
Another Tutorial for FoCaLize:

Playing with Proofs

François Pessaux

ENSTA ParisTech

francois.pessaux@ensta-paristech.fr

December 2012

1 Forewords

1.1 Content

This document is a tutorial for FoCaLize, describing how to develop proofs of

properties using Zenon. Differently from other tutorials, we won’t focalize on

mathematical developments, preferring to show the language in action on programs

closer to what “usual programers” develop in the “everyday life”.

To get in touch with basic Zenon capabilities, we will first address very simple

first order logic properties with their proofs. This will allow introducing the notion

of hierarchical proofs. Then, we will program a simple 3 traffic signals controller

to apply these skills on properties directly related to the program we will write.

The aim is to show what are the kind of properties one may want to state and how

their proofs get related to the types and functions definition of a program.

1.2 Notations and Recommandations

In the rest of this tutorial, pieces of FoCaLize code will be presented in frames, as

in this example:

use "basics" ;;

species Controller =

When introduced in the running text, FoCaLize keywords will appear in a spe-

cial font like property. Terms representing specific concepts of FoCaLize are

introduced using an emphasized font, for example collection. Finally, commands

and file names are in bold font, for example focalizec fo logic.fcl.

2 Dealing with first order logic theorems

The first part of this tutorial intends teaching how to use Zenon on simple boolean

properties. The aim is to show how Zenon can help making whole part of basic

1

2 2 DEALING WITH FIRST ORDER LOGIC THEOREMS

inference steps one usually makes explicit in tools like Coq. It must clearly un-

derstood that Zenon is not a proof checker but a theorem prover. Obviously it will

not automatically demonstrate itself any property. However, combined with the

FoCaLize proof language, it will automate tedious combinations of “sub-lemmas”

one usually “think intuitively feasible”.

In the following examples, we won’t create species. Instead, to get rid of com-

plexity induced by FoCaLize structures, we will state and prove theorems at “top-

level”.

2.1 A so simple property: fully automated proof

Let’s first address the following property: ∀a, b : boolean, a ⇒ b ⇒ a. We write

this in FoCaLize as follows, in a source file focalizec ex implications.fcl:

Listing 1: ex implications.fcl

open "basics" ;;

theorem implications : all a b : bool, a -> (b -> a)

proof = conclude ;;

Here, we stated a property and directly asked Zenon to find a proof without

any direction. Zenon then uses its internal knowledge of first order logic to solve

the goal. At this stage it is possible to compile the program using the command

focalizec ex implications.fcl and get few messages with not error:

Invoking ocamlc...

>> ocamlc -I /usr/local/lib/focalize -c ex_implications.ml

Invoking zvtov...

>> zvtov -zenon /usr/local/bin/zenon -new ex_implications.zv

Invoking coqc...

>> coqc -I /usr/local/lib/focalize -I /usr/local/lib/zenon ex_implications.v

Compilation, code generation and Coq verification were successful. Let’s in-

vestigate the tree of this proof, where we wrote hypotheses (context) in green and

goals in blue. The intuition is that we lift the two implications as hypotheses and

from the hypothesis a we trivially prove our goal.

a, b ⊢ a

a ⊢ b ⇒ a
(⇒-INTRO)

⊢ a ⇒ b ⇒ a
(⇒-INTRO)

In FoCaLize, this proof is achieved as a simple hierarchical sequence of inter-

mediate steps. A proof step starts with a proof bullet, which gives its nesting level.

The top-level of a proof is 0. In a compound proof, the steps are at level one plus

the level of the proof itself.

Listing 2: ex implications.fcl (2)

open "basics" ;;

2.1 A so simple property: fully automated proof 3

theorem implications : all a b : bool, a -> (b -> a)

proof =

<1>1 assume a : bool, b : bool,

hypothesis h1 : a,

prove b -> a

<2>1 hypothesis h2 : b,

prove a

by hypothesis h1

<2>2 qed

by step <2>1

<1>2 conclude

(* or: qed conclude

or: qed by step <1>1 *) ;;

Here, the steps <1>1 and <1>2 are at level 1 and form the compound proof

of the top-level theorem. Step <1>1 also has a compound proof (whose goal is

b ->a), made of steps <2>1 and <2>2. These latter are at level 2 (one more than

the level of their enclosing step).

After the proof bullet comes the statement of the step, introduced by the key-

word prove. This is the proposition that is asserted and proved by this step. At

the end of this step’s proof, it becomes available as a fact for the next steps of this

proof and deeper levels sub-goals. In our example, step <2>1 is available in the

proof of <2>2, and <1>1 is available in the proof of <1>2. Note that <2>1 is

not available in the proof of <1>2 since <1>2 is located at a strictly lower nesting

level than <2>1.

After the statement is the proof of the step. This is where either you ask Zenon

to do the proof from facts (hints) you give it, or you decide to split the proof in

“sub-steps” on which Zenon will finally by called and that will serve (still with

Zenon) to finally prove the current goal by combining these “sub-steps” lemmas.

For instance, the proof of the whole theorem (which is itself a statement) is not

directly asked to Zenon as it was the case in the first example (with the simple fact

proof =conclude). It has been decided to split it in one sub-goal <1>1: prove

b ->a. The same structure is applied to this goal which is split in the sub-goals

<2>1 and <2>2.

In the proof of sub-goal <2>1, appears a fact: by hypothesis h1. Here

Zenon is asked to find a proof of the current goal, using hints it is provided with.

You are responsible in giving Zenon facts it will need to finally find a proof. It will

combine them in accordance with logical rules, but if it is missing material for the

proof, it will never succeed. Here, Zenon is told that it should be able to prove the

goal only using the hypothesis h1 we introduced. It will obviously succeed since

the goal is exactly the hypothesis h1.

From the proof of a, i.e. the step <2>1, we can conclude the enclosing goal

(prove b ->a). This is done by the qed step whose aim is to close the enclos-

ing proof by mean of the provided facts (here the intermediate lemma stated by the

step <2>1).

Finally, coming back to the remaining part of the proof, i.e. the previous nest-

ing level, we want to solve its goal (which is the whole theorem). In the same

4 2 DEALING WITH FIRST ORDER LOGIC THEOREMS

manner, from the step <1>1 that proved that b ->a under the hypothesis a, we

can conclude. We then invoke the statement conclude which is equivalent to

tell Zenon to use as facts, all the available proof steps in the scope. Hence this is

equivalent here to write qed by step <1>1. Note that with conclude the

qed is optional since this statement implicitly marks the end of the proof related

to the current goal.

Having a look backward to compare our Coq and FoCaLize proofs, we can

clearly see the same processing order. We introduced the implications as hypothe-

ses, with intro in Coq and assume in FoCaLize. Then we used the hypothesis

h1, with exact h1 in Coq and by hypothesis h1 in FoCaLize. The im-

plicit nested structure of the proof is made explicit in FoCaLize.

2.2 Still simple but easier with Zenon

Let’s continue with simple first-order logic properties and let’s try to demonstrate

the following statement: ∀a, b : boolean, (a ∧ b) ⇒ (a ∨ b). We can easily build

the tree of this proof as follows:

a ∧ b ⊢ a ∧ b

a ∧ b ⊢ b

a ∧ b ⊢ a ∨ b
(∨-ELIM)

(∧-ELIM)

⊢ a ∧ b ⇒ a ∨ b
(⇒-INTRO)

Note that we chose to prove b but we could have chose to prove a instead. We

now address this property in FoCaLize again, making explicit all the steps of the

proof we did.

Listing 3: and or.fcl

open "basics" ;;

theorem and_or : all a b : bool, (a /\ b) -> (a \/ b)

proof =

(* Sketch: assume a /\ b, then prove b as trivial consequence of a /\ b.

*)

<1>1 assume a : bool, b : bool,

hypothesis h1: a /\ b,

prove a \/ b

<2>1 prove b

by hypothesis h1

<2>2 qed

by step <2>1

<1>2 conclude (* or, qed conclude, or even qed by step <1>1 *) ;;

We can see that step <2>1 is directly proven by hypothesis h1, without making

explicit the ∧-ELIM rule of the proof tree. Here we rely on Zenon to find the

proof of this step. Again, this property is simple enough to get it proved in a fully

automated way by Zenon.

open "basics" ;;

5

theorem and_or : all a b : bool, (a /\ b) -> (a \/ b)

proof = conclude ;;

3 Playing with programs

Let’s now introduce more material than simple first-order logic formulae. In this

section we will first introduce functions, then inductive types in stated properties.

Finally we will see that such previously stated properties can be used as lemmas to

prove further theorems.

3.1 Introducing functions

One may want to prove that logical or (∨) is commutative, i.e. that (a ∨ b) ⇒

(b ∨ a). But, on atomic properties, this would again be trivial for Zenon. Instead,

of making again explicit trivial proof steps, we will now extend this formula with

the (trivial again) identity function. Hence we want to prove that if id is defined

as λx.x, then ∀a, b, c, d : int, (id(a) = b∨ id(c) = d) ⇒ (c = id(d)∨a = id(b)).
We write this in FoCaLize like:

Listing 4: or id com.fcl

1 open "basics" ;;

2

3 let id (x) = x ;; (* Definition of the identity function. *)

4

5 theorem or_id_commutative:

6 all a b c d : int, (id (a) = b \/ id (c) = d) -> (c = id (d) \/ a = id (

b))

7 proof = conclude ;;

As shown in the previous code snippet, we optimistically asked Zenon to au-

tomatically handle the proof. So, let’s invoke the compilation command: focalizec

or id com.fcl and we get:

Invoking ocamlc...

