other occurrences somewls® in the data-structure.

So, if we have a deeper look at our problem, by re-using dyr¢lse dependency information in the species we
inherits, we have the right number of abstractions (thet @gistractions scheme), but without the substitutionséadu
by theinherits  clause. On the other side, by computing directly the depanydieformation in the current species,
we have the right substitutions, but without the correct benof abstractions (i.e. without the right abstractions
scheme). One may note however that in the second point, balpamber of abstractions (and their positions) are
incorrect. However, nothing completely disappear: if ie thherited species we had a dependency on a parameter
method, so we have in the current species. The only thingcthdtl happen is that several methods initially identified
as differentiate got merged into one same method aftemitiaten.

The solution is then simply to trust the abstractions scheftiee inherited species. Next, we compute the depen-
dency information in the current species. This will give lus tdependency bricks” with the right substitution applied
And then we will just map our bricks onto the scheme accorthripe formal by effective parameter instantiations.

For instance, on our previous example, the dependencidsh@rce the\-lifts) computed inCouple are:S, T,
Slequal , Tlequal , sothe method generatorefual has 4 extra parameters (and in this order).

Now, computing the dependenciesBag gives usG, Glequal .

We see thak was instantiated b, so in the inherited scheme we replace the dependenciemiation related to
S by those computed iBug, i.e. by those related 1@ We see thal was instantiated b, so we do the same thing in
the inherited scheme for the dependencies informatiotegtk® T. Hence, the final dependencies information we get
for the methocequal in Bug is G G Glequal , Glequal which is right according to what the method generator
expects.

Note this impacts only collection parameters since enatameters do not provide methods during the inheritance.

Once all this job ends, we have all our dependencies compantitde store all the information iredostraction_info
structure that will be exported toward the code generatamkiends.

100



Chapter 9

OCaml code generation

The code generation starts from timéer.please_compile_me structure returned by the type-checking pass.
It will examine each phrase of the program, call the abstrastcomputation previously described (c.f. 8) if needed,
before starting generating some target code.

The most interesting parts of the code generator are thamgevith species and collection. Toplevel functions
do not pose particular problems, as well as type definitiamse€DCaml has similar type definitions. One may note
that becaus®Caml doesn’t have logical features, toplevel theorems triyildhad to no produced code. Generation
for use andopen directives doesn’t produce any code, onfgen has a significant effect, loading the definitions of
the related module in the environment (exactly like for thieeo passes).

9.1 Species generation

9.1.1 The collection carrier mapping

To be able to properly map the species parameters’ caridetgpe variables in the generated code, we start by
creating a “collection carrier mapping”. This mapping ie torrespondance between the collection type of the species
definition parameters and the type variables names to be lagadduring the OCaml translation. For a species
parameteA isf/in ... , the type variable that will be used is “” + the lowercasedngeof the species parameter
+ an integer unique in this type + &s_carrier "

We need to add an extra integer (in fact, a stamp) to preveatna $ype variable from appearing several time in
the tricky case whereia and ais parameters wear the same lowercased name. For instasigeires A (F is B
, f in F) whereF andf will lead to a same name @Caml type variable: 'f_as_carrier "

Hence, each time we will need to generate a type expressiolving a species parameter carrier, by a simple
look-up in the mapping we will get the type variable’s nameetnit. This mapping primarily serves to the type
pretty-print function. It also have few minor usages thdt be explained when we will encounter the case.

The mapping gets stored in a compilation context (a bit Iile= ¢ontext we already saw for type-checking) with
various other structures that will be always passed to thepdation functions. This way, grouping all in one unique
argument makes the code clearer.

9.1.2 The record type

As described in , a species starts by a record type definifitnis record contains one field per method. This type
is named tfne_as_species " to reflect the point that it represents tCaml structure representing tHeoCal
species. Depending on whether the species has parambigrecord type also has parameters. In any case, it at least
has a parameter representing “self as it will be once ingged®’ once “we” (i.e. the species) will be really living as

a collection.

101



If the carrier is defined, then before the record definitior, generate the type definitiom®_as_carrier
that shown the constraints due to ttepresentation definition (c.f. 2.1.2). This is done by the function
generate_rep_constraint_in_record_type

Next, we must start the generation of the record type it8sfcareful that it will have at least one type parameter
(the one representing our carrier and narimed_as_carrier ). It can have several parameters if the species has
species parameters. So, we start generatingnteeas_carrier , and we use the collection carriers mapping to
generate the other type parameters corresponding to thersaf the species parameters.

Now comes the point where we must generate the record fieltis. fifst weird thing is that we must extend
the collections carrier mapping with ourselve known. Tkisdquired whemepresentation is defined. Hence,
if we refer to ourrepresentation (i.e. me_as_carrier ), not toSelf , | mean to a type-collection that is
“(our compilation unit, our species hame)” (that is the ca$en creating a collection whe&elf gets especially
abstracted to “(our compilation unit, our species name¥,will be known and we wont get the fully qualified type
name, otherwise this would lead to a dependency with ougselterm ofOCaml module.

Indeed, we now may refer to our carrier explicitely here im $lsope of a collection (not species, really collection)
because there is no more late binding: here when one say itseipt anymore “what | will be finally” because we are
already “finally”. Before, as long a species is not a collaatit always refers to itself’s type asfie_as_carrier "~
because late binding prevents known until the last momermt ‘wfe will be”. But because now it’s the end of the
species specification, we know really “who we are” afié¢_as_carrier " is definitely replaced by “who we
really are” : ‘me_as_carrier "

We can now iterate through the list of fields of the speciestaate the record’s fields. We take care to not generate
let fields whose type involvgsrop since they can only be created logical let that are discarded i@Caml.

We also skip theorem and property fields.

Once done, we close the record definition.

9.1.3 Abstraction computation

As previously explained, each back-end triggers the coatjout of abstractions (i.e. things — carriers, methods —
to abstract due to dependencies). From this computationetvithg list of fields of the species with the information
explaining what to\-lift.

9.1.4 Definitions’ code generation

We then iterate code generation on each field, depending dinid. Signatures, properties and theorem are purely
discarded ifDCaml since they have no mapping and no use.

It then remains théet -definitions. The generation consists in 2 parts: the gé¢ioeraf the extra parameters due
to A-lifts and the translation of the function’s body ifCaml. This last part is quite straightforward, so we will take
more time on the first one.

The first thing is that only methods defined in the current Esemust be generated. Inherited methadsnot
generated again. So we start generating théetheand name of the function.

Next come the\-lifts that abstract according to the species’s paramaterscurrent method depends on. We
process each species parameter. For each of them, aachctdastmethod will be named like ", followed by
the species parameter name, followed by, ‘followed by the method’s name. We don’t care here abouttivrethe
species parametersiis or IS .

Next come the extra arguments due to methods of ourselvegpend on. They are always present in the species
under the namedbst_... ". These\-lifts are only done for methods that are in the minimal cogirmmment
because they computational and only declared.

Next come the parameters of thet -binding with their type. We ignore the result type of tle¢ if it's a
function because we never print the type constraint on thaltref thelet . We only print them in the arguments of
thelet -bound identifier. We also ignore the variables used to intsédie the polymorphic ones of the scheme because

102



in OCaml polymorphism is not explicit. Note by the way thet we do notdanymore information abo&elf ’s
structure...

Becareful that while printing the type of the function’s angents, since they belong to a same type scheme they
may share variables together. For this reason, we first pilngerinting variable mapping and after, activate its
persistence between each parameter printing. This allogvgype pretty-print function to “remember” the variables
already seen and print the same name if it see one of them. agadirthis, until we release the persistence.

Finally, we can dump the code corresponding to the trawsiaif the function’s body. The only tricky part is to
generate code for identifiers because we must take care bewtte identifier represents a local variable, an entity
parameter, a method &klf , a toplevel identifier or a collection parameter’s metho@ must also be able to detect
occurrences of recursive calls to be sure that at applicitioe, we will really provide the arguments for thdifts.

9.1.5 Ifthe species is complete

...then we must manage the fact that a collection generatst be created. The generator is created from the list
of compiled fields. The idea is to make a function that will leggmetrised by all the dependencies from species
parameters and returning a value of the species record type.

The generic name of the collection generataollection_create ". Be careful, if the collection generator
has no extra parameter then thedtlection_create " will not be a function but directly the record representing
the species. In this case, if some fields of this record angmpaiphic, OCaml won’t generalize because it is unsound
to generalise a value that is expansive (and record valeesxpansives). So, to ensure this won't arise, we always
add oneunit argument to the generator. We could add it only if there isngorment to the generator, but it is pretty
boring and we prefer just tideeplt Simple andStupid ©.