>> ocamlc -I /usr/local/lib/focalize -c or_id_com.ml

Invoking zvtov...

>> zvtov -zenon zenon -new or_id_com.zv

File "or_id_com.fcl", line 7, characters 8-16:

Zenon error: exhausted search space without finding a proof

proof failed

We should have not been so optimistic: line 7, where we invoked conclude,

Zenon did not find any proof despite it natively knows equality and basic logic.

We will investigate this point incrementally, and once understood, we will see that

we could have fixed the proof more quickly (and more lazily). The aim here is to

make again hierarchical proof steps explicit to train splitting proofs in intermediate

cases (which will quickly become mandatory with realistic proofs).

What is the sketch of the proof ? We basically want to assume that id(a) =
b ∨ id(c) = d then prove c = id(d) ∨ a = id(b). We will now build the structure

6 3 PLAYING WITH PROGRAMS

of the proof incrementally, adding steps from our intuition, but leaving temporarily

them unproved. By this mean, we do not yet focus on each sub-goal, rather on the

global scheme of the proof. In some sense, we add intermediate lemmas and want

to ensure that (obviously provided they will be proven) Zenon can find a proof of

the global theorem combining these lemmas. So, let’s simply add a step assuming

id(a) = b ∨ id(c) = d and “fake-prove” that c = id(d) ∨ a = id(b). Then, we ask

Zenon to conclude the whole theorem by this step.

Listing 5: or id com.fcl (2)

1 open "basics" ;;

2

3 let id (x : int) = x ;;

4

5 theorem or_id_commutative:

6 all a b c d : int, (id (a) = b \/ id (c) = d) -> (c = id (d) \/ a = id (

b))

7 proof =

8 (* Sketch: assume (a = b \/ c = d), then prove (c = id (d) \/ a = id (b)

. *)

9 <1>1 assume a : int, b : int, c : int, d : int,

10 hypothesis h1: id (a) = b \/ id (c) = d,

11 prove c = id (d) \/ a = id (b)

12 assumed

13 <1>2 qed by step <1>1 ;;

We remark the apparition of the keyword assumed whose aim is to loosely

make a “fake” proof. In a sense, this allows stating the related goal as being an

axiom. Obviously, this is cheating since the proof gets admitted, hence do not

reflect anymore a really holding property. Decent FoCaLize developments should

not have such “proofs” remaining. However, this can be the only solution when

dealing with properties that can’t be proved because relying of third-party code, not

available in FoCaLize, or when properties deal with higher-order (Zenon doesn’t

handle this aspect). In the present case, we only use it as a temporary placeholder

to help us refining our proof from the general idea to the fine-grain sequence of

steps.

At this point the source file can be compiled invoking focalizec or id com.fcl

which hopefully gives not error. It is pretty satisfactory that from the only step

of the proof, having lifted the left part of the implication as hypothesis, the whole

theorem can be proved !

It remains now to really prove that c = id(d)∨a = id(b) under our hypothesis.

This is achieved by proving it in both cases where we have the left and the right

parts of our disjunctive hypothesis. We can then add these new steps, still assuming

their proofs, just to ensure that our intuition of the scheme is consistent.

Listing 6: or id com.fcl (3)

1 open "basics" ;;

2

3 let id (x : int) = x ;;

4

5 theorem or_id_commutative:

3.1 Introducing functions 7

6 all a b c d : int, (id (a) = b \/ id (c) = d) -> (c = id (d) \/ a = id (

b))

7 proof =

8 (* Sketch: assume (a = b \/ c = d), then prove (c = id (d) \/ a = id (b)

. *)

9 <1>1 assume a : int, b : int, c : int, d : int,

10 hypothesis h1: id (a) = b \/ id (c) = d,

11 prove c = id (d) \/ a = id (b)

12 <2>1 hypothesis h2: id (c) = d,

13 prove c = id (d)

14 assumed

15 <2>2 hypothesis h3: id (a) = b,

16 prove a = id (b)

17 assumed

18 <2>3 qed by step <2>1, <2>2 hypothesis h1

19 <1>2 qed by step <1>1 ;;

We introduced steps <2>1 and <2>2 and said that they should be sufficient

for Zenon to prove the enclosing goal. To conclude step <2>3 , we must make

explicit that the 2 steps <2>1 and <2>2 are performed under assumptions being

the two parts of the disjunction we had in hypothesis h1, otherwise these 2 cases

are not relevant (in other words, why did we state and prove them). Hence, step

<2>3 is only missing this information: by ... hypothesis h1 ! We again

compile the program and get pretty happy to see that, provided these two steps,

Zenon really succeeds.

So, we now need to continue our incremental process and really prove that on

one side c =id (d) and on the other a =id (b). Since Zenon looks smart,

why not asking him to conclude ? Let’s try. . .

Listing 7: or id com.fcl (4)

1 open "basics" ;;

2

3 let id (x : int) = x ;;

4

5 theorem or_id_commutative:

6 all a b c d : int, (id (a) = b \/ id (c) = d) -> (c = id (d) \/ a = id (

b))

7 proof =

8 (* Sketch: assume (a = b \/ c = d), then prove (c = id (d) \/ a = id (b)

. *)

9 <1>1 assume a : int, b : int, c : int, d : int,

10 hypothesis h1: id (a) = b \/ id (c) = d,

11 prove c = id (d) \/ a = id (b)

12 <2>1 hypothesis h2: id (c) = d,

13 prove c = id (d)

14 conclude

15 <2>2 hypothesis h3: id (a) = b,

16 prove a = id (b)

17 conclude

18 <2>3 qed by step <2>1, <2>2 hypothesis h1

19 <1>2 qed by step <1>1 ;;

It is now time to compile the program, again with the command focalizec

or id com.fcl and we get:

Invoking ocamlc...

8 3 PLAYING WITH PROGRAMS

>> ocamlc -I /usr/local/lib/focalize -c or_id_com3.ml

Invoking zvtov...

>> zvtov -zenon zenon -new or_id_com3.zv

File "or_id_com3.fcl", line 14, characters 12-20:

Zenon error: exhausted search space without finding a proof

proof failed

clearly stating that Zenon didn’t find any proof. Let’s just inspect the proof tree

we tried to build:

(∨-INTROL)

How to know id (a) is equal to a ?

How to know b is equal to id (b) ?

id(a) = b ⊢ a = id(b)

id(a) = b ⊢ c = id(d) ∨ a = id(b)
How to know id (c) is equal to c ?

How to know d is equal to id (d) ?

id(c) = d ⊢ c = id(d)
(∨-INTROR)

id(c) = d ⊢ c = id(d) ∨ a = id(b)

id(a) = b ∨ id(c) = d ⊢ c = id(d) ∨ a = id(b)
(∨-ELIM)

⊢ (id(a) = b ∨ id(c) = d) ⇒ (c = id(d) ∨ a = id(b))
(⇒-INTRO)

The blocking point is that the proof strongly rely on the fact that id being the

identity, id(a) = a, id(b) = b, id(c) = c and id(d) = d, but Zenon is not aware

of this. What Zenon needs is to know about the definition of the function id.

Here comes a new fact (in addition to the already seen facts conclude,

hypothesis and step): the definition of stating that Zenon must con-

sider a whole function (i.e. including its body – its definition) to try finding a

proof. Hence, our proof of each intermediate steps <2>1 and <2>2 will be done

by definition of id. Moreover, as shown in our above proof tree, both

goals (<2>1 and <2>2) rely on their related hypothesis (h2 and h3).

Listing 8: or id com.fcl (5)

1 open "basics" ;;

2

3 let id (x : int) = x ;;

4

5 theorem or_id_commutative:

6 all a b c d : int, (id (a) = b \/ id (c) = d) -> (c = id (d) \/ a = id (

b))

7 proof =

8 (* Sketch: assume (a = b \/ c = d), then prove (c = id (d) \/ a = id (b)

. *)

9 <1>1 assume a : int, b : int, c : int, d : int,

10 hypothesis h1: id (a) = b \/ id (c) = d,

11 prove c = id (d) \/ a = id (b)

12 <2>1 hypothesis h2: id (c) = d,

13 prove c = id (d)

14 by hypothesis h2 definition of id

15 <2>2 hypothesis h3: id (a) = b,

16 prove a = id (b)

17 by hypothesis h3 definition of id

3.2 Introducing pairs 9

18 <2>3 qed by step <2>1, <2>2 hypothesis h1

19 <1>2 qed by step <1>1 ;;

We now compile our whole and definitive program and get proofs finally done

and accepted by Coq:

Invoking ocamlc...

>> ocamlc -I /usr/local/lib/focalize -c or_id_com.ml

Invoking zvtov...

>> zvtov -zenon zenon -new or_id_com.zv

Invoking coqc...

>> coqc -I /usr/local/lib/focalize -I /usr/local/lib/zenon or_id_com.v

Now we suffered enough, splitting the proof of this theorem in several parts and

learnt the by definition of fact, let’s just discover that all the intermediate

steps we did, dealing with basic logic combinations . . . could again be automati-

cally done by Zenon and that, only telling it that it should use the definition of id

would have been sufficient !

Listing 9: or id com shortest.fcl

1 open "basics" ;;

2

3 let id (x : int) = x ;;

4

5 theorem or_id_commutative:

6 all a b c d : int, (id (a) = b \/ id (c) = d) -> (c = id (d) \/ a = id (

b))

7 proof = by definition of id ;;

We can invoke the compiler on this shortened version of our program (assum-

ing the source file is or id com shortest.fcl): focalizec or id com shortest.fcl

and get the same successful happy end:

Invoking ocamlc...

>> ocamlc -I /usr/local/lib/focalize -c or_id_com_shortest.ml

Invoking zvtov...

>> zvtov -zenon zenon -new or_id_com_shortest.zv

Invoking coqc...

>> coqc -I /usr/local/lib/focalize -I /usr/local/lib/zenon or_id_com_shortest.v

3.2 Introducing pairs

FoCaLize natively provides the type of tuples. Zenon knows only about pairs (i.e.

2-components tuples). However, until enhancements of FoCaLize and/or Zenon,

it is possible to encode general tuples as nested pairs. For instance, instead of

manipulating the type (int * bool * string), one will manipulate (int

* (bool * string)) even if it is a bit cumbersome.

We will now study some proofs dealing with pairs, see what Zenon is able to

handle and how we can explicitly write such proofs. We first start by the initial

type definition, aliasing pairs of ints to a type int_pair_t. Such a definition

is written:

10 3 PLAYING WITH PROGRAMS

type int_pair_t = alias (int * int) ;;

and simply declares a new type constructor compatible with (int * int).

Zenon natively knows about fst :(’a * ’b)->’a and snd :(’a *
’b)->’b functions, extracting the first and second component of a pair. For

instance, it will be able to prove that extracting components of one pair with 2

equal components will lead to 2 equal values:

Listing 10: same comps.fcl

1 open "basics" ;;

2

3 type int_pair_t = alias (int * int) ;;

4

5 theorem same_components :

6 all v : int_pair_t, all x : int, v = (x, x) -> fst (v) = snd (v)

7 proof = conclude ;;

3.3 Playing with pairs

We will now prove another simple property to continue using the hierarchical way

to write proofs, hence train to make explicit steps for later, when such splits will

be mandatory. We want to prove the property:

∀v1, v2 : int, ∀v : int pair t, v = (v1, v2) ⇒∼ (v1 = v2) ⇒ (fst(v) = snd(v))

This obviously can be proven by Zenon as shows the following formulation in

FoCaLize:

Listing 11: diff comps.fcl

1 open "basics" ;;

2

3 type int_pair_t = alias (int * int) ;;

4

5 theorem different_components :

6 all v1 v2 : int, all v : int_pair_t,

7 v = (v1, v2) -> ˜ (v1 = v2) -> ˜ (fst (v) = snd (v))

8 proof = conclude ;;

However, we want to prove it ourselves (nearly, Zenon will finally still provide

the glue between our steps)! We first need to expose the sketch of the proof: first

assume the 2 implications, then prove ∼ (fst(v) = snd(v)). To do so, we will

demonstrate that in fact fst(v) = v1, that snd(v) = v2, and conclude by the

hypothesis that v1 6= v2.

Listing 12: diff comps.fcl (2)

1 open "basics" ;;

2

3 type int_pair_t = alias (int * int) ;;

4

5 theorem different_components_manual :

3.4 Introducing inductive types 11

6 all v1 v2 : int, all v : int_pair_t,

7 v = (v1, v2) -> ˜ (v1 = v2) -> ˜ (fst (v) = snd (v))

8 proof =

9 <1>1 assume v1 : int, v2 : int, v : int_pair_t,

10 hypothesis h1: v = (v1, v2),

11 hypothesis h2: ˜ (v1 = v2),

12 prove ˜ (fst (v) = snd (v))

13 <2>1 prove fst (v) = v1

14 by hypothesis h1

15 <2>2 prove snd (v) = v2

16 by hypothesis h1

17 <2>3 qed

18 by step <2>1, <2>2 hypothesis h2

19 <1>2 conclude ;;

In lines 10 and 11, we lift the implications premises as hypotheses, then the re-

maining goal is prove ˜(fst (v)=snd (v)). Then we prove in step <2>1

that fst (v)=v1 which is obtained from the fact that v is a pair (hypothesis h1

) and Zenon’s knowledge about fst. We prove that snd (v)=v2 by the same

means. And finally from these 2 intermediate steps and the hypothesis that v1 6= v2
(h2) we achieve demonstration of the goal <1>1.

3.4 Introducing inductive types

Realistic programs usually do not only involve integers and pairs: inductive type

definitions are a powerful mean to model data-structures. FoCaLize doesn’t es-

cape this rule and Zenon makes possible to reason on such type definitions to au-

tomate proofs. An inductive type definition introduces several value constructors

for a type. For instance:

type signal_t = | Red | Orange | Green ;;

declares the new type signal_t as containing the only 3 values Red, Orange

and Green. These values are all different from each other.

Moreover, an inductive type definition can introduce parametrised constructors,

possibly by values of the type itself: we have a recursive type definition:

type peano_t = | Z | S (peano_t) ;;

declares the new type peano_t as containing the only 2 values Z and S, this latter

embedding a value of type peano_t itself. We recognize here the usual definition

of Peano’s integers.

As a summary, inductive definitions natively introduce 2 important concepts

used all over proofs:

• The injectivity of value constructors: a value of such a type is one of its cons-

tructors and nothing else, constructors being all different from each other.

• The induction principle: assuming a property holding on constant value con-

structors, if this property holds for any parametrised value constructor, then

it holds for any values of this type. This is indeed a generalization of the

well-known recurrence principle on natural numbers.

12 3 PLAYING WITH PROGRAMS

We will first show that Zenon greatly helps by knowing injectivity of construc-

tors. The aim will be to demonstrate that any value of type signal_t is equal to

either Red, or Orange or Green. Hence we state the theorem:

Listing 13: signal.fcl

1 open "basics" ;;

2

3 type signal_t = | Red | Orange | Green ;;

4

5 theorem signal_t_exclu :

6 all a : signal_t, (a = Red) \/ (a = Orange) \/ (a = Green)

7 proof = conclude ;;

and invoke the compiler to get:

Invoking ocamlc...

>> ocamlc -I /usr/local/lib/focalize -c signal.ml

Invoking zvtov...

>> zvtov -zenon zenon -new signal.zv

File "signal.fcl", line 7, characters 10-18:

Zenon error: exhausted search space without finding a proof

proof failed

Zenon didn’t find any proof despite we promised it knew how to reason on

inductive types! In fact, it was given no fact, no clue, so how could it guess that

this property was induced by the underlying type definition? It it important to keep

in mind that Zenon only implicitly uses basic logic combinations: it will never use

all the material available in a program! So, we just need to tell him that this proof

can be deduced from the type definition of signal_t.

Here comes a new fact (in addition to the already seen facts conclude,

hypothesis, step and definition of): the type fact stating that the def-

inition of the following type must be used. We modify our program just inserting

this new fact and get:

Listing 14: signal.fcl (2)

1 open "basics" ;;

2

3 type signal_t = | Red | Orange | Green ;;

4

5 theorem signal_t_exclu :

6 all a : signal_t, (a = Red) \/ (a = Orange) \/ (a = Green)

7 proof = <1>1 qed by type signal_t ;;

which is perfectly proven now. This could seem not so wonderful on such an obvi-

ous property, but this means that using Zenon, such intrinsic property of inductive

type definitions is natively understood, as long as Zenon is told to use it by the

fact by ... type There is no need to explicitly invoke and manipulate

the induction principle.

We can also show that mutual exclusion of value constructors are native for

Zenon: let prove that if a value of type signal_t is equal to Red, then it is

different of Green. This can appear more than obvious, such a property, often

3.5 Introducing lemmas 13

used while reasoning by cases, requires some intermediate steps (mostly applying

the induction principle and discriminations on the constructors). Let’s state and

prove this property in FoCaLize:

Listing 15: signal2.fcl

1 open "basics" ;;

2

3 type signal_t = | Red | Orange | Green ;;

4

5 theorem signal_t_exclu2 :

6 all a : signal_t, a = Red -> ˜ (a = Green)

7 proof = <1>1 qed by type signal_t ;;

3.5 Introducing lemmas

Until now we stated properties and demonstrated them writing “all-in-one” proofs,

i.e. using intermediate (hence nested) steps, hypotheses, types and functions def-

initions. However, depending on the complexity of the property to prove, it may

be easier to define intermediate lemmas, or even involve previously demonstrated

theorems. This answers a need for modularity (intermediate lemmas can be used

for other proofs) and readability (intermediate lemmas can make proofs more nu-

merous but smaller) when writing proofs.

Still addressing proofs on programs, we now want to prove that the absolute

value of a difference is always . . . positive. The only thing is, we won’t write

the program computing such a value using a predefined abs function bringing its

property stating it always returns a positive value. Instead, we write this function

using a test and a subtraction:

Listing 16: lemmas.fcl

open "basics" ;;

let abs_diff (x, y) = if x >0x y then x - y else y - x ;;

In this program and the following, relational operators on integers are written

suffixed by 0x. These are the FoCaLize operators on int (>0x, <0x, >=0x

. . .). We now state the property we want to demonstrate, and as always we initially

state it as assumed:

Listing 17: lemmas.fcl (2)

1 open "basics" ;;

2

3 let abs_diff (x, y) = if x >0x y then x - y else y - x ;;

4

5 theorem always_pos :

6 all x y : int, abs_diff (x, y) >=0x 0

7 proof =

8 <1>1 assume x : int, y : int,

9 prove abs_diff (x, y) >=0x 0

10 assumed

11 <1>2 conclude ;;

14 3 PLAYING WITH PROGRAMS

We must now elaborate the sketch of the proof to introduce intermediate steps.