After the name of the generator, we must generate the pagasrtbe collection generator needs to build the each
of the current species’s local function (functions cormyting to the actual method stored in the collection record)
These parameters of the generator come from the abstragftioethods coming from our species parameters we
depend on. By the way, we want to recover the list of speciemnpeters linked together with their methods we need
to instanciate in order to apply the collection generatordd so, we first build by side effect the list for each species
parameter of the methods we depend on (using the depend#ocyation previously computed). Then we simply
dump this list, using the naming schemg"” + the species parameter name _+ % the called method name. Since

that also this way species parameters methods are called boties of the local functions 8elf (see below), this
will really lead to bind this abstracted identifiers in thésalies.

At this point comes the moment to generate the local funsttbat will be used to fill the record value. We then
iterate on the list of compiled fields of the species, skigghelogical let s, to find the method generator of the
field and apply it to all it needs. “All it needs” means stufftdacted because of dependencies on species parameters
and things abstracted because of dependencies on othevdaethourselves.

To get the method generator, we must check at which inhegtéavel it is, in other words in which species its
code was defined. To do so, since we know that the species igletaywe just need to look in tfeom_history
of the field and the generator is defined in theinitial_apparition (since by construction, we record the
first declaration is no definition or the definition of a methuate, and subsequent apparition due to inheritance are
recorded somewhere else).

We first start by abstractions for species parameters. Ripgon if the method generator is inherited or directly
defined in the current species, we have 2 behaviours.

In the simples case, it is defined in the current species andst@eed to apply the method generator to each of
the extra arguments induced by the various lambda-liftiegoneviously performed for species parameters: here we
will not use them to\-lift them this time, but to apply them ! The name used for agtlon is formed according to
the same scheme we used\difting time: “_p_" + the species parameter name +*“ the called method name.

However, if the method is inherited, the things are more deripWe must apply the method generator to each
of the extra arguments induced by the various lambdadjftire previously in the species from which we inherit,
i.e. where the method was defined. During the inheritana@npeters have been instanciated. We must track these
instanciations to know to what apply the method generator.

103



Following parameters instantiations

This work is performed bgpecies_ml_generation.instanciate _parameter_through _inheritance

We search to instanciate the parametersdndin ) of the method generator of ofield_memory  (i.e. the data-
structure that represents what we know about a method thepreaiously generated). The parameters we deal with
are those coming from thi-lifts we did to abstract dependencies of the method desdiiily thefield _memory]

on species parameters of the species where this method is defined Hence we deal
with the species parameters of the species where the method w as defined ! It must
be clear that we do not matter of the parameters of the species who inherited !!!
We want to trace by what the parameters of the original hostin g species were instanciated
along the inheritance.

So we want to generate the OCaml code that enumerates the arguments to apply
to the method generator. These arguments are the methods com ing from species parameters
on which the current method has dependencies on. The locatio ns from where these
methods come depend on the instanciations that have be done d uring inheritance.

This function trace these instanciations to figure out exac tly from where these
methods come. Process sketch follows:

1. Find at the point (i.e. the species) where the method gener ator of the field_memory

was defined, the species parameters that were existing at th is point.

2. Find the dependencies the original method had on these (it S) species parameters.

3. For each of these parameters, we must trace by what it was in stanciated along

the inheritance history, (starting from oldest species whe re the method appeared

to most recent) and then generate the corresponding OCaml code.

(@) Find the index of the parameter in the species’s signatur e from where the
method was really defined (not the one where it is inherited).

(b) Follow instanciations that have been done on the paramet er from past to
now along the inheritance history.

(c) If it is a in parameter then we must generate the code corre sponding to
the FoCalL expression that instanciated the parameter. This expressi on is
built by applying effective-to-formal arguments substitu tions.

(d) If it is a IS parameter, then we must generate for each meth od we have dependencies
on, the OCaml code accessing the OCaml code of the method inside its module
structure (if instanciation is done by a toplevel species/c ollection) or
directly use an existing collection generator parameter (i f instanciation
is done by a parameter of the species where the method is found inherited,

i.e. the species we are currently compiling).

Ending the collection henerator

Finally, we must apply the method generator to each of the ext ra arguments induced
by the methods of our inheritance tree we depend on and that we re only declared

when the method generator was created. These methods leaded to “local” functions
defined above (by the same process we describe here). Hence, for each method only
declared of ourselves we depend on, its name is “local_" + the method’s name. Since
we are in  OCaml, we obviously skip the logical methods.