From the definition of our function abs_diff, it is clear that we must reason by

cases, one if x > y and one if ∼ (x > y), i.e. x ≤ y. Hence, we will introduce 2

steps for these cases, and an ending one using the former to conclude the goal.

Listing 18: lemmas.fcl (3)

1 open "basics" ;;

2

3 let abs_diff (x, y) = if x >0x y then x - y else y - x ;;

4

5 theorem always_pos :

6 all x y : int, abs_diff (x, y) >=0x 0

7 proof =

8 <1>1 assume x : int, y : int,

9 prove abs_diff (x, y) >=0x 0

10 <2>1 hypothesis h1: x >0x y,

11 prove abs_diff (x, y) >=0x 0

12 assumed

13 <2>2 hypothesis h2: x <=0x y,

14 prove abs_diff (x, y) >=0x 0

15 assumed

16 <2>3 qed by step <2>1, <2>2

17 <1>2 conclude ;;

In both intermediate steps <2>1 and <2>2 the goal is the same than the global

one: we did not yet split it, changed it by any refinement. However, we introduced

2 differents (and complementary) hypotheses. Having in mind that having covered

cases x > y and x ≤ y we covered all the cases of integers, we run the compiler

and get:

Invoking ocamlc...

>> ocamlc -I /usr/local/lib/focalize -c lemmas.ml

Invoking zvtov...

>> zvtov -zenon zenon -new lemmas.zv

File "lemmas2.fcl", line 16, characters 16-34:

Zenon error: exhausted search space without finding a proof

Oops, it goes wrong, Zenon didn’t find any proof! So what? So why ? As

naively said in the above paragraph, “Having in mind that having covered cases

x > y and x ≤ y we covered all the cases of integers”, we assume that it is

obvious that 2 integers are either greater or lower-or-equal together. But, this fact

is not obvious: Zenon does not known arithmetic! So we need to give it such a

property as a fact to hope it will finally find a proof.

We are currently trying to make a proof, and now we need to prove another

property. So, first we don’t want to spread our effort in several directions. We need

to have this other property: why not state it, not prove it yet, and check that our cur-

rent proof pass with this new property ? We just need a lemma to make our proof, so

we will introduce some. We then write the theorem two_ints_are_gt_or_le

stating that ∀x, y : int, x ≤ y ∨ x > y and give it as a new fact to Zenon.

Here comes a new fact (in addition to the already seen facts conclude,

hypothesis, step, definition of and type: the property fact, sta-

3.5 Introducing lemmas 15

ting that Zenon should use the given property (i.e. logical statement) to find a

proof.

Listing 19: lemmas.fcl (4)

1 open "basics" ;;

2

3 let abs_diff (x, y) = if x >0x y then x - y else y - x ;;

4

5 theorem two_ints_are_gt_or_le: all x y : int, (x >0x y) \/ (x <=0x y)

6 proof = assumed ;;

7

8 theorem always_pos :

9 all x y : int, abs_diff (x, y) >=0x 0

10 proof =

11 <1>1 assume x : int, y : int,

12 prove abs_diff (x, y) >=0x 0

13 <2>1 hypothesis h1: x >0x y,

14 prove abs_diff (x, y) >=0x 0

15 assumed

16 <2>2 hypothesis h2: x <=0x y,

17 prove abs_diff (x, y) >=0x 0

18 assumed

19 <2>3 qed by step <2>1, <2>2 property two_ints_are_gt_or_le

20 <1>2 conclude ;;

We now compile again our development and see that with this new fact, Zenon

finally succeeded.

Invoking ocamlc...

>> ocamlc -I /usr/local/lib/focalize -c lemmas.ml

Invoking zvtov...

>> zvtov -zenon zenon -new lemmas.zv

Invoking coqc...

>> coqc -I /usr/local/lib/focalize -I /usr/local/lib/zenon lemmas.v

Obviously, we get one more theorem to demonstrate. However, we know that

provided this theorem holds, the proof of our main program property also holds.

We can now go on further on it, leaving the new lemma for later.

But. . . by a wonderful coincidence, FoCaLize comes with a “standard library”!

And looking among available theorems (in basics.fcl) we find a theorem:

theorem int_gt_or_le : all x y : int, (x >0x y) \/ (x <=0x y)

exactly fitting what we need! So, proof of our lemma will be trivial since it will

simply be done by property basics.int_gt_or_le. But, we can make

even simpler: in our proof, let’s just use this theorem from the library instead of

aliasing it by our lemma! Hence, in our proof, we change <2>3 qed by adding

by ... int_gt_or_le instead of by ... two_ints_are_gt_or_le

and remove this latter from our source code.

Now, let’s going on with our proof. We need to really prove the 2 steps <2>1

and <2>2. For <2>1, we can prove that abs diff(x, y) = x − y and that

x − y ≥ 0. This way, we will really have proved that abs diff(x, y) ≥ 0: our

sub-proof will then be conclude “by these 2 steps” as show below in step <3>2

16 3 PLAYING WITH PROGRAMS

Similarly, for <2>2 we will prove something like that abs diff(x, y) = y−x

and y−x ≥ 0. We let this second case aside for the moment (i.e. assumed), only

dealing with the first one.

Listing 20: lemmas.fcl (5)

1 open "basics" ;;

2

3 let abs_diff (x, y) =

4 if x >0x y then x - y

5 else y - x ;;

6

7 theorem always_pos :

8 all x y : int, abs_diff (x, y) >=0x 0

9 proof =

10 <1>1 assume x : int, y : int,

11 prove abs_diff (x, y) >=0x 0

12 <2>1 hypothesis h1: x >0x y,

13 prove abs_diff (x, y) >=0x 0

14 <3>1 prove abs_diff (x, y) = x - y

15 assumed

16 <3>2 prove x - y >=0x 0

17 assumed

18 <3>3 qed by step <3>1, <3>2

19 <2>2 hypothesis h2: x <=0x y,

20 prove abs_diff (x, y) >=0x 0

21 assumed

22 <2>3 qed by step <2>1, <2>2 property int_gt_or_le

23 <1>2 conclude ;;

Compiling our program, we will see that the proof continues passing: our idea

of sub-proofs was correct. So, we now want to really prove the new intermediate

steps <3>1 and <3>2. The sketch of the proof is to prove that abs diff(x, y) =
x − y and that x − y ≥ 0 knowing we are in the context of hypothesis h1 stating

that x > y.

Lets start by step <3>1. We want to prove that abs diff(x, y) = x− y. This

is a direct consequence of the definition of the function abs_diff since we are

in the case of hypothesis h1. Hence, this proof is simply done by definition

of abs_diff hypothesis h1.

We now address step <3>2. What do we have as material? We know by

hypothesis h1 that x > y. From this point, it looks obvious to us that in effect,

x − y ≥ 0. However, like above for the “trivial” lemma on arithmetic, it won’t

probably be so for Zenon. We can again introduce a new lemma, or . . . have a look

to see if there would not already be a suitable theorem in the FoCaLize standard

library! And hopefully, we find in basics.fcl the theorem:

theorem int_diff_ge_is_pos : all x y : int, x >=0x y -> x - y >=0x 0

It is nearly won, but not yet. In effect, having a deeper look at our hypothesis

h1, we see that it states that x > y although the theorem int_diff_ge_is_pos

requires as hypothesis that x ≥ y. However, our intuition immediately makes us

thinking that if x > y then it is inevitable that x ≥ y. Again, a new lemma to

introduce or a look to have in the standard library. . .

3.5 Introducing lemmas 17

Fortunately, we again discover a theorem fitting our expectations in basics.fcl:

theorem int_gt_implies_ge : all x y : int, x >0x y -> x >=0x y

Note that in “real life”, it will happen that the library do not already contains the

theorem you need: in this case, you will really state it as a new theorem (lemma)

and finally will need to prove it!

Now we found the 2 former theorems, our goal should be solved by Zenon

by property ... of them and the hypothesis h1.

Listing 21: lemmas.fcl (6)

1 open "basics" ;;

2

3 let abs_diff (x, y) =

4 if x >0x y then x - y

5 else y - x ;;

6

7 theorem always_pos :

8 all x y : int, abs_diff (x, y) >=0x 0

9 proof =

10 <1>1 assume x : int, y : int,

11 prove abs_diff (x, y) >=0x 0

12 <2>1 hypothesis h1: x >0x y,

13 prove abs_diff (x, y) >=0x 0

14 <3>1 prove abs_diff (x, y) = x - y

15 by definition of abs_diff hypothesis h1

16 <3>2 prove x - y >=0x 0

17 by hypothesis h1

18 property int_diff_ge_is_pos, int_gt_implies_ge

19 <3>3 qed by step <3>1, <3>2

20 <2>2 hypothesis h2: x <=0x y,

21 prove abs_diff (x, y) >=0x 0

22 assumed

23 <2>3 qed by step <2>1, <2>2 property int_gt_or_le

24 <1>2 conclude ;;

As planned, the proof is accepted and we go on, trying to prove the remaining

step <2>2. We will proceed in the same way, proving that assuming hypothesis

h2 we have abs diff(x, y) = y − x and y − x ≥ 0.

However, we can note that the theorem int_diff_ge_is_pos we used

above states (a ≥ b) ⇒ (a − b ≥ 0). But, our hypothesis h2 states that x ≤ y

and we need to prove that y − x ≥ 0. But in fact, in our hypothesis, if we swap x

and y and replace ≤ by ≥ we get into the right hypothesis of the theorem. Again,

we will need a theorem stating that x ≤ y ⇒ y ≥ x which already exists as

int_le_ge_swap. We then have one more step than in the previous case, to

demonstrate that y ≥ x by property int_le_ge_swap hypothesis

h2.

We finally show the new form of the proof, skiping the (a priori obvious) proof

that abs diff (x, y) = y - x. Although it seems it is only a consequence

of the definition of abs_diff, we will see later that it requires something more.

Listing 22: lemmas.fcl (7)

18 3 PLAYING WITH PROGRAMS

1 open "basics" ;;

2

3 let abs_diff (x, y) = if x >0x y then x - y else y - x ;;

4

5 theorem always_pos :

6 all x y : int, abs_diff (x, y) >=0x 0

7 proof =

8 <1>1 assume x : int, y : int,

9 prove abs_diff (x, y) >=0x 0

10 <2>1 hypothesis h1: x >0x y,

11 prove abs_diff (x, y) >=0x 0

12 <3>1 prove abs_diff (x, y) = x - y

13 by definition of abs_diff hypothesis h1

14 <3>2 prove x - y >=0x 0

15 by hypothesis h1

16 property int_diff_ge_is_pos, int_gt_implies_ge

17 <3>3 qed by step <3>1, <3>2

18 <2>2 hypothesis h2: x <=0x y,

19 prove abs_diff (x, y) >=0x 0

20 <3>1 prove abs_diff (x, y) = y - x

21 assumed

22 <3>2 prove y >=0x x

23 by property int_le_ge_swap hypothesis h2

24 <3>3 prove y - x >=0x 0

25 by step <3>2 hypothesis h2 property int_diff_ge_is_pos

26 <3>4 qed by step <3>1, <3>2, <3>3

27 <2>3 qed by step <2>1, <2>2 property int_gt_or_le

28 <1>2 conclude ;;

Finally, it only remains to inspect step <3>1. As previously mentioned, it

looks trivial that it only depends on the fact we are in hypothesis h2, i.e. x ≤ y

and the definition of abs_diff falling in the “else-case”. Let simply make the

proof with these 2 facts:

...

<2>2 hypothesis h2: x <=0x y,

prove abs_diff (x, y) >=0x 0

<3>1 prove abs_diff (x, y) = y - x

by definition of abs_diff hypothesis h2

...

We compile and get:

Invoking ocamlc...

>> ocamlc -I /usr/local/lib/focalize -c lemmas.ml

Invoking zvtov...

>> zvtov -zenon zenon -new lemmas.zv

File "lemmas.fcl", line 21, characters 17-56:

Zenon error: exhausted search space without finding a proof

proof failed

Having closer look at our hypothesis h2:x <=0x y and the way abs_diff

has its conditional written if x >0x y, we see that the if tests x > y, hence in

the “else-case” we have ∼ (x > y) and not x ≤ y as stated in the hypothesis! In

effect, in a “else-branch” the holding property is “not-the-tested-condition”. And

again, for Zenon, it is not obvious that ∼ (x > y) is the same thing than x ≤ y.

Again, we need to guide Zenon with such a theorem which hopefully exists in

FoCaLize standard library:

19

theorem int_le_not_gt : all x y : int, (x <=0x y) -> ˜ (x >0x y)

At this point, adding the fact int_le_not_gt to the proof of our step <3>1

will finally conclude the whole proof:

Listing 23: lemmas.fcl (8)

1 open "basics" ;;

2

3 let abs_diff (x, y) = if x >0x y then x - y else y - x ;;

4

5 theorem always_pos :

6 all x y : int, abs_diff (x, y) >=0x 0

7 proof =

8 <1>1 assume x : int, y : int,

9 prove abs_diff (x, y) >=0x 0

10 <2>1 hypothesis h1: x >0x y,

11 prove abs_diff (x, y) >=0x 0

12 <3>1 prove abs_diff (x, y) = x - y

13 by definition of abs_diff hypothesis h1

14 <3>2 prove x - y >=0x 0

15 by hypothesis h1

16 property int_diff_ge_is_pos, int_gt_implies_ge

17 <3>3 qed by step <3>1, <3>2

18 <2>2 hypothesis h2: x <=0x y,

19 prove abs_diff (x, y) >=0x 0

20 <3>1 prove abs_diff (x, y) = y - x

21 by definition of abs_diff hypothesis h2

22 property int_le_not_gt (* To rewrite <=0x into ˜ >0x

*)

23 <3>2 prove y >=0x x

24 by property int_le_ge_swap hypothesis h2

25 <3>3 prove y - x >=0x 0

26 by step <3>2 hypothesis h2 property int_diff_ge_is_pos

27 <3>4 qed by step <3>1, <3>2, <3>3

28 <2>3 qed by step <2>1, <2>2 property int_gt_or_le

29 <1>2 conclude ;;

4 A first simple program

After having seen how to write hierarchical proofs in FoCaLize using Zenon in

the context of pretty ad-hoc properties, we will finally apply previous technics on

proving properties related to a (still very simple) program.

We deliberately make no use of FoCaLize advanced modeling features like

inheritance, parametrisation, incremental conception and refinement mechanisms.

We only consider a raw software model, obviously not supporting evolution, but

that’s not the aim. More information on these points can be found in [1].

4.1 The goal

We want to model a simplified traffic signals controller. The system will be made

of 3 signals with 3 states: green, orange and red. The controller will alternatively

make each signal becoming green along a predefined sequence, making so that

20 4 A FIRST SIMPLE PROGRAM

other signals are red. As any usual signals, they turn orange before turning red. We

can then simply model the controller as a finite state automaton representing cy-

cling sequences (where R stands for red, G for green and O for orange, representing

the state of each managed traffic signal):

GRR → ORR → RGR → ROR → RRG → RRO

4.2 Modeling data structures

Without surprise, to represent the color of a signal, we define a sum type with 3

values:

open "basics" ;;

(** Type of signals colors. *)

type color_t = | C_green | C_orange | C_red ;;

Obviously, the automaton having 6 states, we need to define a sum type with as

many values. For readability, we name each case “S ” followed by the correspond-

ing signals color initials. For instance S_orr stands for “State where signal 1 is

orange, signal 2 is red and signal 3 is red”.

(** Type of states the automaton can be. Simply named with letters

corresponding to the colors of signal 1, 2 and 3. *)

type state_t = | S_grr | S_orr | S_rgr | S_ror | S_rrg| S_rro ;;

Finally, the state of the controller will consists in the current state of the au-

tomaton and the state of each signal. We then embed the controller inside a species

whose representation reflects this data structure.

(** Species embedding the automaton controlling the signals colors changes

. *)

species Controller =

(* Need to encode tuples as nested pairs because of limitations of Coq

and Zenon. *)

representation = (state_t * (color_t * (color_t * color_t))) ;

end ;;

One may note that instead of defining the representation as a 4-components

tuple, we nested pairs up to have 4 components. The reason is that currently FoCa-

Lize compiler and Zenon don’t yet transparently generalize pairs, hence making

very difficult proofs to be compiled to Coq. However, this do not reduce the ex-

pressivity of the language: it only makes things a bit more cumbersome.

4.3 The main algorithm

The controller is now modeled as a transition function taking the current state of the

controller as input and returning the next state. Roughly speaking, it will discrim-

inate on the state of the automaton (first component of the representation

which is the state of the controller), then determine the new state as well as the

new states of the signals. Hence, the transition function run_step will have type

Self ->Self.

4.4 Introducing the main property 21

Because we modelled the state of the controller as a tuple-like data structure,

we first define projection functions to access individual components of the con-

troller state (i.e. the automaton state and each signal state – color).

Listing 24: controller.fcl

open "basics" ;;

(** Type of signals colors. *)

type color_t = | C_green | C_orange | C_red ;;

(** Type of states the automaton can be. Simply named with letters

corresponding to the colors of signal 1, 2 and 3. *)

type state_t = | S_grr | S_orr | S_rgr | S_ror | S_rrg| S_rro ;;

(** Species embedding the automaton controlling the signals colors

changes. *)

species Controller =

(* Need to encode tuples as nested pairs because of limitations of Coq

and Zenon. *)

representation = (state_t * (color_t * (color_t * color_t))) ;

let init : Self = (S_grr, (C_green, (C_red, C_red))) ;

(** Extractors of "tuples" components. *)

let get_s (x : Self) = match x with | (a, _) -> a ;

let get_s1 (x : Self) =

match x with | (_, a) -> match a with | (b, _) -> b ;

let get_s2 (x : Self) =

match x with | (_, a) ->

match a with | (_, b) ->

match b with | (c, _) -> c ;

let get_s3 (x :Self) =

match x with | (_, a) ->

match a with | (_, b) ->

match b with | (_, c) -> c ;

(** Main controller function: automaton’s 1 step run. *)

let run_step (state : Self) : Self =

match get_s (state) with

| S_grr -> (S_orr, (C_orange, (C_red, C_red)))

| S_orr -> (S_rgr, (C_red, (C_green, C_red)))

| S_rgr -> (S_ror, (C_red, (C_orange, C_red)))

| S_ror -> (S_rrg, (C_red, (C_red, C_green)))

| S_rrg -> (S_rro, (C_red, (C_red, C_orange)))

| S_rro -> (S_grr, (C_green, (C_red, C_red))) ;

end ;;

We only defined the behavioral, computational aspects of our controller: no

properties yet. However we can compile this program and get a usable piece of

software.