We were at the point of generating the “local” functions corr esponding to our
methods. This is now done, and we only have to create now the re cord value representing
the collection returned by the collection generator. To do t his, we only assign
each record fields corresponding to the current species’s m ethod the corresponding

104



“local” function we defined just above. Remind that the reco rd field's is simply
the method’s name. The local function corresponding to the m ethod is “local " +
the method’s name.

9.1.6 Ending the code of a species

We ar enow done with the process handling the case a species is fully defined, hence

has a collection generator. We just now need to create the dat a that will be recorded

in the OCaml code generation environment. Remember that while creating the collection
generator, we returned the list of arguments it need. This in fo will be part of

what is stored in the environment. We also build the list of th e compiled_field_memory’s
of the methods and the information about the species paramet ers.

9.2 Collection generation

105



106



Chapter 10

Cog code generation

10.0.1 Theorems and proofs

10.0.2 Recursive functions

107



108



Chapter 11

Doc generation

109



110



Chapter 12

focalizedep

111



112



Chapter 13

Cadavers in the cupboard

Here is the holly section of things that are not yet done and fo
there is still something to do. Currently, most of them are no

and do not impact the general sanity of the compiler. However
create some cases of programs falling in these open points. H
we hide under the carpet... ©®

e The verification that Self is really compatible with the lis
encountered during species expression typing is not curren
with inheritance from parametrised species applied to Self
Most of the points in the code are tagged by a comment [Unsure]
an identifier named self_must_be to represent the unused i
types Self must be compatible with. In fact, the function per
test already exists and is called is_sub_species_of in the s
but we do not use it for this task.

r which we know
t very intricate
, it is possible to
ere are the cadavers

t of species types
tly done. This deals
as described in 7.3.3.
and involve
st of these species
forming compatibility
ource file typing/infer.ml

e Recursive functions with termination proofs using Cog’'s Function construct are
to be finished. | have some notes about this and must scan them instead of
rewriting all. Apriori, there is not tons of work to do for this and major identified
points are:

— Adding « conversion in some parts of the generated code to prevent nam e
conflicts in Coq.

— Rewrite the LTac of William that should provide a mean to prov

of orders from simple basic orders.

— Instead of using magic_order at the end of the proof, use the d

e well foundation

efined order

(can be done only when the above LTac will work since it will pr ovide the
well foundation of the order.

— Verify the measure kind of proof and implement the structura | kind based
on the primary brick order.

— Provide a way for the user to see the proof he has to do for termi nation

by showing him the theorems generated by the compiler for thi

proof.

e Check record label exhaustivity when dealing with expressi
Currently the compiler only issues a warning to say that it is

e Have an automated and transparent renaming mechanism to pre

s termination

ons of type record.
not done.

vent identifiers

used in FoCalize to make syntax errors in the target languages if they are toke n

113



of these languages. For instance, defining an identifier “m odule” will make

a syntax error in the generated OCaml code since “module” is a keyword in OCaml.
Local collections are not yet re-implemented. One must unde rstand the semantics
of the structure we want before.

Implement an effective API to allow passes to be added by user s after scoping

and typechecking and re-analyse the possibliy (by these use r-passes) modified
code. To prevent a useless re-analyse if no pass was inserted , the API could
provide a function toggling an internal boolean telling if t he code must be
analysed again for example.

And most generally, the few points in the code tagged by a comm ent [Unsure].
These are the points where | strongly wondered without havin g yet found a solution
in which | have a strong, indubitable confidence.

The notion of “local” let is not implemented. Some questions about its semantics...Should
it be inherited, i.e. visible in the children ? but not when th e species is
used as parameter ? as collection ? Does it appear in the signa ture ?  What
are the usage restrictions (ok or not in proofs) ? Does it lead to code ? Depending
on these points, one must be careful to prevent dependencies on a local that
would not visible. What does it means to have a “local’” signhat ure, theorem,
property ?

Change the patterns so that they are as simple as those that Coq can handle.

We don't want to keep our OCaml-like patterns and decompose them into simpler

patterns to prevent the user from trying to make proofs on a co de that is not
really the one he wrote.

Records expressions are not generated in Coq.

Unification currently implements the “Self preference” ru le (rules [Selfl] and
[Self2] in Virgile’s Phd section 3.3, definition 9 page 27. | t seems to be

a hack to tend to introduce the maximum of Self but doesn’'t see m to lead to

a general type. In fact, this problem is circumvented by the n otion of signature
matching that allows to verify that the infered type of a meth od is compatible
with the given signature of the method and keep as result the g iven signature.