4.4 Introducing the main property

It is now time to “prove our program”. Behind this unclear but widely used ex-

pression is hidden the task of characterizing the safety properties of a system, then

22 4 A FIRST SIMPLE PROGRAM

prove they hold. In our very simple case, one interesting property is that we never

have 2 green signals at the same time. Since we have 3 signals we will state this

property as the negation of 3 disjunctions, each stating 2 of the 3 signals are green:

∼ ((signal1 is green ∧ signal2 is green) ∨
(signal1 is green ∧ signal3 is green) ∨
(signal2 is green ∧ signal3 is green))

Such a property leads to the following FoCaLize theorem, still left unproven

for the moment:

(** The complete theorem stating that no signals are green at the same

time. *)

theorem never_2_green :

all s r : Self,

r = run_step (s) ->

˜ ((get_s1 (r) = C_green /\ get_s2 (r) = C_green) \/

(get_s1 (r) = C_green /\ get_s3 (r) = C_green) \/

(get_s2 (r) = C_green /\ get_s3 (r) = C_green))

proof = assumed ;

4.5 Making the proof

It is now time to prove our theorem. One sketch of the proof is to prove that

we never have signal1 and signal2 green at the same time, neither signal1 and

signal3 nor signal2 and signal3. From these 3 properties, Zenon should be able

to find the remaining “glue” and prove the whole theorem!

We then just try to see if our intuition is right. We define the 3 intermediate lem-

mas never_s1_s2_green, never_s1_s3_green and never_s2_s3_green

, let them unproven for the moment, and ask Zenon to prove our main theorem

never_2_green by property ... our 3 lemmas:

Listing 25: controller.fcl (2)

open "basics" ;;

(** Type of signals colors. *)

type color_t = | C_green | C_orange | C_red ;;

(** Type of states the automaton can be. Simply named with letters

corresponding to the colors of signal 1, 2 and 3. *)

type state_t = | S_grr | S_orr | S_rgr | S_ror | S_rrg| S_rro ;;

(** Species embedding the automaton controlling the signals colors

changes. *)

species Controller =

(* Need to encode tuples as nested pairs because of limitations of Coq

and Zenon. *)

representation = (state_t * (color_t * (color_t * color_t))) ;

let init : Self = (S_grr, (C_green, (C_red, C_red))) ;

4.5 Making the proof 23

(** Extractors of "tuples" components. *)

let get_s (x : Self) = match x with | (a, _) -> a ;

let get_s1 (x : Self) =

match x with | (_, a) -> match a with | (b, _) -> b ;

let get_s2 (x : Self) =

match x with | (_, a) ->

match a with | (_, b) ->

match b with | (c, _) -> c ;

let get_s3 (x :Self) =

match x with | (_, a) ->

match a with | (_, b) ->

match b with | (_, c) -> c ;

(** Main controller function: automaton’s 1 step run. *)

let run_step (state : Self) : Self =

match get_s (state) with

| S_grr -> (S_orr, (C_orange, (C_red, C_red)))

| S_orr -> (S_rgr, (C_red, (C_green, C_red)))

| S_rgr -> (S_ror, (C_red, (C_orange, C_red)))

| S_ror -> (S_rrg, (C_red, (C_red, C_green)))

| S_rrg -> (S_rro, (C_red, (C_red, C_orange)))

| S_rro -> (S_grr, (C_green, (C_red, C_red))) ;

(** Lemma stating that s1 and s2 are never green together. It’s 1/3 of

the final property stating that no signals are green at the same

time. *)

theorem never_s1_s2_green :

all s r : Self,

r = run_step (s) ->

˜ (get_s1 (r) = C_green /\ get_s2 (r) = C_green)

proof = assumed ;

(* Same proof kind than for never_s1_s2_green. *)

theorem never_s1_s3_green :

all s r : Self,

r = run_step (s) ->

˜ (get_s1 (r) = C_green /\ get_s3 (r) = C_green)

proof = assumed ;

(* Same proof kind than for never_s1_s2_green. *)

theorem never_s2_s3_green :

all s r : Self,

r = run_step (s) ->

˜ (get_s2 (r) = C_green /\ get_s3 (r) = C_green)

proof = assumed ;

(** The complete theorem stating that no signals are green at the same

time. *)

theorem never_2_green :

all s r : Self,

r = run_step (s) ->

˜ ((get_s1 (r) = C_green /\ get_s2 (r) = C_green) \/

(get_s1 (r) = C_green /\ get_s3 (r) = C_green) \/

(get_s2 (r) = C_green /\ get_s3 (r) = C_green))

proof =

by property never_s1_s2_green, never_s1_s3_green, never_s2_s3_green ;

end ;;

We invoke the compilation by the regular command: focalizec controller.fcl:

24 4 A FIRST SIMPLE PROGRAM

Invoking ocamlc...

>> ocamlc -I /usr/local/lib/focalize -c controller.ml

Invoking zvtov...

>> zvtov -zenon zenon -new controller.zv

Invoking coqc...

>> coqc -I /usr/local/lib/focalize -I /usr/local/lib/zenon controller.v

and see that our proof passed, assuming our 3 pending lemmas. It will then be

time to actually prove these lemmas. One imagine easily that their proofs will be

similar, since the only change between statements is the involved signals.

4.5.1 Proving the first lemma

We will now address proving the first lemma, namely never_s1_s2_green

, using the incremental approach we previously introduced: setting-up the proof

sketch, the main intermediate steps with their goal to prove left assumed, then

refining these steps until nothing remains assumed. Obviously, our lemma won’t

be fully automatically proved by one Zenon step since its statement is too complex.

Hence, we forget a proof of the shape:

theorem never_s1_s2_green :

all s r : Self,

r = run_step (s) ->

˜ (get_s1 (r) = C_green /\ get_s2 (r) = C_green)

proof = by definition of ... type ... step ... hypothesis ... ;

and prepare us to write a hierarchical one, whose first step is the simple introduction

of hypotheses of our theorem, leaving its goal to prove (i.e. currently left assumed

):

theorem never_s1_s2_green :

all s r : Self,

r = run_step (s) ->

˜ (get_s1 (r) = C_green /\ get_s2 (r) = C_green)

proof =

<1>1 assume s : Self, r : Self,

hypothesis h1 : r = run_step (s),

prove ˜ (get_s1 (r) = C_green /\ get_s2 (r) = C_green)

assumed

<1>2 conclude ;

The sketch of the proof is a study by cases on the values of the automaton state,

showing that in each state, the resulting state of the signals 1 and 2 is never green

for both (i.e. there is never 2 C_green values in the 2nd and 3rd components of

the controller state).

How can we prove this ? Simply by exhibiting, in each case, that the result

contains at least one color not equal to C_green. Obviously, for each case we

chose to target the signal whose value is really not green! Hence, we refine our

proof and state each case of the proof, as many as there are states in the automaton,

hence as many as there are cases in the transition function run_step. In the first

case, no signal is green since signal1 is orange, and signal2 is red: we chose to

4.5 Making the proof 25

prove that signal1 is not green. Conversely, in the second case, signal2 is green:

we do not have the choice and must prove that signal1 is not.

(** Lemma stating that s1 and s2 are never green together. It’s 1/3 of the

final property stating that no signals are green at the same time. *)

theorem never_s1_s2_green :

all s r : Self,

r = run_step (s) ->

˜ (get_s1 (r) = C_green /\ get_s2 (r) = C_green)

proof =

<1>1 assume s : Self, r : Self,

hypothesis h1 : r = run_step (s),

prove ˜ (get_s1 (r) = C_green /\ get_s2 (r) = C_green)

(* Proof by cases on values of the "automaton state" of s.

For each case, we will prove that one of the 2 signal at least is

not green. *)

<2>1 hypothesis h2: get_s (s) = S_grr,

prove ˜ (get_s1 (r) = C_green)

assumed

(* Same proof kind for all the cases of automaton state. *)

<2>2 hypothesis h3: get_s (s) = S_orr,

prove ˜ (get_s1 (r) = C_green)

assumed

(* Same proof kind for all the cases of automaton state. *)

<2>3 hypothesis h4: get_s (s) = S_rgr,

prove ˜ (get_s1 (r) = C_green)

assumed

<2>4 hypothesis h5: get_s (s) = S_ror,

prove ˜ (get_s1 (r) = C_green)

assumed

<2>5 hypothesis h6: get_s (s) = S_rrg,

prove ˜ (get_s1 (r) = C_green)

assumed

<2>6 hypothesis h7: get_s (s) = S_rro,

prove ˜ (get_s2 (r) = C_green)

assumed

<2>7 qed by

step <2>1, <2>2, <2>3, <2>4, <2>5, <2>6

definition of run_step

hypothesis h1

type state_t

<1>2 conclude ;

The conclusion of our proof is step <2>7 and obviously relies on the 6 pre-

ceding steps, but also on the definition of the function run_steps, the type

state_t and the hypothesis h1:r =run_step (s).

In effect, the intermediate steps can only be combined by Zenon, hoping to

find a complete proof, if it knows that they represent all the possible cases of the

function run_steps, knows that the type state_t only contains the values on

which run_steps discriminates and finally knows that the r used in all steps

goals is the result of calling run_steps (so is the resulting controller state), i.e.

26 4 A FIRST SIMPLE PROGRAM

the hypothesis h1.

As usual, we can compile the source and will see that Zenon finds the proof

and the whole theorem gets accepted by Coq. Removing one of the facts provided

in step <2>7 really causes the whole proof to fail.

It remains now to refine our proof by removing all the assumed we set to

“prove” intermediate steps <2>1 to <2>6. In each case, to prove that a signal is

not green, we simply prove it has an effective other color value. From this exhibited

value (obviously not being C_green) and the definition of the type color_t,

Zenon can establish that – this type being an inductive definition – all its con-

structors are different 2 by 2. In other words, the fact that C_red is not equal to

C_green requires Zenon to know the underlying type definition. For this reason,

each proof requires the exhibition of the computed color (step<3>1) and the type

color_t.

The way the proof exhibiting the effective color value (the one different from

green) works is still left assumed, hence following our refinement tactic.

(** Lemma stating that s1 and s2 are never green together. It’s 1/3 of the

final property stating that no signals are green at the same time. *)

theorem never_s1_s2_green :

all s r : Self,

r = run_step (s) ->

˜ (get_s1 (r) = C_green /\ get_s2 (r) = C_green)

proof =

<1>1 assume s : Self, r : Self,

hypothesis h1 : r = run_step (s),

prove ˜ (get_s1 (r) = C_green /\ get_s2 (r) = C_green)

(* Proof by cases on values of the "automaton state" of s.

For each case, we will prove that one of the 2 signal at least is

not green. *)

<2>1 hypothesis h2: get_s (s) = S_grr,

prove ˜ (get_s1 (r) = C_green)

(* To prove the signal s1 is not green, we prove it is orange.

*)

<3>1 prove get_s1 (r) = C_orange

assumed

<3>2 qed by step <3>1 type color_t

(* Same proof kind for all the cases of automaton state. *)

<2>2 hypothesis h3: get_s (s) = S_orr,

prove ˜ (get_s1 (r) = C_green)

(* To prove the signal s1 is not green, we prove it is red. *)

<3>1 prove get_s1 (r) = C_red

assumed

<3>2 qed by step <3>1 type color_t

(* Same proof kind for all the cases of automaton state. *)

<2>3 hypothesis h4: get_s (s) = S_rgr,

prove ˜ (get_s1 (r) = C_green)

<3>1 prove get_s1 (r) = C_red

assumed

<3>2 qed by step <3>1 type color_t

<2>4 hypothesis h5: get_s (s) = S_ror,

prove ˜ (get_s1 (r) = C_green)

<3>1 prove get_s1 (r) = C_red

4.5 Making the proof 27

assumed

<3>2 qed by step <3>1 type color_t

<2>5 hypothesis h6: get_s (s) = S_rrg,

prove ˜ (get_s1 (r) = C_green)

<3>1 prove get_s1 (r) = C_red

assumed

<3>2 qed by step <3>1 type color_t

<2>6 hypothesis h7: get_s (s) = S_rro,

prove ˜ (get_s2 (r) = C_green)

<3>1 prove get_s2 (r) = C_red

assumed

<3>2 qed by step <3>1 type color_t

<2>7 qed by

step <2>1, <2>2, <2>3, <2>4, <2>5, <2>6

definition of run_step

hypothesis h1

type state_t

<1>2 conclude ;

Finally, once the compilation shown that this new refinement passes Zenon

searches and Coq assessment, it is time to complete the last holes of the proof,

the last assumed remaining. Each such case aims at proving that the value we

chose and exhibited as being different from C_green is really the one computed

by the related call to get_s1 (r). In other words, we need to demonstrate that

in the case <2>1<3>1, we really have get_s1 (r)=C_orange holding (and

similarly for the other cases).

One may be easily convinced that this is intrinsically due to the way the func-

tion run_step is written! But not only: this is also due to the way get_s1 is

written since it appears in the goal to prove. Moreover, each property holds in the

context of the hypothesis representing the examined case of the pattern-matching

match get_s (state)with of run_step : the hypothesis h2 in the first

case (h3 in the second, h4 in the third, and so on). Finally, our hypothesis deals

with a value of type state_t and our goal with a value of type color_t. Hence

Zenon will for sure need to know about them!

Giving Zenon all these facts, we hope it will find a proof for each case, which

will really be the case. Hence our complete proof of the initial lemma is:

(** Lemma stating that s1 and s2 are never green together. It’s 1/3 of the

final property stating that no signals are green at the same time. *)

theorem never_s1_s2_green :

all s r : Self,

r = run_step (s) ->

˜ (get_s1 (r) = C_green /\ get_s2 (r) = C_green)

proof =

<1>1 assume s : Self, r : Self,

hypothesis h1 : r = run_step (s),

prove ˜ (get_s1 (r) = C_green /\ get_s2 (r) = C_green)

(* Proof by cases on values of the "automaton state" of s.

For each case, we will prove that one of the 2 signal at least is

not green. *)

<2>1 hypothesis h2: get_s (s) = S_grr,

28 4 A FIRST SIMPLE PROGRAM

prove ˜ (get_s1 (r) = C_green)

(* To prove the signal s1 is not green we prove it is orange. *)

<3>1 prove get_s1 (r) = C_orange

by hypothesis h1, h2

definition of get_s1, run_step

type state_t, color_t

<3>2 qed by step <3>1 type color_t

(* Same proof kind for all the cases of automaton state. *)

<2>2 hypothesis h3: get_s (s) = S_orr,

prove ˜ (get_s1 (r) = C_green)

(* To prove the signal s1 is not green, we prove it is red. *)

<3>1 prove get_s1 (r) = C_red

by hypothesis h1, h3

definition of get_s1, run_step

type state_t, color_t

<3>2 qed by step <3>1 type color_t

(* Same proof kind for all the cases of automaton state. *)

<2>3 hypothesis h4: get_s (s) = S_rgr,

prove ˜ (get_s1 (r) = C_green)

<3>1 prove get_s1 (r) = C_red

by hypothesis h1, h4

definition of get_s1, run_step

type state_t, color_t

<3>2 qed by step <3>1 type color_t

<2>4 hypothesis h5: get_s (s) = S_ror,

prove ˜ (get_s1 (r) = C_green)

<3>1 prove get_s1 (r) = C_red

by hypothesis h1, h5

definition of get_s1, run_step

type state_t, color_t

<3>2 qed by step <3>1 type color_t

<2>5 hypothesis h6: get_s (s) = S_rrg,

prove ˜ (get_s1 (r) = C_green)

<3>1 prove get_s1 (r) = C_red

by hypothesis h1, h6

definition of get_s1, run_step

type state_t, color_t

<3>2 qed by step <3>1 type color_t

<2>6 hypothesis h7: get_s (s) = S_rro,

prove ˜ (get_s2 (r) = C_green)

<3>1 prove get_s2 (r) = C_red

by hypothesis h1, h7

definition of get_s2, run_step

type state_t, color_t

<3>2 qed by step <3>1 type color_t

<2>7 qed by

step <2>1, <2>2, <2>3, <2>4, <2>5, <2>6

definition of run_step

hypothesis h1

type state_t

<1>2 conclude ;

4.5 Making the proof 29

4.5.2 Proving other lemmas : THE END

We initially decided to split our main safety property never_2_green into 3

lemmas. We proved above the first of them. All of them having an identical struc-

ture, their proofs will obviously be strongly similar. Hence, we do not detail again

their proofs but provide the complete source file implementing our controller.

Listing 26: controller.fcl (3)

open "basics" ;;

(** Type of signals colors. *)

type color_t = | C_green | C_orange | C_red ;;

(** Type of states the automaton can be. Simply named with letters

corresponding to the colors of signal 1, 2 and 3. *)

type state_t = | S_grr | S_orr | S_rgr | S_ror | S_rrg| S_rro ;;

(** Species embedding the automaton controlling the signals colors

changes. *)

species Controller =

(* Need to encode tuples as nested pairs because of limitations of Coq

and Zenon. *)

representation = (state_t * (color_t * (color_t * color_t))) ;

let init : Self = (S_grr, (C_green, (C_red, C_red))) ;

(** Extractors of "tuples" components. *)

let get_s (x : Self) = match x with | (a, _) -> a ;

let get_s1 (x : Self) =

match x with | (_, a) -> match a with | (b, _) -> b ;

let get_s2 (x : Self) =

match x with | (_, a) ->

match a with | (_, b) ->

match b with | (c, _) -> c ;

let get_s3 (x :Self) =

match x with | (_, a) ->

match a with | (_, b) ->

match b with | (_, c) -> c ;

(** Main controller function: automaton’s 1 step run. *)

let run_step (state : Self) : Self =

match get_s (state) with

| S_grr -> (S_orr, (C_orange, (C_red, C_red)))

| S_orr -> (S_rgr, (C_red, (C_green, C_red)))

| S_rgr -> (S_ror, (C_red, (C_orange, C_red)))

| S_ror -> (S_rrg, (C_red, (C_red, C_green)))

| S_rrg -> (S_rro, (C_red, (C_red, C_orange)))

| S_rro -> (S_grr, (C_green, (C_red, C_red))) ;

(** Lemma stating that s1 and s2 are never green together. It’s 1/3 of

the final property stating that no signals are green at the same

time. *)

theorem never_s1_s2_green :

all s r : Self,

r = run_step (s) ->

˜ (get_s1 (r) = C_green /\ get_s2 (r) = C_green)

proof =

30 4 A FIRST SIMPLE PROGRAM

<1>1 assume s : Self, r : Self,

hypothesis h1 : r = run_step (s),

prove ˜ (get_s1 (r) = C_green /\ get_s2 (r) = C_green)

(* Proof by cases on values of the "automaton state" of s.