It may be possible to do so that the unification doens't retur n any type, hence
leading to a regular ML-like unification, the signature mat ching process acting
alone to abstract types (that are compatible with the known d efinition of the
carrier) into Self.

We should generate “.mli” interface files to prevent visibi lity of internal

structure of species if manually hacking (interfacing) OCaml code with source
generated by focalizec.

Question: proof by type Self. What does it do ? What does it mea n ?

Feature allowing to use a fully defined species instead of a ¢ ollection ? Wanted
or not ? What's about the abstraction ? Remove ?!

Error:  Unexpected error:  "Failure("Instantiation of coll ection parameter by

Self - Configuration currently not available.")" (from com moncode_gen/misc_common.ml).

open "basics"

species B =

114



let x =1 ;
end ;;

species S (A is B) =
representation = A ;
let x =6 ;

end ;;

species Cinherits S (Self) = end ;;

or

speci es Basic_object =
let print =™ ;
end ;;

species One (A is Basic_object) =
representation = A;
let b =1 ;

end; ;

speci es Two =
inherit One ( Self);

end; ;
e Species parametrised by Self are currently handled by delay ing the verification
that Self is really compatible with all the interfaces encou ntered in the inherits
clause involving Self as effective argument of a collection . May be this verification
shoud be done on the fly, considering only the interface of Se If we can build
with the methods we currently know for Self. Question Ok, rrrrrright, but
is it possible to check interface compliance although we do n ot have yet a normal
form of ourselves ?
e The focalizec command should be enhanced upon producing an executable ins tead
of stopping only on object files (.cmo).
e On Eric’s request: what to do of such a program (that compiles in FoCaL, OCaml
and Coq) but is a bit weird.
speci es Subset(Val is Superset) =
signature empty : Self ;
end ;;
speci es Subset (Val is Superset) =

inherit Subset_Comp (Val)
representati on = Val -> bool

let empty(v in Val) = false ;
end ;;
In effect, empty is first declared as a constant, then it is im plemented as
a function, just thanks to the fact that Self is known to be equ al to a functional
type.

115



Index

M-lift, 94
methods of Self, 17
%type, 31
abstraction, 93
alias, 32
AST

node structure, 55, 75
binding level, 82

carrier

representation, 11
collapsing proof, 87
collection, 26

typing, 90
compiler entry point, 50

dependency, 88
on carrier, 3, 86
on parameter's method, 93

entry point, 50
environment
coq code gen, 69

generic, 57
ocaml code gen, 67
scoping, 62
typing, 64

external
clause, 38
definition, 36

type definition, 36

value definition, 42
extra

() parameter, 23
extra library, 48

fusion, 87

inheritance
resolution, 85
scoping, 73

instanciation, 4
internal clause, 37

lexer, 49
lexing, 55
library
extra, 48
standard, 50

method, 15
generator, 16
scoping, 74
typing, 85

module, 58

normal form, 3, 87
occur check, 81

parser, 49
parsing, 55
polymorphism, 82

record
type, 12
Coq gen env info, 69
OCaml gen env info, 68
scoping env info, 62
typing env info, 64
remapping dependencies, 99
rule
[COL-PRM], 3
[PRM], 5
[SELF1/2], 3
DEF-DEP, 97
DIDOU, 98
PRM, 98
TYPE, 97
UNIVERS, 97

scoping, 71
signature matching, 88
species, 11



Cog gen env info, 70
OCaml gen env info, 68
complete, 21
parameter
scoping, 73
typing, 84
scoping env info, 63
typing, 84
typing env info, 65
standard library, 50
stdlib, 50
substitution, 77

theorem
toplevel, 31
tuple, 31
type, 76
Cog gen env info, 70
OCaml gen env info, 68
algebra, 77
alias, 32, 91
builtin, 41
definition, 32
external, 36, 92
typing, 91
record, 35, 92
scheme, 76
scoping env info, 63
sum, 33, 91
tuple, 31
typing env info, 65
union, 33
type-checking, 50

unification, 3, 79
unifier, 79

value
Cog gen env info, 70
OCaml gen env info, 68
constructor
Coq gen env info, 69

OCaml gen env info, 67

scoping env info, 62
typing env info, 64
scoping env info, 62
typing env info, 65
visible universe, 97

117