For each case, we will prove that one of the 2 signal at least

is not green. *)

<2>1 hypothesis h2: get_s (s) = S_grr,

prove ˜ (get_s1 (r) = C_green)

(* To prove the signal s1 is not green we prove it is orange.

*)

<3>1 prove get_s1 (r) = C_orange

by hypothesis h1, h2

definition of get_s1, run_step

type state_t, color_t

<3>2 qed by step <3>1 type color_t

(* Same proof kind for all the cases of automaton state. *)

<2>2 hypothesis h3: get_s (s) = S_orr,

prove ˜ (get_s1 (r) = C_green)

(* To prove the signal s1 is not green, we prove it is red. *)

<3>1 prove get_s1 (r) = C_red

by hypothesis h1, h3

definition of get_s1, run_step

type state_t, color_t

<3>2 qed by step <3>1 type color_t

(* Same proof kind for all the cases of automaton state. *)

<2>3 hypothesis h4: get_s (s) = S_rgr,

prove ˜ (get_s1 (r) = C_green)

<3>1 prove get_s1 (r) = C_red

by hypothesis h1, h4

definition of get_s1, run_step

type state_t, color_t

<3>2 qed by step <3>1 type color_t

<2>4 hypothesis h5: get_s (s) = S_ror,

prove ˜ (get_s1 (r) = C_green)

<3>1 prove get_s1 (r) = C_red

by hypothesis h1, h5

definition of get_s1, run_step

type state_t, color_t

<3>2 qed by step <3>1 type color_t

<2>5 hypothesis h6: get_s (s) = S_rrg,

prove ˜ (get_s1 (r) = C_green)

<3>1 prove get_s1 (r) = C_red

by hypothesis h1, h6

definition of get_s1, run_step

type state_t, color_t

<3>2 qed by step <3>1 type color_t

<2>6 hypothesis h7: get_s (s) = S_rro,

prove ˜ (get_s2 (r) = C_green)

<3>1 prove get_s2 (r) = C_red

by hypothesis h1, h7

definition of get_s2, run_step

type state_t, color_t

<3>2 qed by step <3>1 type color_t

<2>7 qed by

step <2>1, <2>2, <2>3, <2>4, <2>5, <2>6

4.5 Making the proof 31

definition of run_step

hypothesis h1

type state_t

<1>2 conclude ;

(* Same proof kind than for never_s1_s2_green. *)

theorem never_s1_s3_green :

all s r : Self,

r = run_step (s) ->

˜ (get_s1 (r) = C_green /\ get_s3 (r) = C_green)

proof =

<1>1 assume s : Self, r : Self,

hypothesis h1 : r = run_step (s),

prove ˜ (get_s1 (r) = C_green /\ get_s3 (r) = C_green)

(* Proof by cases on values of the "automaton state" of s. *)

<2>1 hypothesis h2: get_s (s) = S_grr,

prove ˜ (get_s1 (r) = C_green)

<3>1 prove get_s1 (r) = C_orange

by hypothesis h1, h2

definition of get_s, get_s1, run_step

type state_t, color_t

<3>2 qed by step <3>1 type color_t

<2>2 hypothesis h3: get_s (s) = S_orr,

prove ˜ (get_s1 (r) = C_green)

<3>1 prove get_s1 (r) = C_red

by hypothesis h1, h3

definition of get_s1, run_step

type state_t, color_t

<3>2 qed by step <3>1 type color_t

<2>3 hypothesis h4: get_s (s) = S_rgr,

prove ˜ (get_s1 (r) = C_green)

<3>1 prove get_s1 (r) = C_red

by hypothesis h1, h4

definition of get_s1, run_step

type state_t, color_t

<3>2 qed by step <3>1 type color_t

<2>4 hypothesis h5: get_s (s) = S_ror,

prove ˜ (get_s1 (r) = C_green)

<3>1 prove get_s1 (r) = C_red

by hypothesis h1, h5

definition of get_s1, run_step

type state_t, color_t

<3>2 qed by step <3>1 type color_t

<2>5 hypothesis h6: get_s (s) = S_rrg,

prove ˜ (get_s1 (r) = C_green)

<3>1 prove get_s1 (r) = C_red

by hypothesis h1, h6

definition of get_s1, run_step

type state_t, color_t

<3>2 qed by step <3>1 type color_t

<2>6 hypothesis h7: get_s (s) = S_rro,

prove ˜ (get_s3 (r) = C_green)

<3>1 prove get_s3 (r) = C_red

by hypothesis h1, h7

32 4 A FIRST SIMPLE PROGRAM

definition of get_s3, run_step

type state_t, color_t

<3>2 qed by step <3>1 type color_t

<2>7 qed by

step <2>1, <2>2, <2>3, <2>4, <2>5, <2>6

definition of run_step

hypothesis h1

type state_t

<1>2 conclude ;

(* Same proof kind than for never_s1_s2_green. *)

theorem never_s2_s3_green :

all s r : Self,

r = run_step (s) ->

˜ (get_s2 (r) = C_green /\ get_s3 (r) = C_green)

proof =

<1>1 assume s : Self, r : Self,

hypothesis h1 : r = run_step (s),

prove ˜ (get_s2 (r) = C_green /\ get_s3 (r) = C_green)

(* Proof by cases on values of the "automaton state" of s. *)

<2>1 hypothesis h2: get_s (s) = S_grr,

prove ˜ (get_s2 (r) = C_green)

<3>1 prove get_s2 (r) = C_red

by hypothesis h1, h2

definition of get_s2, run_step

type state_t, color_t

<3>2 qed by step <3>1 type color_t

<2>2 hypothesis h3: get_s (s) = S_orr,

prove ˜ (get_s3 (r) = C_green)

<3>1 prove get_s3 (r) = C_red

by hypothesis h1, h3

definition of get_s3, run_step

type state_t, color_t

<3>2 qed by step <3>1 type color_t

<2>3 hypothesis h4: get_s (s) = S_rgr,

prove ˜ (get_s2 (r) = C_green)

<3>1 prove get_s2 (r) = C_orange

by hypothesis h1, h4

definition of get_s2, run_step

type state_t, color_t

<3>2 qed by step <3>1 type color_t

<2>4 hypothesis h5: get_s (s) = S_ror,

prove ˜ (get_s2 (r) = C_green)

<3>1 prove get_s2 (r) = C_red

by hypothesis h1, h5

definition of get_s2, run_step

type state_t, color_t

<3>2 qed by step <3>1 type color_t

<2>5 hypothesis h6: get_s (s) = S_rrg,

prove ˜ (get_s2 (r) = C_green)

<3>1 prove get_s2 (r) = C_red

by hypothesis h1, h6

definition of get_s2, run_step

type state_t, color_t

33

<3>2 qed by step <3>1 type color_t

<2>6 hypothesis h7: get_s (s) = S_rro,

prove ˜ (get_s2 (r) = C_green)

<3>1 prove get_s2 (r) = C_red

by hypothesis h1, h7

definition of get_s2, run_step

type state_t, color_t

<3>2 qed by step <3>1 type color_t

<2>7 qed by

step <2>1, <2>2, <2>3, <2>4, <2>5, <2>6

definition of run_step

hypothesis h1

type state_t

<1>2 conclude ;

(** The complete theorem stating that no signals are green at the same

time. *)

theorem never_2_green :

all s r : Self,

r = run_step (s) ->

˜ ((get_s1 (r) = C_green /\ get_s2 (r) = C_green) \/

(get_s1 (r) = C_green /\ get_s3 (r) = C_green) \/

(get_s2 (r) = C_green /\ get_s3 (r) = C_green))

proof =

by property never_s1_s2_green, never_s1_s3_green, never_s2_s3_green ;

end ;;

5 Conclusion

This tutorial illustrated the way proofs can be carried out in FoCaLize, using

Zenon to make them easier. We addressed here development much more “algorithm-

oriented” than other documents more oriented toward “mathematical-modeling”.

We didn’t used powerful modeling constructs of FoCaLize to only concen-

trate on hierarchical split of proofs, intermediate lemmas stating and kinds of facts

available to guide Zenon in its proofs searches and in which case to use them.

References

[1] The FoCaLize Team. A Short Tutorial for FoCaLize: Implementing Sets. LIP6-

ENSIIE-ENSTA, 2009–2012.

